
926 IEEE TRANSACTIONS ON PA’ITERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 9, SEYEMBER 1993

Computation of Normalized
Edit Distance and Applications

AndrCs Marzal and Enrique Vidal

Abstract-Given two strings X and Y over a finite alphabet,
the normalized edit distance between X and Y, d(X , Y) is defined
as the minimum of W (P) / L (P) , where P is an editing path
between X and Y , W (P) is the sum of the weights of the
elementary edit operations of P, and L (P) is the number of
these operations (length of P). In this paper, it is shown that
in general, d (X , Y) cannot be computed by first obtaining the
conventional (unnormalized) edit distance between X and Y and
then normalizing this value by the length of the corresponding
editing path. In order to compute normalized edit distances, a new
algorithm that can be implemented to work in O(m .n’) time and
O(n2) memory space is proposed, where m and n are the lengths
of the strings under consideration, and m 2 n. Experiments in
hand-writtem digit recognition are presented, revealing that the
normalized edit distance consistently provides better results than
both unnormalized or post-normalized classical edit distances.

Index Tem- Editing, Levenshtein distance, normalized edit
distance, optical character recognition, pattern recognition,
speech recognition, spelling correction, string correction,

I. INTRODUCTION

IVEN TWO strings X and Y over a finite alphabet, G an edit distance between X and Y can be defined as
the minimun weight of transforming X into Y through a
sequence of weighted edit operations. These operations are
usually defined in terms of insertion of a symbol, deletion
of a symbol, and substitution of one symbol for another.
There are a number of well-known algorithms for computing
edit distances [13], [7], [lo] and/or for solving other more-
or-less directly related problems [4], [lo], [l l] , [14]. Many
of these algorithms find their usefulness in error correcting,
pattern recognition, and other related applications [4], [3],
[lo]. Nevertheless, the edit distances, as defined so far, are
not very suitable for many of these applications since they
lack some type of normalization that would appropriately rate
the weight of the (edit) errors with respect to the sizes of the
objects (strings) that are compared. For instance, two (edit)
errors in a comparison between strings of length 3, say, are
more important than three errors in a comparison of strings
of length 9.

Although some straightforward heuristic normalization cri-
teria are often more-or-less successfully applied in most prac-
tical situations, in this paper, we show that the computation of

Manuscript received June 13, 1991; revised April 21, 1992. This work was
supported by the Spanish CICYT under grant TIC-0448/89 and by a grant
from the Spanish “Ministerio de Educati6n y Ciencia.” Recommended for
acceptance by Associate Editor R. De Mon.

The authors are with the Departamento de Sistemas Informiticos y Com-
putacih, Universidad Polit6cnica de Valencia, Valencia, Spain.

IEEE Log Number 9209987.

properly defined normalized edit distances cannot, in general,
be carried out by using the algorithms that are known thus
far for computing edit distances. In order to compute these
normalized edit distances, a new algorithm is introduced. This
algorithm is shown to work in O(m . n2) time and O(n2)
memory space for strings of lengths m and n, and n 5 m.

11. REVIEW OF EDIT DISTANCES

Let C be a finite alphabet and E* be the set of all finite-
length strings over E. Following a notation similar to that
used in the classical paper of Wagner and Fisher [13], let
X = X l X 2 . . . X , be a string of E*, where X i is the ith
symbol of X . We denote by Xi,,,j the substring of X that
includes the symbols from X i to X j , 1 5 i , j 5 n. The length
of such a string is IXi...j I = j - i + 1. If i > j , Xi..,j is the
null string A, 1x1 = 0.

An elementary edit operation is a pair (a, b) # (A, A), where
both a and b are strings of lengths 0 or 1, respectively. The
edit operation (a ,b) is often written as a -+ b. There are
three types of elementary edit operations, namely, insertions,
substitutions, and deletions, which take the forms A + b, a +
b, and a -t A, respectively. An edit transformation of X into
Y is a sequence S of elementary edit operations that transforms
X into Y. Edit transformations are also known as “Zistings”
[lo]. An example of edit transformation is given in Fig. l(c).
Elementary edit operations can be weighted by an arbitrary
weight function y that assigns to each elementary operation
a + b a nonnegative real number y(u + b). The function 7
can be extended to edit transformations S = S1S2 . . . S, by
letting y(S) = Czly(Si).

Given X , Y E C*, the edit distance between X and Y is
then defined as

w, Y)
= min {y(S)(S is an edit transformation of X into Y}.

(2.1)

A direct consequence of this definition is that edit distances
fulfill the triangle inequality, regardless of whether such a
property holds for the elementary weights or not. Correspond-
ingly, &.,.) is a metric over C* if the following conditions are
imposed to y : (U -t U) = O,y(a + b) > 0 if a # b, and

Edit distances can also be defined in terms of Traces, where
a Trace from X to Y,Tx,y , or simply T if X and Y are

y(a + b) = y(b + a),Vu,b,c E c U {A}.

0162-8828/93$03.00 0 1993 IEEE

Authorized licensed use limited to: National Taiwan University. Downloaded on December 5, 2009 at 13:36 from IEEE Xplore. Restrictions apply.

I I

MARZAL AND VIDAL: COMP.UTATION OF NORMALIZED EDIT DISTANCE AND APPLICATIONS 921

X = a u a v v //lli
Y = u b u v u a b

(d

Fig. 1. Editing path (a) between strings S, I-, along with the corresponding
trace (b) and edit transformation (c). Diagonal path segments in (a) correspond
to substitutions, whereas horizontal and vertical segments represent deletions
and insertions, respectively.

understood, is a set (sequence) of ordered pairs of integers
(i , j) satisfying the following (Fig. l(b)):

1) 1 5 i 5 I X (; l 5 j 5 (Y (.
2) for every two distinct pairs (i , j) , (i ' , j ') in T x , ~ : i <

Weights can be assigned to Traces by means of the weighting
function y:

i' e+ j < j ' .

w(~x,Y) = r(xi + ~ 3) + C Y (X ~ + A)
(i , j) E T X , Y i E I

where I and J are the sets of positions of X and Y ,
respectively, which are not related through T.

If the triangle inequality holds for the elementary weight
function 7, an important result of Wagner and Fischer [13]
relates edit distances as defined in (2.1) with Traces:

S(X, Y) = min {W(T)IT is a trace from X to Y } . (2.3)

Trace weights can be more compactly specified through an
alternative notation that follows from the concept of the editing
path.

An editing path between X and Y, P x , ~ , or simply P if X
and Y are understood, is a sequence of points or ordered pairs
of integers (ik,jk),O 5 IC 5 m satisfying the following:

(a) 0 5 ir~ i IXI;O i j , 5 (YI;

Fig. 1 shows an example of an editing path between two
strings along with the associated trace and edit transformation.

Every pair of successive points of an editing path corre-
sponds to an elementary edit operation so that, using the above
stated convention that i > j + zi...j = XVz E E*, we can

associate weights to paths as follows:
m

w (q X , Y) = C y (x i , - , + 1 . . . i k -+ y j k - , + 1 * . * j k) (2.5)
k = l

where PX,Y = (i~,j~),. . . > (ik,jk),. . . > (i m , j m) *
From the above result of Wagner and Fischer (2.3) and the

direct relation existing between Traces and Paths, it is easily
seen that

qx, Y)
= min{W(P)IP is an editing path between X and Y } .

(2.6)

The recursive relation due to Wagner and Fischer

fi(Xi...t,Yi...j) = min{S(Xi .,. i -~ ,Y i ... j) +$Xi + A),
qx1 ... Z-l,Yl . . . j - l) + r(xi + y 3) ,
S(X1 .A, YLj-1 + Y(A + y ,)}

(2.7)

leads directly, through dynamic programming, to iterative
procedures for computing S(X, Y) in O ((X (. (Y I) time and
memory space [13]. Furthermore, if the actual editing paths
or traces are not needed (only the edit distances are really
required), the actual space requirements can be easily reduced
to O(min(lXI, IYl)).

111. NORMALIZED EDIT DISTANCES

Given an editing Path P = (i0,jo). . . (im,jm), let the
length of P, L (P) be defined as the number of elementary edit
operations described by P, that is, L((i0,jo). . . (im,jm)) =
m. Correspondingly, the normalized weight of a (nonnull) path
P is

where W (P) is defined in (2.5).

is defined as
The normalized edit distance between two strings X and Y

4x9 Y)
= min{lfv(P)IPis an editing path between X and Y }

(3.2)

and is associated with @(P).
The normalized edit distance has been defined here directly

in terms of paths (or traces) rather than edit transformations.
In fact, unless certain nontrivial conditions are imposed on the
elementary edit weight function y and/or on the definition of
edit sequences, no meaningful definition of normalized edit
distance seems possible in terms of edit transformations. For
instance, if y is zero for certain pairs of symbols, then for any
two strings X , Y , there could be infinitely long sequences of
elementary edit operations with normalized weight equal zero.

On the other hand, it should be noted that the minimization
(3.2) can by no means be carried out by first minimizing W (P)
through (2.7) and then normalizing it by the length of the

Authorized licensed use limited to: National Taiwan University. Downloaded on December 5, 2009 at 13:36 from IEEE Xplore. Restrictions apply.

. I

928 IEEE TRANSACTIONS ON PAlTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 9, SEPEMBER 1993

a b b b a b b b
a a
a a
a a
b b

W(P) = 6 W(P) = 8
L(P) = UP) = 6
W P) I W(P) I

(b) (d

(a)
Weightmg L(P)=I 5 L(P)=I 33
function

Ed11 path obtamd with
Wagner & Rscher's

Edit Path & t a d with the
NomLzllzed Edit Distance

Algmthm Algmthm

Fig. 2. Example of edit distance with post-normalization versus normalized
edit distance.

obtained path, as in (3.1). The following example illustrates
how such a post-normalization procedure produces a wrong
result.

Example 3.1: Let X = abbb, Y = aaab, and y be as
specified in Fig. 2(a). The result of minimizing W (P) through
(2.7) is shown in Fig. 2@). The weight so obtained is W (P) =
6, and the length of the corresponding path is L (P) = 4. The
ratio W (P) / L (P) = 1.5 is greater than 8/6 w 1.33, which
is the actual normalized edit distance between X and Y, as

0
Although metric properties directly follow from definition

(2.1) for the conventional edit distance, certain difficulties
appear in the case of normalization. In fact, post-normalization
is clearly nontriangular, as is shown by the counterexample
of Fig. 3 for the same y function as in Example 3.1 (Fig.
2). On the other hand, although the (correct) normalized edit
distance d seems more likely to fulfill the triangle inequality,
the arguments of Section I1 are no longer applicable here to
support this property and, in this case as well, counterexamples
can be found. One of these counterexamples can be obtained
using a y function in which the sum of the costs of deleting and
inserting a particular symbol is (much) smaller than any other
elemental edit cost. For instance, if C = {a, b} , y (a , a) =

and y(b,X) = y(A,b) = 1, then for X = a , Y = ab,
and Z = b we have d(X,Y) + d (Y , Z) = 1/2 + 7/3 ilf
3 = d(X, Z), Fortunately enough, practical situations are
generally less contrived and, as will be discussed in Section
V, triangular behavior has actually been observed in practice
for the (correctly) normalized edit distance.

defined in (3.2) (see Fig. 2(c)).

y(b ,b) = O,-Y(a,b) = r(b,a) = Y (% 4 = ? (& a) = 5

IV. EFFICIENT COMPUTATION
OF NORMALIZED EDIT DISTANCES

A straightforward procedure for computing d(X, Y) would
ask for expanding all the possible editing paths between X
and Y and computing the corresponding normalized weights.
Obviously, this would lead to exponential computing time.
However, one may realize that from all such (a exponential
number of) paths, only a very small number of sets ofpaths
of different lengths is possible. This leads to an efficient
algorithm for computing d(X, Y).

The basic idea is to compute one minimum edit weight
for each of the possible lengths of editing paths. Once all
these weights are available, they can be divided by their

X=aaab
Y=aaabbb
Z=abbb

a a a b

a
a
a
b
b
b

a b b b

a
a
a
b
b
b

W(P)=4; UP)=6 W(P)=4; L(P)=6

d(X,Y)=d(X.Y)=213 d(YZ)=&(YZ)=213

d(XZ)=4/3 d(XZ)=312

d(X,Y) + d(YZ) p d(XZ)

d(X,Y)+d(YZ) 2 d(XZ)

Fig. 3. Counterexample of triangle inequality satisfaction for the post-normal-
ked edit distance (d ') . The weighting function 7 and strings X and Z are
the same as those of Example 3.1. Although the triangle inequality fails for
post-normalized edit distance d', it is fulfilled for the (correct) normalized
edit distance d.

corresponding path lengths, and the minimum quotient can be
given as the normalized edit distance. The following lemma
establishes how many different edit path lengths are possible
when two strings are compared.
Lemma 4.1: Let P be any editing path between XI...^ and

Y I , , . ~ . The length of P is then bounded as

Proof:

where

From (2.4b)
m

k = l
m

k = l

Therefor e

As a consequence of Lemma 4.1, the number of different
lengths of editing paths between X and Y is

N = min(lX1, lYl) + 1. (4.1)

Authorized licensed use limited to: National Taiwan University. Downloaded on December 5, 2009 at 13:36 from IEEE Xplore. Restrictions apply.

MAFUAL. AND VIDAL: COMPUTATION OF NORMALIZED EDIT DISTANCE AND APPLICATIONS 929

Definition 4.1: Let P;.i be the set of all editing paths = min(D(i - l , j , k - 1) + y(Xi -+ A),
between Xl...i and YI...~, and let D(i,jl 1) = min{W(P)IP E
Pi,j A L(P) = k } ; with D(Z,jl k) = 00 if P E Pi,j(L(P) =
k.

Theorem 4.1: Let n = max(lXI,IYI), m = (XI + IYI.
Then

D (i , j - 1, k - 1) + y(A -+ Yj)l
D(i - 1 , j - 1, IC - 1) + y(X; + 5)).

According to Lemma 4.1, no P exists between XI...^, YI...~
with L (P) = k for k < max(i,j) or k > i + j . Therefore,

0 from Definition 4.1, for all such k, D(z , j , k) = m.
Theorem 43:

Proof: (From the definition of normalized edit distance

Let P be tke set of editing paths between X and Y. Then
(3.2), Lemma 4.1, and Definition 4.1): (a) V i , l < i < l X l :

a

D(i , 0 , i) = y(X1 4 A) and D (i , 0 , k) = mVk # i .
1=1

(b) v i1 5.7. I IYI :
a

D(O,jlj) = c y (A -+ K),andD(O,j,k) = mVk # j .
1=1

Theorem 4.2: (Recursive Relation):

D (i l j , k) = min{D(i - l , j , k - 1) + y(Xi ---f A),
D (i , j - 1, k - 1) + y(A ---f y) ,
D(i - 1 , j - 1, k - 1) + 4 y) }

D (i , j , k) = 00 Vk < max(i,j),Vk > i + j .

Proof:

D(i1 j l k)
= min{W(P)I = (O , O) , . . . , (i , j) A L (P) = k }
= min{

{W(P)IP = (0, o), . . . , (i - 1 , j) , (Z , j) A L (P) = k } U

{W(P)IP = (O , O) , . . . , (i , j - l), (i l j) A L (P) = k)U

{W(P) (P=(o ,o) ,...,(2 - l , j - l) , (i , j) A L (P) = k }
= min(

min{W(P)(P = (O , O) , . , . , (2 - l l j) , (i , j) A L(P) = k } ,
min{W(P)IP = (O , O) , . . . , (i , j - l) , (z , j) A L (P) = k } ,
min{W(P)IP = (O , O) , . . . ,

(2 - 1, j - I), (i , j) A L(P) = k })
= min(

min{W(P)IP = (o ,O) , . . . , (2 - 1 , j) A L (P) = k - 1)

min{W(P)IP = (O , O) , . . . , (i , j - 1) A L(P) = k - 1)

min{W(P)JP = (O , O) , . . . , (i - 1 , j) A L(P) = k - 1)

+-/(Xi + XI1

+ -!(A -+ y,),

+ r(xi -+ Yj))

a) From Lemma 4.1, there exists only one editing path
P between XI.,.^ and Yl..,,. The length of this path is
L (P) = i , and since YI. . .~ = A, P is only composed of
the deletions of all the symbols of Xl,,,i.

b) Similar to a). 0
Using the recursive relations of Theorem 4.2 and Theo-

rem 4.3, D(lXl,lYl,k) can be computed through dynamic
programming for all k such that max (1x1, IYI) I k I
1x1 + IYI. From Theorem 4.1, this can lead to an algorithm
for computing d(X,Y) in O(IXI.IYI.min(lXl, lYl)) time. A
direct implementation of this algorithm for computing d(X, Y)
requires an array of (1x1 + 1) .(lYl+ 1) . (lXl+ IYI) memory
locations for storing the successively computed values of D.
However, from (4.1), one can take advantage of the fact that
only min(i,j) + 1 different lengths are possible for editing
paths between XI...^ and YI...~ to reduce the array to a size
of (1x1 + 1) . (IYI + 1) . (min(lX1, IYl) + 1) by appropriately
indexing the k entries of this array. The editing path associated
with d(X,Y) can be easily obtained from the previously
computed array of values of D with no change in the order
of either the time or space complexity growth functions.
Further memory reduction is possible if only the value of the
normalized edit distance between X and Y is required and not
the corresponding editing path. In this case, only those values
of D that are to be used in the next step of the main loop
need be stored, yielding an algorithm with memory complexity
in O(min((X1, IY I)’). Two implementations corresponding to
the first and last previously discussed versions of the proposed
algorithm are presented in the Appendix.

With the ordering of subproblems (i , j l k) that has been
adopted in these implementations, the computation is per-
formed on-line with one of the given strings. Obviously, other
orderings are possible, leading to different implementations.
One of these orderings is the (perhaps most “natural”) multi-
stage ordering with the stages corresponding to the successive
possible values of path lengths k. This leads to (not on-line)
implementations with identical computational costs as those
discussed above [6].

Authorized licensed use limited to: National Taiwan University. Downloaded on December 5, 2009 at 13:36 from IEEE Xplore. Restrictions apply.

. I

+

930

- POS~-NWITI~EA mlt msrance

d - N O I T T X I I ~ ~ ~ mlt mstanm
‘;+

IEEE TRANSACTIONS ON PAmRN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 9, SEPTEMBER 1993

Fig. 4. Insertion, deletion, and substitution weight function that has been
used in the experiments.

V. EXPERIMENTAL RESULTS
In order to compare the appropriateness of the correctly

normalized edit distance versus that of post-normalized or
unnormalized edit distances, a practical pattern recognition
problem that consists of hand-written digit recognition through
edit-distance based nearest-neighbor classification has been
considered.

The data consists of 500 strings (50 per digit) that represent
the contours of the isolated sample digits obtained from
several writers. These digits were captured through a rather
standard image-acquisition procedure and chain coded into
strings representing their outer contours. The alphabet of
these strings is the conventional one of eight symbols (E =
{0,1,2,3,4,5,6,7}) , each for one of the eight possible 45”
directions and lengths that define the discrete contours over
a grid with a resolution of 8 pixels. Some examples of these
strings are shown in Fig. 6.

The weight function y required for the elementary edit oper-
ations was obtained through a (dynamic-programming-based)
learning technique known as the error correcting grammatical
inference (ECGI) [9] from a set of 15 chain-coded digits
of each class. The ECGI technique gives, as a byproduct, a
probability matrix for substitutions of any pair of symbols
of the alphabet, as well as for insertions and deletions of any
symbol. This probability matrix was properly transformed into
a weight function by computing the negative logarithm of each
probability value, except for ?(a -, a) ,a E E, whose values
have always been set to zero. The matrix that resulted from
this operation is shown in Fig. 4.

This weight function was used to compute edit distances
between samples in three different ways: unnormalized, post-
normalized, and normalized. The first one is the classical edit
distance. The second method carries out the normalization by
computing the quotient between the classical unnormalized
edit distance and the length of the longest edit path that yields
the optimal unnormalized edit cost. Finally, the third procedure
is the normalized edit distance that has been introduced in this
paper.

A classification experiment based on the nearest neighbor
rule was performed with each of these edit distance methods.
In each case, the number of randomly chosen prototypes per
class was varied from 1 to 20, and the rest of the data were
used for testing. The resulting correct classification rates for
the different edit distances are graphically displayed in Fig.

X = 3 2 1 2 5 4 5 4 4 2 2 M 5 0 1 1 0 0 0 6 6 0

2
Y=3454544425705011010065102

9
Z = 3 4 3 5 4 4 4 4 ~ 1 ~ 5 6 6 7 ~ 1 1 1 2

6 d d

(X,r) 67.40 1.87 1.83

(xz) 80.51 1.83 1.78

(X.X’) 85.92 1.87 1.76

Fig. 6. Example of misclassification with both unnormalid (6) and
post-normalized edit distances (d‘) and correct classification with the
normalized edit distance (d). A sample of the digit “7” on the top is closer to a
prototype of “2” when 6 is used, whereas prototype “9” is the nearest neighbor
for d‘. Only the normalized edit distance (d) leads to proper classification in
this case.

5, which shows a consistent superiority of the normalized
distance over both unnormalized and post-normalized edit
distances,

An example of correct classification with normalized edit
distance and misclassification with both unnormalized and
post-normalized edit distances is shown in Fig. 6. When a
string is compared with others, the unnormalized edit distance
(6) tends to yield, in general, smaller values for short strings.
The post-normalized edit distance (d’) attenuates this effect,
but it tends to yield smaller values for comparisons between
similar-length strings. Only the normalized edit distance (6) is
really independent of the length of the comparison.

Apart from these recognition experiments, an additional set
of experiments was carried out in order to empirically establish
the extent to which the triangle inequality is fulfilled by the
different edit distances. To this end, for each possible triplet in
our 500 strings data set, the triangle inequality looseness [12]

Authorized licensed use limited to: National Taiwan University. Downloaded on December 5, 2009 at 13:36 from IEEE Xplore. Restrictions apply.

- 8

MARZAL AND VIDAL: COMPUTATION OF NORMALIZED EDIT DISTANCE AND APPLICATIONS

0.015

2
0.005

-0.5 0.0 0.5 1.0 1.5 2.0
Looseness

(a)

-_ I I
, " ' I " ' l " ' I " ' l " '

-0.2 0.0 0.2 0.4 0.6 0.8 1.0
Looseness

(b)
Fig. 7. (a) Histograms of the triangle inequality looseness for the unnor-
malized, post-normalized, and normalized edit distance; @) close-up of the
same histograms around lwseness=O in logarithmic scale. Only the normalized
edit distance strictly fulfills the triangle inequality. The looseness values are
normalized by their corresponding average distance between strings.

H (X , Y, Z) = A(X, Y) + A(Y, Z) - A(X, 2) was computed
for each of the three edit distances (A E { unnormalized, post-
normalized, normalized}). These values were normalized by
the corresponding average distance between strings (computed
for all pairs of strings). The resulting histograms appear in
Fig. 7, showing that only the normalized edit distance strictly
satisfies the triangle inequality for all the triplets.

VI. CONCLUDING REMARKS

In this paper, a correct procedure for computing normalized
edit distances has been presented with a linear increase in
computational complexity with respect to the classical unnor-
malized edit distance procedure. This correctly normalized
edit distance has been shown to clearly outperform both
the unnormalized and the (suboptimal) post-normalized edit
distances in a pattern recognition problem using the nearest
neighbor classification rule.

Normalization appears to be an important aspect to take
into account in many pattern recognition problems approached
through edit distances. Even a suboptimal or incorrect incorpo-
ration of normalization in the classical edit distance algorithm,
such as the post-normalization technique, has proven useful to
improve the results with respect to those obtained with the
unnormalized edit distance.

There are many other (suboptimal) normalization techniques
that have been proposed and are often used in practical
situations. For instance, in automatic speech recognition, nor-

93 1

Algorithm Normalized Edit Distance
input X,Y E Z+ ;
output d:real ;
function 7 : (Cu{X))x (Eu{A))-real ;
var D : array [O ... KI.0 ... ln.0 ... !Xl+lYl+l] of real ;

/I the two extra values of the third index an intended for simplifying
control and enhancing readability //

i, j . k : integer ;
begin

D[O,O,O] := 0 ; D[O.O.l] := w ;
for j := 1 to In do

endfor
for i := 1 to LYI do

D [O j j - 1 l : = m ; D [O j j l :=D[Oj-lj- l l+r(h+Yj); D[Oj j+l l :=- ; " r e m 4 . 3 b i i

D[i.O.i-ll:= m; D[i,O,il:~[i-l,O,i-ll+y(x, + h); D[i.Oj+l]:= m;
for j := 1 to IYI do

1- 4 . 3 ~ 1

Irma" 4.241
IILunma 4.111

D[ij,kl :=min(D[i-IJ,k-l] + y (X , + h) , l n l " e m 4.241

D[ij ,nw(ij)-l] := 00

fork := max(ij) to i+j do

D[ij-1L-11 + -,fh + Y,),
D[i - l j - l ,k - l] +$Xi --f Y,))

endfor
D[ij,i+j+l] := m ImKOrem 4.241

endfor
endfor

for k := KI to !XI+IYI do d := min (d . v) endfor

d : = m

KnKaem 4.111
end.

Fig. 8. Algorithm 1.

Algorithm Normalized Edit Distance
input X,Y E Z+ ; /I lYlslXl /I
output d : r e a l ;
const Previous = 0 ; Current = 1 ;
function ~ : (E U (~)) X (C U (A)) - ~ ~ ~ ;
var D : array [Previo us... Current,O.. .In.O. ..IY1+2] of real ;

/I the two extra values of the third index are intended for simplifying
control and enhancing readabiity //

i, j , k , P, C . ofs, ofsi. ofsj, ofsij: integer ;
begin

P := Previour; C := Currenr.
D[P.O.O] := m ; D[P,O.l] := 0 ; D[P,O.2] := m ;
for j := 1 to IYI do

endfor
for i := 1 to !XI do I/ 'c' represents 'i'and 'P' represents ' i - l ' / /

D[Pj,Ol:= m ; D [P j . l] : = D [P j - l . l] + ~ h ' Y ,) ; D (P j , 2] : = m

D[C.O,Ol := - ; D[C,O.l] :=D[P.O.ll +fix, + 1) ; D[C,O.Z] := -
for j := 1 to IYI do

ofs := mer(ij]-l
ofsi:= m (i - l j] - l ; o f j :=mer(i j - l) - l ; ofsij :=ma.r(i-lj-1)-1
D K j.01 := - ;
fork := mar(ij) to i+j do

// D[Cj,m&i.,)-l-ofs] N

D[CJ,k-ofs]:=min(D[Pj,k-1-ofsi] + y(X, -+ h),
D[Cj-l ,k-l-ofs]] +HA + Y,),
D[PJ-l.k-l-ofsij] +u(X,+Yj))

endfor
D[CJ,i+j+l-ofs] := m

endfor
(PC) := (C,P)

endfor
d : = m

fork := !XI to !XI+IYI do d := min (d, D'P'lY1'k-LY1+l l lendfor
end.

Fig. 9. Algorithm 2.

malization by (the sum of) the lengths of the compared
strings is quite popular in dynamic time warping [l], [8],
[12], which is a dynamic programming procedure that is
closely related to string editing [lo]. Another suboptimal
normalization technique that has been proposed in the speech
recognition field consists of minimizing at each point of the
computational lattice the quotient of the current distance by
the current path length [2] , [5] .

Since all of these suboptimal techniques are computationally
cheaper than the optimal one proposed here, experimental
work is required in order to determine to what extent these
techniques could be appropriate in each specific pattern recog-
nition task and whether a correct normalization does in fact

Authorized licensed use limited to: National Taiwan University. Downloaded on December 5, 2009 at 13:36 from IEEE Xplore. Restrictions apply.

. I

932 IEEE TRANSACTIONS ON PAlTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 9, SEmMBER 1993

computation of the normalized edit distance.

APPENDIX
ALGORITHMS

This Appendix shows two implementations corresponding
to the first and last versions of the proposed algorithm. Fig. 8
shows Algorithm 1: Space complexity O(lXl.lYI.(lXl+lYI)).
Fig. 9 shows Algorithm 2: Space complexity O(lYI2).

lead to greater recognition accuracy. Some of these experi-
ments are currently in progress in our laboratories. Finally,
future investigation should also address the problem of fast

[l l] P. H. Sellers, “The theory and computation of evolutionary distances:
Pattern recognition,” J. Algorithms, vol. 1, pp. 359-373, 1980.

[12] E. Vidal, F. Casacuberta, J. M. Benedi, M. J. Lloret, and H. Rulot,
“On the verification of triangle inequality by dynamic time-warping
dissimilarity measures,” Speech Commun, vol. 7, pp. 67-69, 1988.

131 R. A. Wagner and M. J. Fischer, “The string-to-string correction
problem,” J. Assoc. Comput. Machinery, vol. 21, no. 1, pp. 168-173,
Jan. 1974.

141 Y. P. Yang and T. Pavlidis, “Optimal correspondence of string subse-
quences,’’ IEEE Trans. Patt. Anal. Machine Intell., vol. 12, no. 11, pp.
1080-1087. Nov. 1990.

ACKNOWLEDGMENT
The image data was provided by J. M. Valiente and G. An-

dreu from DISCA of the Universidad Polithica de Valencia.
The probabilities for elementary edit operations were supplied
by H. Rulot from CIUV of the Universidad de Valencia. The
authors gratefully acknowledge all these contributions to this
work.

REFERENCES

F. Casacuberta and E. Vidal, Reconocimiento Automcitico del Habla.
Barcelona: Marcombo, 1987.
J. Di Martino, “Dynamic time warping algorithms for isolated and
connected word recognition,” in New System and Architectures for
Automatic Speech Recognition and Synthesis (R. De Mori and Y. Suen,
Eds.). Berlin: Springer Verlag, 1985.
K. S . Fu, Syntactic Pattern Recognition and Applications. Englewood
Cliffs, NJ: Prentice-Hall, 1982.
P. A. V. Hall and G. R. Dowling, “Approximate string matching,” ACM
Comput. Surveys, vol. 12, pp. 381-402, Dec. 1980.
Y. Kitazume, E. Ohira, and T. Endo, “LSI implementation of a pattern
matching algorithm for speech recognition,” IEEE Trans. Acoustics
Speech Signal Processing, vol. 33, no. 1, pp. 1-5, Feb. 1985.
A. Marzal and E. Vidal, “On the computation of normalized edit
distances revisited,” Tech. Rep. DSIC-II/i5/1991, Depto. de Sistemas
Informiticos y Computaci6n, Univ. PolitCcnica de Valencia.

[7] W. J. Masek and M. S. Patterson, “A faster algorithm computing string
edit distances,” J. Comput. Syst. Sci., vol. 20, pp. 18-31, Feb. 1980.

[8] L. Rabiner and L. Levinson, “Isolated and connected word recogni-
tion-Theory and selected applications,” IEEE Trans. Commun., vol.
C-29, no. 5 , pp. 621-659, 1981.

[9] H. Rulot and E. Vidal, “Modelling (Sub)string-length-based constraints
through a grammatical inference method,” in Pattern Recognition:
Theory and Applications (Devijver and K i t h , Eds.). Berlin: Springer
Verlag, 1987, pp. 451-459.

[lo] D. Sankoff and J. B. Kruskal, lime Warps, String Edits, and Macro-
molecules: The Theory and Practice of Sequence Comparison. Read-
ing, M A Addison-Wesley, 1983.

And* Manal was born in Valencia, Spain, on
June 7, 1966. He received the Licenciado degree in
computer science from the Facultad de Informitica
of the Universidad Polittcnica de Valencia in 1990.
He is currently working towards the Ph.D. degree in
computer science at the Departamento de Sistemas
InformPticos y Computaci6n of the Universidad
Polit6cnica de Valencia.

His current research interests are in pattern recog-
nition and algorithms for automatic speech recogni-
tion.

Enrique Vidal received the Licenciado en Ciencias
Fisicas degree in 1978 and the Doctor en Ciencias
Fisicas degree in 1985, both from the Universidad
de Valencia.

From 1972 to 1978, he was with several different
companies working in electronics and computer
engineering. In 1978, he joined the Computer Center
of the Universidad de Valencia, where he served
as a systems analyst, and in 1981, he joined the
Departamento de Electr6nica e Informitica of the
same university as an honorary collaborator. After

that, he coordinated, in both centers, a research group in the field of
automatic speech recognition. In 1986, he left the Universidad de Valencia
and joined the Departamento de Sistemas InformPticos y Computaci6n of the
Universidad Pol i th ica de Valencia, where, up until now, he has served as a
Profesor Titular of the Facultad de Informitica. His current fields of interest
include statistical and syntactic pattern recognition and their applications
to automatic speech recognition, where it is especially concerned with
grammatical inference and, in general, with automatic learning methodologies.

Dr. Vidal is a member of the International Association for Artificial Intel-
ligence (AEPIA). He also serves as a member of the governing board of the
Spanish Society for Pattern Recognition and Image Analysis (SERFAI), which
is an affiliate society of IAF’R. He is co-author of the book Reconocimiento
Autonuitico del Habla, which was awarded the Mundo Elecrrhico Prize for
the best technical book in 1985.

Authorized licensed use limited to: National Taiwan University. Downloaded on December 5, 2009 at 13:36 from IEEE Xplore. Restrictions apply.

