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Computation of Normalized 
Edit Distance and Applications 

AndrCs Marzal and Enrique Vidal 

Abstract-Given two strings X and Y over a finite alphabet, 
the normalized edit distance between X and Y, d( X ,  Y ) is defined 
as the minimum of W ( P ) / L ( P ) ,  where P is an editing path 
between X and Y , W ( P )  is the sum of the weights of the 
elementary edit operations of P,  and L ( P )  is the number of 
these operations (length of P).  In this paper, it is shown that 
in general, d ( X , Y )  cannot be computed by first obtaining the 
conventional (unnormalized) edit distance between X and Y and 
then normalizing this value by the length of the corresponding 
editing path. In order to compute normalized edit distances, a new 
algorithm that can be implemented to work in O(m .n’) time and 
O(n2) memory space is proposed, where m and n are the lengths 
of the strings under consideration, and m 2 n. Experiments in 
hand-writtem digit recognition are presented, revealing that the 
normalized edit distance consistently provides better results than 
both unnormalized or post-normalized classical edit distances. 

Index Tem- Editing, Levenshtein distance, normalized edit 
distance, optical character recognition, pattern recognition, 
speech recognition, spelling correction, string correction, 

I. INTRODUCTION 

IVEN TWO strings X and Y over a finite alphabet, G an edit distance between X and Y can be defined as 
the minimun weight of transforming X into Y through a 
sequence of weighted edit operations. These operations are 
usually defined in terms of insertion of a symbol, deletion 
of a symbol, and substitution of one symbol for another. 
There are a number of well-known algorithms for computing 
edit distances [13], [7], [lo] and/or for solving other more- 
or-less directly related problems [4], [lo], [ l l ] ,  [14]. Many 
of these algorithms find their usefulness in error correcting, 
pattern recognition, and other related applications [4], [3], 
[lo]. Nevertheless, the edit distances, as defined so far, are 
not very suitable for many of these applications since they 
lack some type of normalization that would appropriately rate 
the weight of the (edit) errors with respect to the sizes of the 
objects (strings) that are compared. For instance, two (edit) 
errors in a comparison between strings of length 3, say, are 
more important than three errors in a comparison of strings 
of length 9. 

Although some straightforward heuristic normalization cri- 
teria are often more-or-less successfully applied in most prac- 
tical situations, in this paper, we show that the computation of 
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properly defined normalized edit distances cannot, in general, 
be carried out by using the algorithms that are known thus 
far for computing edit distances. In order to compute these 
normalized edit distances, a new algorithm is introduced. This 
algorithm is shown to work in O(m . n2)  time and O(n2)  
memory space for strings of lengths m and n, and n 5 m. 

11. REVIEW OF EDIT DISTANCES 

Let C be a finite alphabet and E* be the set of all finite- 
length strings over E. Following a notation similar to that 
used in the classical paper of Wagner and Fisher [13], let 
X = X l X 2 . .  . X ,  be a string of E*, where X i  is the ith 
symbol of X .  We denote by Xi,,,j  the substring of X that 
includes the symbols from X i  to X j ,  1 5 i , j  5 n. The length 
of such a string is IXi...j I = j - i + 1. If i > j ,  Xi..,j is the 
null string A, 1x1 = 0. 

An elementary edit operation is a pair (a, b) # (A, A), where 
both a and b are strings of lengths 0 or 1, respectively. The 
edit operation (a ,b)  is often written as a -+ b. There are 
three types of elementary edit operations, namely, insertions, 
substitutions, and deletions, which take the forms A + b, a + 
b, and a -t A, respectively. An edit transformation of X into 
Y is a sequence S of elementary edit operations that transforms 
X into Y. Edit transformations are also known as “Zistings” 
[lo]. An example of edit transformation is given in Fig. l(c). 
Elementary edit operations can be weighted by an arbitrary 
weight function y that assigns to each elementary operation 
a + b a nonnegative real number y(u + b). The function 7 
can be extended to edit transformations S = S1S2 . . . S, by 
letting y(S) = Czly(Si). 

Given X ,  Y E C*, the edit distance between X and Y is 
then defined as 

w, Y )  
= min {y(S)(S is an edit transformation of X into Y}. 

(2.1) 

A direct consequence of this definition is that edit distances 
fulfill the triangle inequality, regardless of whether such a 
property holds for the elementary weights or not. Correspond- 
ingly, &.,.) is a metric over C* if the following conditions are 
imposed to y : (U -t U) = O,y(a + b) > 0 if a # b, and 

Edit distances can also be defined in terms of Traces, where 
a Trace from X to Y,Tx,y ,  or simply T if X and Y are 

y(a  + b)  = y(b + a),Vu,b,c E c U {A}. 
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X = a u a v v  //lli 
Y = u b u v u a b  

(d 

Fig. 1. Editing path (a) between strings S, I-, along with the corresponding 
trace (b) and edit transformation (c). Diagonal path segments in (a) correspond 
to substitutions, whereas horizontal and vertical segments represent deletions 
and insertions, respectively. 

understood, is a set (sequence) of ordered pairs of integers 
( i , j )  satisfying the following (Fig. l(b)): 

1) 1 5  i 5 I X ( ; l  5 j 5 ( Y ( .  
2) for every two distinct pairs ( i , j ) , ( i ' , j ' )  in T x , ~  : i < 

Weights can be assigned to Traces by means of the weighting 
function y: 

i' e+ j < j ' .  

w(~x,Y) = r(xi + ~ 3 )  + C Y ( X ~  + A) 
( i , j ) E T X , Y  i E I  

where I and J are the sets of positions of X and Y ,  
respectively, which are not related through T. 

If the triangle inequality holds for the elementary weight 
function 7, an important result of Wagner and Fischer [13] 
relates edit distances as defined in (2.1) with Traces: 

S(X, Y )  = min {W(T)IT is a trace from X to Y } .  (2.3) 

Trace weights can be more compactly specified through an 
alternative notation that follows from the concept of the editing 
path. 

An editing path between X and Y, P x , ~ ,  or simply P if X 
and Y are understood, is a sequence of points or ordered pairs 
of integers (ik,jk),O 5 IC 5 m satisfying the following: 

(a) 0 5 ir~ i IXI;O i j ,  5 (YI; 

Fig. 1 shows an example of an editing path between two 
strings along with the associated trace and edit transformation. 

Every pair of successive points of an editing path corre- 
sponds to an elementary edit operation so that, using the above 
stated convention that i > j + zi...j = XVz E E*, we can 

associate weights to paths as follows: 
m 

w ( q X , Y ) = C y ( x i , - , + 1 . . . i k  -+ y j k - , + 1 * . * j k )  (2.5) 
k = l  

where PX,Y = (i~,j~),. . . > (ik,jk),. . . >  ( i m , j m ) *  
From the above result of Wagner and Fischer (2.3) and the 

direct relation existing between Traces and Paths, it is easily 
seen that 

qx, Y )  
= min{W(P)IP is an editing path between X and Y } .  

(2.6) 

The recursive relation due to Wagner and Fischer 

fi(Xi...t,Yi...j) = min{S(Xi .,. i -~ ,Y i  ... j )  +$Xi + A), 
qx1 ... Z-l,Yl . . . j - l )  + r(xi + y 3 ) ,  
S(X1 .A, YLj-1 + Y(A + y , )}  

(2.7) 

leads directly, through dynamic programming, to iterative 
procedures for computing S(X, Y )  in O ( ( X (  . (Y I) time and 
memory space [13]. Furthermore, if the actual editing paths 
or traces are not needed (only the edit distances are really 
required), the actual space requirements can be easily reduced 
to O(min(lXI, IYl)). 

111. NORMALIZED EDIT DISTANCES 

Given an editing Path P = (i0,jo). . . (im,jm), let the 
length of P, L ( P )  be defined as the number of elementary edit 
operations described by P, that is, L((i0,jo).  . . (im,jm)) = 
m. Correspondingly, the normalized weight of a (nonnull) path 
P is 

where W ( P )  is defined in (2.5). 

is defined as 
The normalized edit distance between two strings X and Y 

4x9 Y )  
= min{lfv(P)IPis an editing path between X and Y }  

(3.2) 

and is associated with @(P).  
The normalized edit distance has been defined here directly 

in terms of paths (or traces) rather than edit transformations. 
In fact, unless certain nontrivial conditions are imposed on the 
elementary edit weight function y and/or on the definition of 
edit sequences, no meaningful definition of normalized edit 
distance seems possible in terms of edit transformations. For 
instance, if y is zero for certain pairs of symbols, then for any 
two strings X ,  Y ,  there could be infinitely long sequences of 
elementary edit operations with normalized weight equal zero. 

On the other hand, it should be noted that the minimization 
(3.2) can by no means be carried out by first minimizing W ( P )  
through (2.7) and then normalizing it by the length of the 

Authorized licensed use limited to: National Taiwan University. Downloaded on December 5, 2009 at 13:36 from IEEE Xplore.  Restrictions apply. 



. I  

928 IEEE TRANSACTIONS ON PAlTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 9, SEPEMBER 1993 

a b b b  a b b b  
a a 
a a 
a a 
b b 

W(P) = 6 W(P) = 8 
L(P) = UP) = 6 
W P )  I W(P) I 

(b) (d 

(a) 
Weightmg L(P)=I 5 L(P)=I 33 
function 

Ed11 path obtamd with 
Wagner & Rscher's 

Edit Path & t a d  with the 
NomLzllzed Edit Distance 

Algmthm Algmthm 

Fig. 2. Example of edit distance with post-normalization versus normalized 
edit distance. 

obtained path, as in (3.1). The following example illustrates 
how such a post-normalization procedure produces a wrong 
result. 

Example 3.1: Let X = abbb, Y = aaab, and y be as 
specified in Fig. 2(a). The result of minimizing W ( P )  through 
(2.7) is shown in Fig. 2@). The weight so obtained is W ( P )  = 
6, and the length of the corresponding path is L ( P )  = 4. The 
ratio W ( P ) / L ( P )  = 1.5 is greater than 8/6 w 1.33, which 
is the actual normalized edit distance between X and Y, as 

0 
Although metric properties directly follow from definition 

(2.1) for the conventional edit distance, certain difficulties 
appear in the case of normalization. In fact, post-normalization 
is clearly nontriangular, as is shown by the counterexample 
of Fig. 3 for the same y function as in Example 3.1 (Fig. 
2). On the other hand, although the (correct) normalized edit 
distance d seems more likely to fulfill the triangle inequality, 
the arguments of Section I1 are no longer applicable here to 
support this property and, in this case as well, counterexamples 
can be found. One of these counterexamples can be obtained 
using a y function in which the sum of the costs of deleting and 
inserting a particular symbol is (much) smaller than any other 
elemental edit cost. For instance, if C = {a, b} , y (a ,  a )  = 

and y(b,X) = y(A,b) = 1, then for X = a , Y  = ab, 
and Z = b we have d(X,Y) + d ( Y , Z )  = 1/2 + 7/3 ilf 
3 = d(X, Z), Fortunately enough, practical situations are 
generally less contrived and, as will be discussed in Section 
V, triangular behavior has actually been observed in practice 
for the (correctly) normalized edit distance. 

defined in (3.2) (see Fig. 2(c)). 

y(b ,b)  = O,-Y(a,b) = r(b,a) = Y ( % 4  = ? ( & a )  = 5 

IV. EFFICIENT COMPUTATION 
OF NORMALIZED EDIT DISTANCES 

A straightforward procedure for computing d(X, Y) would 
ask for expanding all the possible editing paths between X 
and Y and computing the corresponding normalized weights. 
Obviously, this would lead to exponential computing time. 
However, one may realize that from all such (a exponential 
number of) paths, only a very small number of sets ofpaths 
of different lengths is possible. This leads to an efficient 
algorithm for computing d(X, Y). 

The basic idea is to compute one minimum edit weight 
for each of the possible lengths of editing paths. Once all 
these weights are available, they can be divided by their 

X=aaab 
Y=aaabbb 
Z=abbb 

a a a b  

a 
a 
a 
b 
b 
b 

a b b b  

a 
a 
a 
b 
b 
b 

W(P)=4; UP)=6 W(P)=4; L(P)=6 

d(X,Y)=d(X.Y)=213 d(YZ)=&(YZ)=213 

d(XZ)=4/3 d(XZ)=312 

d(X,Y) + d(YZ)  p d(XZ)  

d(X,Y)+d(YZ) 2 d(XZ) 

Fig. 3. Counterexample of triangle inequality satisfaction for the post-normal- 
ked edit distance (d ' ) .  The weighting function 7 and strings X and Z are 
the same as those of Example 3.1. Although the triangle inequality fails for 
post-normalized edit distance d', it is fulfilled for the (correct) normalized 
edit distance d.  

corresponding path lengths, and the minimum quotient can be 
given as the normalized edit distance. The following lemma 
establishes how many different edit path lengths are possible 
when two strings are compared. 
Lemma 4.1: Let P be any editing path between  XI...^ and 

Y I , , . ~ .  The length of P is then bounded as 

Proof: 

where 

From (2.4b) 
m 

k = l  
m 

k = l  

Therefor e 

As a consequence of Lemma 4.1, the number of different 
lengths of editing paths between X and Y is 

N = min(lX1, lYl) + 1. (4.1) 
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Definition 4.1: Let P;.i be the set of all editing paths = min(D(i - l , j ,  k - 1) + y(Xi -+ A), 
between Xl...i and YI...~, and let D(i,jl 1) = min{W(P)IP E 
Pi,j A L(P)  = k } ;  with D(Z,jl k )  = 00 if P E Pi,j(L(P) = 
k. 

Theorem 4.1: Let n = max(lXI,IYI), m = (XI + IYI. 
Then 

D ( i , j  - 1, k - 1) + y(A -+ Yj)l 
D(i - 1 , j  - 1, IC - 1) + y(X; + 5)). 

According to Lemma 4.1, no P exists between  XI...^, YI...~ 
with L ( P )  = k for k < max(i,j) or k > i + j .  Therefore, 

0 from Definition 4.1, for all such k, D(z , j ,  k )  = m. 
Theorem 43: 

Proof: (From the definition of normalized edit distance 

Let P be tke set of editing paths between X and Y. Then 
(3.2), Lemma 4.1, and Definition 4.1): (a) V i , l < i < l X l :  

a 

D(i ,  0 ,  i )  = y(X1 4 A) and D ( i ,  0 ,  k) = mVk # i .  
1=1 

(b) v i1  5.7. I IYI : 
a 

D(O,jlj) = c y ( A  -+ K),andD(O,j,k) = mVk # j .  
1=1 

Theorem 4.2: (Recursive Relation): 

D ( i l j ,  k )  = min{D(i - l , j ,  k - 1)  + y(Xi ---f A), 
D ( i , j  - 1, k - 1 )  + y(A ---f y ) ,  
D(i  - 1 , j  - 1, k - 1 )  + 4 y ) }  

D ( i , j , k )  = 00 Vk < max(i,j),Vk > i + j .  

Proof: 

D(i1 j l  k )  
= min{W(P)I = ( O , O ) ,  . . . , ( i , j )  A L ( P )  = k }  
= min{ 

{W(P)IP = (0,  o), . . . , ( i  - 1 , j ) ,  ( Z , j )  A L ( P )  = k } U  

{W(P)IP = ( O , O ) ,  . . . , ( i , j  - l), ( i l j )  A L ( P )  = k )U  

{W(P) (P=(o ,o )  ,...,( 2 -  l , j - l ) , ( i , j ) A L ( P ) = k }  
= min( 

min{W(P)(P = ( O , O ) ,  . , . , ( 2  - l l j ) ,  ( i , j )  A L(P)  = k } ,  
min{W(P)IP = ( O , O ) ,  . . . , ( i , j  - l ) ,  ( z , j )  A L ( P )  = k } ,  
min{W(P)IP = ( O , O ) ,  . . . , 

(2 - 1, j  - I), ( i , j )  A L(P)  = k } )  
= min( 

min{W(P)IP = (o ,O) ,  . . . , (2 - 1 , j )  A L ( P )  = k - 1 )  

min{W(P)IP = ( O , O ) ,  . . . , ( i , j  - 1 )  A L(P)  = k - 1) 

min{W(P)JP = ( O , O ) ,  . . . , (i - 1 , j )  A L(P)  = k - 1) 

+-/(Xi + XI1 

+ -!(A -+ y,), 

+ r(xi -+ Yj)) 

a) From Lemma 4.1, there exists only one editing path 
P between  XI.,.^ and Yl..,,. The length of this path is 
L ( P )  = i ,  and since YI. . .~  = A,  P is only composed of 
the deletions of all the symbols of Xl,,,i. 

b) Similar to a). 0 
Using the recursive relations of Theorem 4.2 and Theo- 

rem 4.3, D(lXl,lYl,k) can be computed through dynamic 
programming for all k such that max (1x1, IYI) I k I 
1x1 + IYI. From Theorem 4.1, this can lead to an algorithm 
for computing d(X,Y) in O(IXI.IYI.min(lXl, lYl)) time. A 
direct implementation of this algorithm for computing d(X, Y) 
requires an array of (1x1 + 1 )  .(lYl+ 1 )  . ( lXl+ IYI) memory 
locations for storing the successively computed values of D. 
However, from (4.1), one can take advantage of the fact that 
only min(i,j) + 1 different lengths are possible for editing 
paths between  XI...^ and YI...~ to reduce the array to a size 
of (1x1 + 1 ) .  (IYI + 1 ) .  (min(lX1, IYl) + 1) by appropriately 
indexing the k entries of this array. The editing path associated 
with d(X,Y)  can be easily obtained from the previously 
computed array of values of D with no change in the order 
of either the time or space complexity growth functions. 
Further memory reduction is possible if only the value of the 
normalized edit distance between X and Y is required and not 
the corresponding editing path. In this case, only those values 
of D that are to be used in the next step of the main loop 
need be stored, yielding an algorithm with memory complexity 
in O(min((X1, IY I)’). Two implementations corresponding to 
the first and last previously discussed versions of the proposed 
algorithm are presented in the Appendix. 

With the ordering of subproblems ( i , j l  k) that has been 
adopted in these implementations, the computation is per- 
formed on-line with one of the given strings. Obviously, other 
orderings are possible, leading to different implementations. 
One of these orderings is the (perhaps most “natural”) multi- 
stage ordering with the stages corresponding to the successive 
possible values of path lengths k. This leads to (not on-line) 
implementations with identical computational costs as those 
discussed above [6]. 
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Fig. 4. Insertion, deletion, and substitution weight function that has been 
used in the experiments. 

V. EXPERIMENTAL RESULTS 
In order to compare the appropriateness of the correctly 

normalized edit distance versus that of post-normalized or 
unnormalized edit distances, a practical pattern recognition 
problem that consists of hand-written digit recognition through 
edit-distance based nearest-neighbor classification has been 
considered. 

The data consists of 500 strings (50 per digit) that represent 
the contours of the isolated sample digits obtained from 
several writers. These digits were captured through a rather 
standard image-acquisition procedure and chain coded into 
strings representing their outer contours. The alphabet of 
these strings is the conventional one of eight symbols (E = 
{0,1,2,3,4,5,6,7}) ,  each for one of the eight possible 45” 
directions and lengths that define the discrete contours over 
a grid with a resolution of 8 pixels. Some examples of these 
strings are shown in Fig. 6. 

The weight function y required for the elementary edit oper- 
ations was obtained through a (dynamic-programming-based) 
learning technique known as the error correcting grammatical 
inference (ECGI) [9] from a set of 15 chain-coded digits 
of each class. The ECGI technique gives, as a byproduct, a 
probability matrix for substitutions of any pair of symbols 
of the alphabet, as well as for insertions and deletions of any 
symbol. This probability matrix was properly transformed into 
a weight function by computing the negative logarithm of each 
probability value, except for ?(a -, a) ,a  E E, whose values 
have always been set to zero. The matrix that resulted from 
this operation is shown in Fig. 4. 

This weight function was used to compute edit distances 
between samples in three different ways: unnormalized, post- 
normalized, and normalized. The first one is the classical edit 
distance. The second method carries out the normalization by 
computing the quotient between the classical unnormalized 
edit distance and the length of the longest edit path that yields 
the optimal unnormalized edit cost. Finally, the third procedure 
is the normalized edit distance that has been introduced in this 
paper. 

A classification experiment based on the nearest neighbor 
rule was performed with each of these edit distance methods. 
In each case, the number of randomly chosen prototypes per 
class was varied from 1 to 20, and the rest of the data were 
used for testing. The resulting correct classification rates for 
the different edit distances are graphically displayed in Fig. 

X = 3 2 1 2 5 4 5 4 4 2 2 M 5 0 1 1 0 0 0 6 6 0  

2 
Y=3454544425705011010065102 

9 
Z = 3 4 3 5 4 4 4 4 ~ 1 ~ 5 6 6 7 ~ 1 1 1 2  

6 d d 

(X,r) 67.40 1.87 1.83 

(xz) 80.51 1.83 1.78 

(X.X’) 85.92 1.87 1.76 

Fig. 6. Example of misclassification with both unnormalid (6) and 
post-normalized edit distances (d‘) and correct classification with the 
normalized edit distance (d). A sample of the digit “7” on the top is closer to a 
prototype of “2” when 6 is used, whereas prototype “9” is the nearest neighbor 
for d‘. Only the normalized edit distance (d) leads to proper classification in 
this case. 

5, which shows a consistent superiority of the normalized 
distance over both unnormalized and post-normalized edit 
distances, 

An example of correct classification with normalized edit 
distance and misclassification with both unnormalized and 
post-normalized edit distances is shown in Fig. 6. When a 
string is compared with others, the unnormalized edit distance 
(6) tends to yield, in general, smaller values for short strings. 
The post-normalized edit distance (d’) attenuates this effect, 
but it tends to yield smaller values for comparisons between 
similar-length strings. Only the normalized edit distance (6) is 
really independent of the length of the comparison. 

Apart from these recognition experiments, an additional set 
of experiments was carried out in order to empirically establish 
the extent to which the triangle inequality is fulfilled by the 
different edit distances. To this end, for each possible triplet in 
our 500 strings data set, the triangle inequality looseness [12] 
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0.015 

2 
0.005 

-0.5 0.0 0.5 1.0 1.5 2.0 
Looseness 

(a) 

-_ I I 
, " ' I " ' l " ' I " ' l " '  

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 
Looseness 

(b) 
Fig. 7. (a) Histograms of the triangle inequality looseness for the unnor- 
malized, post-normalized, and normalized edit distance; @) close-up of the 
same histograms around lwseness=O in logarithmic scale. Only the normalized 
edit distance strictly fulfills the triangle inequality. The looseness values are 
normalized by their corresponding average distance between strings. 

H ( X ,  Y, Z )  = A(X, Y )  + A(Y, Z)  - A(X, 2) was computed 
for each of the three edit distances (A E { unnormalized, post- 
normalized, normalized}). These values were normalized by 
the corresponding average distance between strings (computed 
for all pairs of strings). The resulting histograms appear in 
Fig. 7, showing that only the normalized edit distance strictly 
satisfies the triangle inequality for all the triplets. 

VI. CONCLUDING REMARKS 

In this paper, a correct procedure for computing normalized 
edit distances has been presented with a linear increase in 
computational complexity with respect to the classical unnor- 
malized edit distance procedure. This correctly normalized 
edit distance has been shown to clearly outperform both 
the unnormalized and the (suboptimal) post-normalized edit 
distances in a pattern recognition problem using the nearest 
neighbor classification rule. 

Normalization appears to be an important aspect to take 
into account in many pattern recognition problems approached 
through edit distances. Even a suboptimal or incorrect incorpo- 
ration of normalization in the classical edit distance algorithm, 
such as the post-normalization technique, has proven useful to 
improve the results with respect to those obtained with the 
unnormalized edit distance. 

There are many other (suboptimal) normalization techniques 
that have been proposed and are often used in practical 
situations. For instance, in automatic speech recognition, nor- 

93 1 

Algorithm Normalized Edit Distance 
input X,Y E Z+ ; 
output d:real ;  
function 7 : (Cu{X))x (Eu{A))-real ; 
var D : array [O ... KI.0 ... ln.0 ... !Xl+lYl+l] of real ; 

/I the two extra values of the third index an intended for simplifying 
control and enhancing readability // 

i, j .  k : integer ; 
begin 

D[O,O,O] := 0 ; D[O.O.l] := w ; 
for j  := 1  to In do 

endfor 
for i  := 1  to LYI do 

D [ O j j - 1 l : = m ; D [ O j j l  :=D[Oj-lj- l l+r(h+Yj); D[Oj j+l l :=- ;  " r e m 4 . 3 b i i  

D[i.O.i-ll:= m; D[i,O,il:~[i-l,O,i-ll+y(x, + h); D[i.Oj+l]:= m; 
for j := 1 to IYI do 

1- 4 . 3 ~ 1  

Irma" 4.241 
IILunma 4.111 

D[ij,kl :=min( D[i-IJ,k-l]  + y ( X , + h ) ,  l n l " e m  4.241 

D[ij ,nw(ij)-l]  := 00 

fork := max(ij) to i+j do 

D[ij-1L-11 + -,fh + Y,), 
D[ i - l j - l ,k - l ]  +$Xi  --f Y,)) 

endfor 
D[ij,i+j+l] := m ImKOrem 4.241 

endfor 
endfor 

for k := KI to !XI+IYI do d := min ( d . v )  endfor 

d : =  m 

KnKaem 4.111 
end. 

Fig. 8. Algorithm 1. 

Algorithm Normalized Edit Distance 
input X,Y E Z+ ; /I lYlslXl /I 
output d : r e a l ;  
const Previous = 0 ; Current = 1 ; 
function ~ : ( E U ( ~ ) ) X ( C U ( A ) ) - ~ ~ ~ ;  
var D : array [Previo us... Current,O.. .In.O. ..IY1+2] of real ; 

/I the two extra values of the third index are intended for simplifying 
control and enhancing readabiity // 

i, j ,  k ,  P, C .  ofs, ofsi. ofsj, ofsij: integer ; 
begin 

P := Previour; C := Currenr. 
D[P.O.O] := m ; D[P,O.l] := 0 ; D[P,O.2] := m ; 
for j  := 1  to IYI do 

endfor 
for i := 1 to !XI do I/ 'c' represents 'i'and 'P' represents ' i - l ' / /  

D[Pj,Ol:= m ;  D [ P j . l ] : = D [ P j - l . l ] + ~ h ' Y , ) ;  D ( P j , 2 ] : =  m 

D[C.O,Ol := - ; D[C,O.l] :=D[P.O.ll +fix, + 1) ; D[C,O.Z] := - 
for j  := 1 to IYI do 

ofs := mer(ij]-l  
ofsi:= m ( i - l j ] - l ;  o f j  :=mer( i j - l ) - l ;  ofsij :=ma.r(i-lj-1)-1 
D K  j.01 := - ; 
fork := mar(ij)  to i+j do 

// D[Cj,m&i.,)-l-ofs] N 

D[CJ,k-ofs]:=min( D[Pj,k-1-ofsi] + y(X, -+ h ), 
D[Cj-l ,k-l-ofs]]  +HA + Y,), 
D[PJ-l.k-l-ofsij] +u(X,+Yj) ) 

endfor 
D[CJ,i+j+l-ofs] := m 

endfor 
(PC)  := (C,P) 

endfor 
d : =  m 

fork := !XI to !XI+IYI do d := min (d, D'P'lY1'k-LY1+l l lendfor 
end. 

Fig. 9. Algorithm 2. 

malization by (the sum of)  the lengths of the compared 
strings is quite popular in dynamic time warping [l], [8], 
[12], which is a dynamic programming procedure that is 
closely related to string editing [lo]. Another suboptimal 
normalization technique that has been proposed in the speech 
recognition field consists of minimizing at each point of the 
computational lattice the quotient of the current distance by 
the current path length [2] ,  [5 ] .  

Since all of these suboptimal techniques are computationally 
cheaper than the optimal one proposed here, experimental 
work is required in order to determine to what extent these 
techniques could be appropriate in each specific pattern recog- 
nition task and whether a correct normalization does in fact 
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computation of the normalized edit distance. 

APPENDIX 
ALGORITHMS 

This Appendix shows two implementations corresponding 
to the first and last versions of the proposed algorithm. Fig. 8 
shows Algorithm 1: Space complexity O(lXl.lYI.(lXl+lYI)). 
Fig. 9 shows Algorithm 2: Space complexity O(lYI2). 

lead to greater recognition accuracy. Some of these experi- 
ments are currently in progress in our laboratories. Finally, 
future investigation should also address the problem of fast 

[ l l ]  P. H. Sellers, “The theory and computation of evolutionary distances: 
Pattern recognition,” J. Algorithms, vol. 1, pp. 359-373, 1980. 

[12] E. Vidal, F. Casacuberta, J. M. Benedi, M. J. Lloret, and H. Rulot, 
“On the verification of triangle inequality by dynamic time-warping 
dissimilarity measures,” Speech Commun, vol. 7, pp. 67-69, 1988. 

131 R. A. Wagner and M. J. Fischer, “The string-to-string correction 
problem,” J.  Assoc. Comput. Machinery, vol. 21, no. 1, pp. 168-173, 
Jan. 1974. 

141 Y. P. Yang and T. Pavlidis, “Optimal correspondence of string subse- 
quences,’’ IEEE Trans. Patt. Anal. Machine Intell., vol. 12, no. 11, pp. 
1080-1087. Nov. 1990. 
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