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Abstract

Background: Understanding the behaviour of retaining walls subjected to earth
pressures is an interesting but a complex phenomenon. Though a vast amount of
literature is available in this study area, a majority of the literature, either theoretical
or experimental, address the problem of a vertical retaining wall with a horizontal
backfill. Therefore, it is decided to develop a limit equilibrium based protocol for the
evaluation of passive earth pressure coefficients, Kpγ for a vertical retaining wall
resting against the inclined cohesionless backfill.

Methods: The complete log spiral failure mechanism is considered in the proposed
analysis. Though the limit equilibrium method is employed in the present investigation,
an attempt is made to minimise the number of assumptions involved in the analysis.

Results: The passive earth pressure coefficients are evaluated and presented for the
different combinations of soil frictional angle ϕ, wall frictional angle δ and sloping
backfill angle i. The solutions obtained from the proposed research work are very close
to the best upper bound solutions given in the literature by Soubra and Macuh (P I
CIVIL ENG-GEOTEC 155:119-131, 2002) for the Kpγ coefficients. A comparison of the
proposed Kpγ values is also made with the other available theoretical as well as
experimental results and presented herein.

Conclusion: As the method developed herein is capable of yielding the best possible
upper bound solution and being simple to implement, it could be considered as one
of the alternatives for the evaluation of passive earth pressure coefficients for a vertical
retaining wall resting against the inclined cohesionless backfill.

Keywords: Retaining wall; Inclined cohesionless backfill; Limit equilibrium; Log spiral;
Passive earth pressure coefficients
Introduction
Understanding the behaviour of retaining walls subjected to earth pressures is an inter-

esting but a complex phenomenon. As far as the study on passive earth pressures is

concerned, several researchers contributed to this problem by conducting experiments

on a model retaining wall (Rowe and Peaker, 1965; Narain et al., 1969; Fang et al.,

1994, 1997 and 2002; Kobayashi, 1998; Gutberlet et al., 2013). Based on these model

test results, the back calculated earth pressure coefficients were then presented in the

form of charts and tables by some of the aforementioned researchers.
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Though the results obtained from the experiments are one of the reliable options, prac-

tically it is not possible to obtain the design coefficients for the various combinations of

soil frictional angle ϕ, wall frictional angle δ and sloping backfill angle i. Therefore, it is

necessary to rely on the theoretical investigations for the computation of earth pressure

coefficients; with the utmost priority of safety of structures under consideration.

Several researchers have studied this problem using different methods such as limit

equilibrium (Coulomb, 1776; Rankine, 1857; Terzaghi, 1943; Shields and Tolunay,

1973; Kumar and Subba Rao, 1997; Luan and Nogami, 1997; Soubra et al., 1999; Subba

Rao and Choudhury, 2005; Reddy et al., 2013), limit analysis (Chen and Rosenfarb, 1973;

Chen, 1975; Soubra, 2000; Soubra and Macuh, 2002; Antão et al., 2011), the method of

characteristics (Sokolovski, 1965; Kumar and Chitikela, 2002; Cheng, 2003) and other nu-

merical techniques such as the finite difference method (Benmeddour et al., 2012) and fi-

nite element method (Elsaid, 2000; Antão et al., 2011). Recently, the disturbed state

concept was also used by Zhu et al. (2011) to compute the passive earth pressure coeffi-

cients. As this is a somewhat new concept, their study was limited to a simple problem of

a smooth vertical retaining wall with a horizontal cohesionless backfill.

It is seen from the above discussion that a vast amount of literature is available in this

study area. However, a majority of the literature, either theoretical or experimental,

address the problem of a vertical retaining wall with a horizontal backfill (Rowe and

Peaker, 1965; Shields and Tolunay, 1973; Narain et al., 1969; Fang et al., 1994 and 2002;

Lancellotta, 2002; Li and Liu, 2006; Antão et al., 2011; Reddy et al., 2013). As far as the

case of a sloping backfill is concerned, some important contributions are from Kerisel

and Absi (1990), Fang et al. (1997), Soubra (2000), Soubra and Macuh (2002), Subba

Rao and Choudhury (2005) and Benmeddour et al. (2012).

Soubra et al. (1999) applied the variational approach to the limit equilibrium method

to determine the effective passive earth pressure coefficients for a cohesionless medium

considering the seepage flow. For the case of no seepage flow, their analysis was re-

duced to the typical case of a vertical retaining wall with a horizontal cohesionless

backfill. Also, in their analysis, the entire failure surface was comprised of a log spiral

segment. However, their analysis was not extended for the sloping backfill case. Soubra

et al. (1999) also mentioned that there is a numerical equivalence between the vari-

ational limit equilibrium approach and the upper bound theorem of limit analysis.

Later, Soubra and Macuh (2002) employed the upper bound theorem of limit analysis

for the computation of active and passive earth pressure coefficients. They considered

the rotational log spiral failure mechanism and the analysis was carried out for a gen-

eral case of an inclined retaining wall with the frictional cohesive sloping backfill.

However, the limit analysis method is difficult to employ and it requires a profes-

sional background (Zhu, 2000). Therefore, it is decided to propose a simple but effect-

ive method for the evaluation of passive earth pressure coefficients by adopting the

limit equilibrium approach with the complete log spiral failure mechanism for a vertical

retaining wall with a sloping cohesionless backfill. The detailed analysis along with a

complete statement of the problem is mentioned in the subsequent sections.

Statement of problem
A vertical rough rigid retaining wall of height, H resting against an inclined cohesion-

less backfill is considered (Figure 1). The objective is to locate the critical failure surface



Figure 1 Proposed failure mechanism.
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using the limit equilibrium approach and to report the passive earth pressure coeffi-

cients, Kpγ for the several possible combinations of ϕ, δ and i.

Outline of proposed analysis
Assumptions

The limit equilibrium approach is employed in the proposed analysis. However, this

method itself has some limitations; especially as it involves several assumptions and

due to which the solution obtained using the limit equilibrium approach may get devi-

ated from the exact solution. Considering this fact, an attempt is made to minimise the

number of assumptions involved in the analysis and therefore, to obtain the best pos-

sible upper bound solution. Also, wherever it is indispensable to make the assumptions,

sufficient backup from the literature is considered for the justification of assumptions;

the details of which are mentioned through the subsequent points (Ref. Figure 1).

1. In the proposed analysis, a complete log spiral failure surface is considered. A

similar shape was considered previously by several researchers (Morrison and

Ebeling, 1995; Luan and Nogami, 1997; Soubra et al., 1999; Soubra and Macuh,

2002; Li and Liu, 2006) for the computation of passive earth pressure coefficients.

However, their methods of analysis were different. It should be noted that the

assumption of Rankine’s (1857) passive zone is not considered herein.

2. The point of application of the passive thrust is assumed to be located at a distance

of H/3 from the base of the wall.

3. The Coulomb’s law of friction is assumed to be valid along the entire failure surface.

Trial and error procedure

Considering the free body diagram of the failure wedge, JBDJ, the following forces are

identified (Figure 1).

Ppγ is the passive thrust on the vertical retaining wall, JB acting at a distance of H/3

from the toe, J of the wall and making an angle, δ with the horizontal. W is the self

weight of the failure wedge, JBDJ. RJD is the resultant soil reaction on the failure
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surface, JD. As this reaction passes through the pole of the log spiral, there will not be

any external unbalanced moment created due to RJD.

The angle made by the initial radius of the log spiral with the vertical retaining wall, JB is

designated as θv. Also, the angle made by the tangent to a log spiral with the horizontal at

the tail end portion is considered as θcr. The entire failure surface could be completely speci-

fied by these two angles θv and θcr. By specifying the angles θv and θcr (as mentioned in the

next paragraph), and using the moment equilibrium condition about the pole of the log

spiral, it is possible to compute the magnitude of Kpγ for the given combination of ϕ, δ and i.

Initially this problem was solved by treating the angle θv as the only unknown parameter

and the angle θcr was assumed to be equal to the exit angle as suggested by Rankine

(1857) for the given combination of ϕ, δ and i. However, it was observed that, such type of

analysis does not provide the best possible critical solution. After this confirmation, the

angles θv as well as θcr are treated as the two unknown parameters. Then, for a specified

set of ϕ, δ and i, the combination of the angles θv and θcr which yields the critical (mini-

mum) passive earth pressure coefficients is searched using a trial and error procedure. For

this purpose, a program is written in MATLAB and the analysis is carried out; the details

of which are given in the next section.

Analysis
Geometry of the proposed failure mechanism

The detailed calculations of all the geometrical distances and angles required in the

analysis are shown through the next sub-sections (Ref. Figure 2).

Computation of angle α

The angle between the final radius, OD and the sloping backfill, BD is designated as α,

which can be evaluated in terms of the angle θcr as given below.

At the point, D

1800 ¼ αþ θcr−iþ 900 þΦ

900 ¼ αþ θcr þΦ−i

∴α ¼ 900−θcr−Φþ i

Or
α ¼ π

2
−θcr−Φþ i ð1Þ

Computation of angle θm
The angle, θm between the initial and final radii is evaluated in terms of the angles θcr
and θv as given below.

At the point, O

900 ¼ θv þ θm þ α−i

θm ¼ 900−θv−αþ i

Or
θm ¼ π

2
−θv−αþ i ð2Þ

After substituting Eq. (1) into Eq. (2)



Figure 2 Geometry of the proposed failure mechanism.
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θm ¼ θcr þΦ−θv ð3Þ

Computation of initial and final radii

As seen from Figure 2, JB is the vertical wall of height, H retaining the inclined cohe-

sionless backfill with the curved (log spiral) failure surface, JD; the initial and final radii

of which are JO and OD respectively.

Also from the triangle JBS, the distances JS and BS are given as

JS ¼ H
cosθv

ð4Þ

BS ¼ H tanθv ð5Þ

Applying the Sine rule for the triangle OBS, the distances OS and OB are given as
OS ¼ BS
sinη
sinγ

ð6Þ

Substituting Eq. (5) into Eq. (6), the distance OS is rewritten as
OS ¼ H tanθv
sinη
sinγ

ð7Þ

and
OB ¼ BS
cosθv
sinγ

ð8Þ

Substituting Eq. (5) into Eq. (8), the distance OB is rewritten as
OB ¼ H
sinθv
sinγ

ð9Þ

where, the angles η and γ are evaluated as shown in the next subsection.

Now from the geometry (Figure 2), the initial radius, r0 is given as
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r0 ¼ JS þ OS ð10Þ

From Eqs. (4) and (7), Eq. (10) is rewritten as
r0 ¼ H
cosθv

þ H tanθv
sinη
sinγ

ð11Þ

Also from the geometry of the log spiral, the final radius, r is given as (Das, 1998)
OD ¼ r ¼ r0e
θm tanΦ ð12Þ

Computation of angles η and γ

Applying the Sine rule for the triangle OBD [Figure 2]

sin θm−γð Þ
BD

¼ sinα
OB

¼ sin π−η−ið Þ
OD

ð13Þ

Therefore, from Eq. (13), the distance BD is given as
BD ¼ OB
sin θm−γð Þ

sinα
ð14Þ

From Eq. (13), the distance BD can also be given as

BD ¼ OD
sin θm−γð Þ
sin π−η−ið Þ ð15Þ

Substituting Eqs. (9) and (12) in Eqs. (14) and (15) respectively and then solving Eqs. (14)

and (15), the angle η is obtained as

η ¼ tan−1
sinα eθm tanΦ

� �
cosi: sinθv

− tani

� �
ð16Þ

Also from the triangle OBS, the angle γ is given as

γ ¼ π

2
−θv−η ð17Þ

Now, Eqs. (16) and (17) are utilized to compute all the geometrical distances defined
through Eqs. (6) to (12).

Self weight of the failure wedge, JBDJ

This is obtained by calculating the weight, W1 of the log spiral part, OJD (Das, 1998)

and then subtracting the weights, W2 and W3 of the triangular parts OBD and OBJ re-

spectively. The total required weight of the failure wedge, JBDJ is given as (Ref. Figure 2)

W ¼ W 1−W 2−W 3 ð18Þ

where,

W 1 ¼ 1
4
γ

r20
tanφ

e2θm tanΦ−1
� � ð19Þ

Also, the weights W2 and W3 are computed using the co-ordinate method as men-
tioned below.

W 2 ¼ 1
2
x1 y2−y3ð Þ þ x2 y3−y1ð Þ þ x3 y1−y2ð Þ½ �γ ð20Þ
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W 3 ¼ 1
2
x1 y4−y2ð Þ þ x4 y2−y1ð Þ þ x2 y1−y4ð Þ½ �γ ð21Þ

where, the co-ordinates x1 - x4 and y1 - y4 are given in Figure 2.
Computation of passive earth pressure coefficients, Kpγ
The limit equilibrium method with the complete log spiral failure surface is considered

in the analysis. As mentioned by Soubra et al. (1999), the advantage of this particular

shape is that the resultant of soil reaction passes through the pole of the log spiral and

due to which the moment equilibrium equation about the pole of the log spiral is inde-

pendent of the stress distribution along the failure surface. Therefore, this moment

equilibrium equation alone could be used in order to determine the passive earth pres-

sure coefficients.

In the proposed analysis, for the specified combination of ϕ, δ and i, the passive earth

pressure coefficient, Kpγ is computed by following the procedure as given below.

The forces acting on the failure wedge, JBDJ are shown in Figure 2. These forces

along with their respective locations from the pole of the log spiral are also mentioned

in Table 1.

Considering ΣM@O = 0

W 1 �X1−W 2 �X2−W 3 �X3 þ PPγV x2−PpγH OB sinηþ 2H
3

� �
¼ 0 ð22Þ

Also referring to Figure 2, the vertical and horizontal components of passive thrust
are given as

PpγV ¼ Ppγ sinδ ð23Þ

PpγH ¼ Ppγ cosδ ð24Þ

Substituting Eqs. (23) and (24) in Eq. (22)
W 1 �X1−W 2 �X2−W 3 �X3 þ PPγ sinδ
� �

x2−Ppγ cosδ OB sinηþ 2H
3

� �
¼ 0 ð25Þ

From Eq. (25), the inclined component of passive thrust, Ppγ is given as

Ppγ sinδ:x2− cosδ OB sinηþ 2H
3

� �� �
¼ − W 1 �X1−W 2 �X2−W 3 �X3ð Þ ð26Þ

Or
PPγ ¼ − W 1 �X1−W 2 �X2−W 3 �X3ð Þ
sinδ:x2− cosδ OB sinηþ 2H

3

� �� 	 ð27Þ

Finally, for the specified combination of ϕ, δ and i, the passive earth pressure coeffi-
cient, Kpγ is computed as

Kpγ ¼ 2Ppγ

γH2 ð28Þ



Table 1 Details of all the forces acting on the failure wedge, JBDJ with their respective
locations from the pole of the log spiral

Forces acting on the failure
wedge, JBDJ

Point of application from the pole of the
log spiral

Sign convention
[Clockwise – Positive]

1. Weight of the log spiral, OJD
(W1)

�X1 ¼ y0 cosθv þ x0 sinθvOr �X1 =
y0 sin

π
2 þ θv
� �

−x0 cos π
2 þ θv
� � Positive

where,

x0 ¼ r0 4
3

tan�
1þ9 tan2�ð Þ

e3θm tan� sinθmþ3 tan� cosθmð Þ−3 tan�f g
e2θm tan�−1ð Þ

y0 ¼ r0 4
3

tan�
1þ9 tan2�ð Þ

1−e3θm tan� cosθm−3 tan� sinθmð Þf g
e2θm tan�−1ð Þ (Hijab,

1956)

2. Weight of the triangular portion,
OBD (W2)

�X2 ¼ x1þx2þx3
3 *Negative

3. Weight of the triangular portion,
OBJ (W3)

�X3 ¼ x1þx2þx4
3 *Negative

4. Vertical component of the
passive thrust (PpγV)

x2 Positive

5. Horizontal component of the
passive thrust (PpγH)

OB sinηþ 2H
3 Or −y4−

H
3 Negative

*Though weights, W2 and W3 are acting in a clockwise direction with respect to the pole of the log spiral, they are not
the part of the failure surface, and therefore, negative sign is shown in Table 1.
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Results and discussion
In Table 2 are reported the proposed Kpγ values obtained for the several possible com-

binations of ϕ, δ and i.

In order to check the validity of the proposed results, a comparison is made with the

other available theoretical as well as experimental investigations and the same is dis-

cussed in detail through the subsequent paragraphs.
Comparison with existing theoretical results

In Table 3 is shown a comparison of the proposed Kpγ values with those given by sev-

eral other researchers. This comparison is exclusively presented for the case of a verti-

cal retaining wall with a horizontal cohesionless backfill.

In order to check the validity of the MATLAB program written, the analysis is carried

out for a smooth (δ = 0) vertical wall with a horizontal cohesionless backfill. As seen

from Table 3, for all the values of ϕ ranging from 20o -45° with δ = 0, the Kpγ values ob-

tained from the present analysis are exactly the same as given by Rankine (1857).

It is seen from Table 3 that, the proposed Kpγ values agree extremely well with those

given by Kerisel and Absi (1990), Soubra (2000), Antão et al. (2011) and Reddy et al.

(2013); the scatter for which being less than 12% for all the combinations of ϕ and δ/ϕ

values as reported in Table 3.

Lancellotta (2002) proposed the exact solution for the evaluation of passive earth

pressure coefficients using the lower bound theorem of plasticity. As seen from Table 3,

a fairly good agreement is seen between the proposed results and those obtained by

Lancellotta (2002). However, as δ approaches towards ϕ, this difference increases with

increasing ϕ values. For ϕ = 45° and δ/ϕ = 1, the scatter between the proposed results

and Lancellotta’s (2002) exact solution is 35.48%.

Shiau et al. (2008) employed finite element method coupled with the bound theorems

of limit analysis for the computation of Kpγ values. It is observed from Table 3 that, the



Table 2 Proposed Kpγ values for ϕ ranging from 20° to 45°, for δ/ϕ of 0, 1/3, 1/2, 2/3 and
1, and for i/ϕ of 0, 0.2, 0.33, 0.4, 0.6, 0.66, 0.8 and 1

For i/ϕ = 0 For i/ϕ = 0.2

δ/ϕ δ/ϕ

ϕ (o) 0 1/3 1/2 2/3 1 ϕ (o) 0 1/3 1/2 2/3 1

20 2.04 2.39 2.57 2.75 3.13 20 2.24 2.65 2.86 3.07 3.50

25 2.46 3.07 3.41 3.76 4.54 25 2.81 3.55 3.96 4.39 5.31

30 3.00 4.03 4.65 5.34 6.93 30 3.57 4.90 5.70 6.58 8.56

35 3.69 5.44 6.59 7.95 11.30 35 4.63 7.05 8.63 10.48 14.91

40 4.60 7.62 9.82 12.60 20.01 40 6.16 10.68 13.97 18.08 28.64

45 5.83 11.18 15.62 21.70 39.48 45 8.48 17.39 24.77 34.75 62.52

For i/ϕ = 0.33 For i/ϕ = 0.4

δ/ϕ δ/ϕ

ϕ (o) 0 1/3 1/2 2/3 1 ϕ (o) 0 1/3 1/2 2/3 1

20 2.37 2.81 3.04 3.28 3.74 20 2.44 2.90 3.14 3.39 3.86

25 3.03 3.87 4.32 4.81 5.82 25 3.16 4.04 4.52 5.03 6.10

30 3.96 5.51 6.43 7.44 9.69 30 4.18 5.85 6.84 7.93 10.32

35 5.32 8.24 10.15 12.36 17.56 35 5.72 8.94 11.04 13.46 19.10

40 7.39 13.16 17.34 22.51 35.47 40 8.14 14.67 19.39 25.21 39.59

45 10.77 22.92 32.95 46.36 82.52 45 12.24 26.51 38.25 53.86 95.26

For i/ϕ = 0.6 For i/ϕ = 0.66

δ/ϕ δ/ϕ

ϕ (o) 0 1/3 1/2 2/3 1 ϕ (o) 0 1/3 1/2 2/3 1

20 2.63 3.15 3.42 3.69 4.21 20 2.68 3.22 3.50 3.78 4.31

25 3.51 4.54 5.10 5.69 6.89 25 3.62 4.69 5.28 5.89 7.12

30 4.84 6.88 8.08 9.39 12.19 30 5.05 7.21 8.47 9.85 12.77

35 6.97 11.16 13.85 16.93 23.87 35 7.38 11.88 14.77 18.07 25.42

40 10.64 19.78 26.34 34.28 53.21 40 11.50 21.57 28.76 37.44 57.86

45 17.56 39.69 57.71 81.19 140.74 45 19.55 44.66 65.01 91.38 157.39

For i/ϕ = 0.8 For i/ϕ = 1

δ/ϕ δ/ϕ

ϕ (o) 0 1/3 1/2 2/3 1 ϕ (o) 0 1/3 1/2 2/3 1

20 2.81 3.39 3.69 3.98 4.55 20 2.99 3.62 3.95 4.26 4.90

25 3.87 5.05 5.69 6.35 7.68 25 4.23 5.56 6.28 7.01 8.57

30 5.55 7.99 9.42 10.95 14.16 30 6.30 9.17 10.83 12.60 16.61

35 8.41 13.71 17.09 20.90 29.24 35 10.06 16.64 20.78 25.39 36.70

40 13.77 26.26 35.10 45.64 69.83 40 17.69 34.37 45.98 59.61 96.10

45 25.07 58.47 85.25 119.46 202.57 45 35.64 84.76 123.39 171.82 315.14
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proposed results fall well within the lower and upper bounds of limit analysis; and

therefore it can be inferred that, for the case of a vertical retaining wall resting against

the horizontal cohesionless backfill and for all the combinations of ϕ and δ/ϕ values as

reported in Table 3, the passive earth pressure coefficients obtained in this study are

very close to the true solutions.

Kame (2012) adopted the limit equilibrium approach coupled with the Kӧtter's (1903)

equation for the evaluation of Kpγ coefficients. Kame (2012) fixed the unique composite



Table 3 Comparison of the proposed Kpγ values with the other theoretical results for the
case of a vertical retaining wall with a horizontal cohesionless backfill (i/ϕ = 0)

ϕ (o) δ/ϕ Proposed
analysis(i)

Kerisel and
Absi (1990)(ii)

Soubra
(2000)(iii)

Lancellotta
(2002)(iv)

Shiau
et al.
(2008)(v)

LB(UB)*

Antão
et al.
(2011)(v)

(UB)

Kame
(2012)(i)

Reddy
et al.
(2013)(i)

20 0 2.04 2.05 2.04 2.04 2.04 (2.05) 2.04 2.58 2.04

1/3 2.39 2.40 2.39 2.37 2.32 (2.42) 2.39 2.84 2.40

1/2 2.57 2.55 2.58 2.52 2.50 (2.62) 2.56 2.97 2.61

2/3 2.75 2.75 2.77 2.65 2.67 (2.82) 2.73 3.09 2.85

1 3.13 3.10 3.12 2.87 3.02 (3.21) 3.05 3.29 3.40

25 0 2.46 2.45 2.46 2.46 2.46 (2.48) 2.47 3.10 2.46

1/3 3.07 3.10 3.08 3.03 2.93 (3.11) 3.07 3.61 3.08

1/2 3.41 3.40 3.43 3.30 3.26 (3.48) 3.39 3.85 3.46

2/3 3.76 3.70 3.79 3.56 3.59 (3.86) 3.72 4.10 3.91

1 4.54 4.40 4.51 4.00 4.33 (4.70) 4.36 4.56 4.95

30 0 3.00 3.00 3.00 3.00 3.00 (3.01) 3.00 3.70 3.00

1/3 4.03 4.00 4.05 3.95 3.78 (4.10) 4.02 4.66 4.05

1/2 4.65 4.60 4.69 4.44 4.37 (4.76) 4.62 5.13 4.73

2/3 5.34 5.30 5.40 4.93 5.02 (5.49) 5.25 5.61 5.57

1 6.93 6.50 6.86 5.80 6.58 (7.14) 6.56 6.57 7.58

35 0 3.69 3.70 3.69 3.69 3.70 (3.72) 3.70 4.60 3.69

1/3 5.44 5.40 5.48 5.28 5.00 (5.58) 5.42 6.16 5.46

1/2 6.59 6.50 6.67 6.16 6.08 (6.77) 6.52 7.04 6.71

2/3 7.95 8.00 8.06 7.09 7.32 (8.17) 7.76 7.98 8.32

1 11.30 10.50 11.13 8.85 10.99
(11.50)

10.58 10.02 12.33

40 0 4.60 4.50 4.60 4.60 4.60 (4.62) 4.61 5.70 4.60

1/3 7.62 7.60 7.70 7.28 6.87 (7.79) 7.57 8.43 7.62

1/2 9.82 9.60 9.99 8.92 8.79 (10.03) 9.67 10.10 10.00

2/3 12.60 12.00 12.83 10.71 11.30
(12.87)

12.19 12.00 13.27

1 20.01 18.00 19.62 14.39 18.64
(20.10)

18.15 16.46 21.64

45 0 5.83 5.80 5.83 5.83 5.82 (5.86) 5.84 NA NA

1/3 11.18 11.00 11.36 10.48 9.69 (11.41) 11.09 NA NA

1/2 15.62 15.00 15.98 13.60 13.42
(15.85)

15.29 NA NA

2/3 21.70 20.00 22.22 17.27 19.08
(22.03)

20.75 NA NA

1 39.48 35.00 38.61 25.47 38.52
(45.14)

34.99 NA NA

NA Not available.
(i) Limit equilibrium method.
(ii) Solutions of Boussinesq’s equations.
(iii) Limit analysis (Upper bound).
(iv) Lower bound theorem of plasticity (Exact solution).
(v) Finite element method coupled with the limit analysis.
* The values reported inside and outside the parenthesis correspond to the upper bound (UB) and lower bound (LB)
solutions respectively as obtained by Shiau et al. (2008).
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(log spiral with planar) failure surface by fulfilling the horizontal as well as the vertical

equilibrium conditions. Later, the moment equilibrium condition was used by him to

locate the point of application of the passive thrust. As the methodology proposed by

Kame (2012) was different, his analysis yields a little higher values for the case of a

smooth vertical retaining wall. However, a fairly good agreement is observed between

the proposed results and those presented by Kame (2012) for rest of the other combi-

nations of ϕ and δ/ϕ values presented in Table 3.

Kumar and Chitikela (2002) and Subba Rao and Choudhury (2005) proposed the seis-

mic passive earth pressure coefficients using the method of characteristics and the limit

equilibrium method respectively. In Table 4 are compared the proposed Kpγ values with

those given by the aforementioned researchers for the static case.

As seen from Table 4 (a), the proposed results agree extremely well with the results

of Kumar and Chitikela (2002) and Subba Rao and Choudhury (2005) except for ϕ =

40° and δ/ϕ = 1 where the proposed results are slightly higher; the scatter for which is

9.05% and 5.55% respectively.

For the static case, Subba Rao and Choudhury (2005) also presented the Kpγ values for the

case of an inclined backfill. As seen from Table 4 (b), the proposed results are in excellent

agreement with those presented by Subba Rao and Choudhury (2005) for ϕ= 40° and i = 30°.

As already shown in Table 1, the Kpγ values are obtained from the proposed analysis

for the several possible combinations of ϕ, δ and i. All these Kpγ values are compared

with those presented by Kerisel and Absi (1990). Overall, it is observed that with the in-

creasing ϕ and i values and as δ approaches towards ϕ, the difference between the pro-

posed Kpγ values and those given by Kerisel and Absi (1990) increases. As it is not

possible to show the comparison for each and every value mentioned in Table 1, it is

decided to present the comparison for the case of an inclined backfill and for ϕ values

varying from 20° to 45° with δ/ϕ = 1; where the possibility of the maximum difference

is more as compared to the other values of δ/ϕ.

As seen from Table 5, the proposed results agree extremely well with those given by

Kerisel and Absi (1990); the maximum difference for which does not exceed 10% for all
Table 4 Comparison of the proposed Kpγ values with the other theoretical investigations
(a) for horizontal backfill (b) for inclined backfill

(a) for horizontal backfill (b) for inclined backfill (For ϕ = 40° and i = 30°)

ϕ (o) δ/ϕ Proposed
analysis(i)

Kumar and
Chitikela
(2002)(ii)

Subba Rao and
Choudhury
(2005)(i)

δ/ϕ Proposed
analysis

Subba Rao and
Choudhury
(2005)

Scatter
(%)

30 1/3 4.03 4.00 NA 1/2 32.72 32.60 0.38

1/2 4.65 NA 4.63 1 65.45 69.54 −6.26

2/3 5.34 5.33 NA

1 6.93 6.56 6.68

40 1/3 7.62 7.78 NA

1/2 9.82 NA 9.64

2/3 12.60 12.00 NA

1 20.00 18.19 18.89

NA Not available.
(i) Limit equilibrium.
(ii) Method of characteristics.



Table 5 Comparison of the proposed Kpγ values with those given by Kerisel and Absi
(1990) for ϕ ranging from 20° to 45°, for i/ϕ of 1/3, 2/3 and 1 and for δ = ϕ

ϕ (o) i/ϕ Proposed analysis Kerisel and Absi (1990) Scatter (%)

20 1/3 3.74 3.70 1.06

2/3 4.31 4.30 0.34

1 4.90 4.80 1.98

25 1/3 5.82 5.60 3.78

2/3 7.12 7.00 1.75

1 8.57 8.40 2.00

30 1/3 9.69 9.20 5.06

2/3 12.77 12.50 2.15

1 16.61 16.10 3.08

35 1/3 17.56 16.40 6.63

2/3 25.42 25.00 1.66

1 36.70 35.00 4.62

40 1/3 35.47 33.00 6.98

2/3 57.86 57.00 1.49

1 96.10 90.00 6.34

45 1/3 82.52 76.00 7.91

2/3 157.39 153.00 2.79

1 315.14 285.00 9.57
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the combinations of ϕ, δ and i. It should be noted that the values reported by Kerisel

and Absi (1990) are based on the solutions of Boussinesq’s equations (Benmeddour

et al., 2012) whereas the proposed method is based on the simple limit equilibrium ap-

proach. Therefore, the proposed method could be considered as one of the alternatives

for the evaluation of Kpγ coefficients.

Chen and Rosenfarb (1973) presented the least upper bound solution for the Kpγ co-

efficients using the limit analysis method. They tried six different failure mechanisms

and showed that the critical solution could be obtained using the log sandwich mech-

anism. Later, Soubra (2000) improved the solution of Chen and Rosenfarb (1973) by

adopting the kinematical analysis of upper bound theorem with the translational multi-

block failure wedge mechanism. This improvement relative to the Chen and Rosenfarb’s

(1973) solution was around 22% for the case of a vertical wall and for ϕ = δ = i = 45°.

Afterwards, Soubra and Macuh (2002) presented the best upper bound solution for

the Kpγ coefficients. They employed the upper bound theorem of limit analysis with the

consideration of rotational log spiral failure mechanism. Their method attains the im-

provement of around 28% relative to the Soubra’s (2000) solution for the case of a verti-

cal wall and for ϕ = δ = i = 45°.

In Figure 3 is shown a comparison of the proposed results with those given by Chen

and Rosenfarb (1973), Soubra (2000) and Soubra and Macuh (2002) for ϕ = δ = 45° and

for i varying from 0°- 45°.

As seen from Figure 3, the present solution obtained using the limit equilibrium

method significantly improves the solution of Chen and Rosenfarb (1973) and Soubra

(2000) by 42.79% and 17.01% respectively for ϕ = δ = i = 45°. As far as the comparison

with Soubra and Macuh (2002) is concerned, it is observed that the improvement of



Figure 3 Comparison of the proposed results for Kpγ with those reported by Chen and Rosenfarb
(1973), Soubra (2000) and Soubra and Macuh (2002) (for ϕ = 45° and δ/ϕ = 1).
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the proposed solution relative to that of Soubra and Macuh (2002) is 0.29% and 2.97%

for i = 15° and 30° respectively. However, at i = 45°, the proposed Kpγ value is slightly

higher; the difference for which is 9.18%. Nevertheless, it is clear from Figure 3 that the

proposed results are very close to the solutions of Soubra and Macuh (2002) and there-

fore, it could be stated that the simple limit equilibrium method proposed herein is

capable of yielding the best possible upper bound solution.
Comparison with existing experimental results

Narain et al. (1969) conducted a model study on a vertical retaining wall with a dry

horizontal cohesionless backfill. For the translational wall movement, they compared

their experimental results with the other available theoretical investigations. This com-

parison is reproduced in Table 6. The results obtained from the present theoretical in-

vestigation are also reported in Table 6.

As seen from Table 6, for ϕ = 38.5° and δ = 23.5°, the theories proposed by Caquot

and Kerisel (1948) and Coulomb (1776) overestimate the normal component of passive

earth pressure coefficients (KpγN values) while the Rankine’s (1857) theory significantly

underestimates the KpγN values. However, Terzaghi’s (1941) general wedge theory and

the proposed analysis make a better estimate of the passive earth pressure coefficients;

the differences for which are −6.55% and +10.12% respectively.

For ϕ = 42° and δ = 23.5°, except Rankine’s (1857) theory, all the theoretical investiga-

tions overestimate the passive earth pressure coefficients. However, among the other

theoretical investigations, the proposed analysis compares fairly well with the experi-

mental results of Narain et al. (1969); the scatter for which is 34.89%.

Fang et al. (1997) conducted the experiments on a vertical rigid retaining wall with a

sloping backfill. All these experiments were conducted under translational wall move-

ment. The main purpose of their study was to access the validity of the available theor-

etical solutions. In Table 7 is shown a comparison of the proposed KpγN values with the

experimental results of Fang et al. (1997) considering the failure criterion at a wall

movement of S/H = 0.2.



Table 6 Comparison of the proposed KpγN values with the experimental results of Narain
et al. (1969)

for δ = 23.5° Narain
et al.
(1969)

Proposed
analysis

Caquot and
Kerisel (1948)

Terzaghi
(1941)

Rankine
(1857)

Coulomb
(1776)

KpγN KpγN Scatter
(%)

KpγN Scatter
(%)

KpγN Scatter
(%)

KpγN Scatter
(%)

KpγN Scatter
(%)

Loose sand
(ϕ = 38.5°)

8.40 9.25 10.12 11.80 40.48 7.85 −6.55 4.00 −52.38 13.60 61.90

Dense sand
(ϕ = 42°)

8.80 11.87 34.89 18.00 104.55 16.60 88.64 6.05 −31.25 19.94 126.60
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As seen from Table 7, for ϕ = 30.9° and δ = 19.2° and for the backfill inclination, i

varying from 0o - 20°, the proposed theoretical predictions of the KpγN values agree ex-

tremely well with the experimental results of Fang et al. (1997).

In Table 8 are compared the results of the proposed analysis with the experimental

investigations of Rowe and Peaker (1965). A significant discrepancy is observed be-

tween the proposed results and those reported by Rowe and Peaker (1965). However, it

may be noted that, the values reported by Rowe and Peaker (1965) are based on the ex-

perimental investigations for which the failure criterion was assumed to be at a wall

movement of 5% of the wall height (i.e. S/H = 0.05); whereas as discussed earlier [dis-

cussion on comparison of the proposed results with those of Fang et al. (1997)], the

proposed analysis makes a better estimate of Kpγ values when the failure criterion is

considered as S/H = 0.2.

Fang et al. (2002) studied the effect of density on the passive earth pressures using

the critical state concept. The experiments were conducted on a vertical retaining wall

with a horizontal cohesionless backfill. In order to limit the scope of the study, all the

experiments were conducted under translational wall movement.

Fang et al. (2002) observed that, for a loose backfill (Dr = 38%), the limiting pressure

was reached at a wall movement of S/H = 0.17. Also for a medium dense (Dr = 63%)

and dense backfill (Dr = 80%), it was seen that the peak pressure reached at S/H = 0.03

and S/H = 0.01 respectively. Thereafter, the peak passive pressure reduces and the state

of the ultimate passive thrust was observed at S/H = 0.17 for medium dense backfill

whereas at S/H = 0.2 for dense backfill.

Based on these observations, Fang et al. (2002) concluded that for such a large wall

movement, the critical state is reached all along the failure surface and at this state, the
Table 7 Comparison of the proposed KpγN values with the experimental results of Fang
et al. (1997) for ϕ = 30.9° and δ = 19.2°

i (o) Proposed analysis Fang et al. (1997) Scatter (%)

0 5.19 5.00 3.66

5 6.20 6.00 3.23

10 7.30 7.60 −4.04

15 8.50 9.60 −12.94

20 9.77 10.80 −10.54



Table 8 Comparison of the proposed KpγN values with the experimental results of Rowe
and Peaker (1965)

For ϕ = 34° For ϕ = 42°

δ (°) Proposed
analysis

Rowe and
Peaker (1965)

Scatter
(%)

δ (°) Proposed
analysis

Rowe and
Peaker (1965)

Scatter
(%)

0 3.54 2.50 29.38 0 5.04 4.60 8.73

10 4.82 3.00 37.76 10 7.39 5.80 21.52

20 6.32 3.60 43.04 20 10.57 7.20 31.88

30 7.88 4.30 45.43 30 14.49 8.80 39.27
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shear strength of the soil should be represented in terms of the residual shear strength

parameter, ϕr and not in terms of peak shear strength parameter, ϕp.

Fang et al. (2002) compared their experimental results with the theories proposed by

Coulomb (1776) and Terzaghi (1941). This comparison is reproduced in Table 9 (a)

and (b). Based on this comparison, Fang et al. (2002) suggested that the ultimate pas-

sive thrust could be estimated in a better manner by adopting the critical state concept

to the Terzaghi (1941) or Coulomb’s (1776) theory.

In order to check the validity of the proposed theory, results obtained from the

present investigation are compared with the experimental results of Fang et al. (2002)

for both the states of the soil; i.e. considering the peak shear strength, ϕp as well as the

residual shear strength, ϕr in the analysis. As seen from Table 9 (a) that, for the

medium dense (Dr = 63%) and dense sand condition (Dr = 80%), the present analysis

makes a better estimate of the peak passive thrust as compared to the other two theor-

ies. Also as suggested by Fang et al. (2002), when the critical state concept is consid-

ered, all the theoretical investigations mentioned in Table 9 (b) make the excellent

predictions of the ultimate passive thrust. Overall it is seen that, all the theoretical in-

vestigations mentioned in Table 9 (a) and (b) underestimate the passive pressures for

the loose sand condition.
Table 9 Comparison of the proposed KpγN values with the experimental results of Fang
et al. (2002) (a) Peak shear strength (b) Residual shear strength

(a) Peak shear strength

Relative
density (%)

δ
(°)

ϕP

(°)
Fang et al.
(2002)

Proposed analysis(i) Terzaghi (1941)(ii) Coulomb (1776)(iii)

KpγN Scatter (%) KpγN Scatter (%) KpγN Scatter (%)

38 9.8 33.0 5.0 4.56 −9.65 4.65 −7.53 4.76 −5.04

63 12.6 38.3 6.5 6.56 0.91 6.7 2.99 7.1 8.45

80 14.0 42.1 8.2 8.61 4.76 8.85 7.34 9.63 14.85

(b) Residual shear strength

Relative
density (%)

δ ϕr Fang et al.
(2002)

Proposed analysis(i) Terzaghi (1941)(ii) Coulomb (1776)(iii)

KpγN Scatter (%) KpγN Scatter (%) KpγN Scatter (%)

38 9.8 31.5 5.0 4.24 −17.92 4.65 −7.53 4.42 −13.22

63 12.6 31.5 4.8 4.57 −5.03 4.7 −2.13 4.91 2.24

80 14.0 31.5 4.8 4.74 −1.27 4.85 1.03 5.18 7.92
(i) Complete log spiral failure surface.
(ii) Composite curved failure surface.
(iii) Planar failure surface.
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Conclusions
A limit equilibrium approach along with the complete log spiral failure mechanism is

considered in the proposed analysis. The critical passive earth pressure coefficients, Kpγ

are computed using the optimisation technique. The main conclusions which are

drawn from this study are as follows.

1. Generally, the limit equilibrium method yields an upper bound solution (Deodatis

et al., 2014). However, an attempt is made to minimize the number of assumptions

involved in the proposed analysis and therefore, the solutions for the Kpγ

coefficients obtained herein are very close to the best upper bound solution (by

Soubra and Macuh, 2002) available in the literature so far.

2. The proposed results agree extremely well with most of the theoretical as well as

the experimental results available in the literature.

3. The current practice in Geotechnical engineering is to use the earth pressure

coefficients presented by Kerisel and Absi (1990). For all the possible combinations

of ϕ, δ and i, an excellent agreement is seen between the proposed results and those

given by Kerisel and Absi (1990). Therefore, it could be stated that, as the method

developed herein is being simple to implement, it could be considered as one of the

alternatives for the evaluation of passive earth pressure coefficients for a vertical

retaining wall resting against the inclined cohesionless backfill.
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