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Abstract

Background: Understanding the behaviour of retaining walls subjected to earth
pressures is an interesting but a complex phenomenon. Though a vast amount of
literature is available in this study area, a majority of the literature, either theoretical
or experimental, address the problem of a vertical retaining wall with a horizontal
backfill. Therefore, it is decided to develop a limit equilibrium based protocol for the
evaluation of passive earth pressure coefficients, K, for a vertical retaining wall
resting against the inclined cohesionless backfill.

Methods: The complete log spiral failure mechanism is considered in the proposed
analysis. Though the limit equilibrium method is employed in the present investigation,
an attempt is made to minimise the number of assumptions involved in the analysis.

Results: The passive earth pressure coefficients are evaluated and presented for the
different combinations of soil frictional angle ¢, wall frictional angle & and sloping
backfill angle i. The solutions obtained from the proposed research work are very close
to the best upper bound solutions given in the literature by Soubra and Macuh (P |
CIVIL ENG-GEOTEC 155:119-131, 2002) for the K, coefficients. A comparison of the
proposed K, values is also made with the other available theoretical as well as
experimental results and presented herein.

Conclusion: As the method developed herein is capable of yielding the best possible
upper bound solution and being simple to implement, it could be considered as one
of the alternatives for the evaluation of passive earth pressure coefficients for a vertical
retaining wall resting against the inclined cohesionless backfill.

Keywords: Retaining wall; Inclined cohesionless backfill; Limit equilibrium; Log spiral;
Passive earth pressure coefficients

Introduction

Understanding the behaviour of retaining walls subjected to earth pressures is an inter-
esting but a complex phenomenon. As far as the study on passive earth pressures is
concerned, several researchers contributed to this problem by conducting experiments
on a model retaining wall (Rowe and Peaker, 1965; Narain et al., 1969; Fang et al.,
1994, 1997 and 2002; Kobayashi, 1998; Gutberlet et al., 2013). Based on these model
test results, the back calculated earth pressure coefficients were then presented in the
form of charts and tables by some of the aforementioned researchers.
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Though the results obtained from the experiments are one of the reliable options, prac-
tically it is not possible to obtain the design coefficients for the various combinations of
soil frictional angle ¢, wall frictional angle § and sloping backfill angle i. Therefore, it is
necessary to rely on the theoretical investigations for the computation of earth pressure
coefficients; with the utmost priority of safety of structures under consideration.

Several researchers have studied this problem using different methods such as limit
equilibrium (Coulomb, 1776; Rankine, 1857; Terzaghi, 1943; Shields and Tolunay,
1973; Kumar and Subba Rao, 1997; Luan and Nogami, 1997; Soubra et al., 1999; Subba
Rao and Choudhury, 2005; Reddy et al., 2013), limit analysis (Chen and Rosenfarb, 1973;
Chen, 1975; Soubra, 2000; Soubra and Macuh, 2002; Antio et al,, 2011), the method of
characteristics (Sokolovski, 1965; Kumar and Chitikela, 2002; Cheng, 2003) and other nu-
merical techniques such as the finite difference method (Benmeddour et al., 2012) and fi-
nite element method (Elsaid, 2000; Antdo et al, 2011). Recently, the disturbed state
concept was also used by Zhu et al. (2011) to compute the passive earth pressure coeffi-
cients. As this is a somewhat new concept, their study was limited to a simple problem of
a smooth vertical retaining wall with a horizontal cohesionless backfill.

It is seen from the above discussion that a vast amount of literature is available in this
study area. However, a majority of the literature, either theoretical or experimental,
address the problem of a vertical retaining wall with a horizontal backfill (Rowe and
Peaker, 1965; Shields and Tolunay, 1973; Narain et al., 1969; Fang et al., 1994 and 2002;
Lancellotta, 2002; Li and Liu, 2006; Antéo et al., 2011; Reddy et al., 2013). As far as the
case of a sloping backfill is concerned, some important contributions are from Kerisel
and Absi (1990), Fang et al. (1997), Soubra (2000), Soubra and Macuh (2002), Subba
Rao and Choudhury (2005) and Benmeddour et al. (2012).

Soubra et al. (1999) applied the variational approach to the limit equilibrium method
to determine the effective passive earth pressure coefficients for a cohesionless medium
considering the seepage flow. For the case of no seepage flow, their analysis was re-
duced to the typical case of a vertical retaining wall with a horizontal cohesionless
backfill. Also, in their analysis, the entire failure surface was comprised of a log spiral
segment. However, their analysis was not extended for the sloping backfill case. Soubra
et al. (1999) also mentioned that there is a numerical equivalence between the vari-
ational limit equilibrium approach and the upper bound theorem of limit analysis.

Later, Soubra and Macuh (2002) employed the upper bound theorem of limit analysis
for the computation of active and passive earth pressure coefficients. They considered
the rotational log spiral failure mechanism and the analysis was carried out for a gen-
eral case of an inclined retaining wall with the frictional cohesive sloping backfill.

However, the limit analysis method is difficult to employ and it requires a profes-
sional background (Zhu, 2000). Therefore, it is decided to propose a simple but effect-
ive method for the evaluation of passive earth pressure coefficients by adopting the
limit equilibrium approach with the complete log spiral failure mechanism for a vertical
retaining wall with a sloping cohesionless backfill. The detailed analysis along with a
complete statement of the problem is mentioned in the subsequent sections.

Statement of problem
A vertical rough rigid retaining wall of height, H resting against an inclined cohesion-
less backfill is considered (Figure 1). The objective is to locate the critical failure surface
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Figure 1 Proposed failure mechanism.

using the limit equilibrium approach and to report the passive earth pressure coeffi-
cients, K,,, for the several possible combinations of ¢, § and i.

Outline of proposed analysis

Assumptions

The limit equilibrium approach is employed in the proposed analysis. However, this
method itself has some limitations; especially as it involves several assumptions and
due to which the solution obtained using the limit equilibrium approach may get devi-
ated from the exact solution. Considering this fact, an attempt is made to minimise the
number of assumptions involved in the analysis and therefore, to obtain the best pos-
sible upper bound solution. Also, wherever it is indispensable to make the assumptions,
sufficient backup from the literature is considered for the justification of assumptions;
the details of which are mentioned through the subsequent points (Ref. Figure 1).

1. In the proposed analysis, a complete log spiral failure surface is considered. A
similar shape was considered previously by several researchers (Morrison and
Ebeling, 1995; Luan and Nogami, 1997; Soubra et al., 1999; Soubra and Macuh,
2002; Li and Liu, 2006) for the computation of passive earth pressure coefficients.
However, their methods of analysis were different. It should be noted that the
assumption of Rankine’s (1857) passive zone is not considered herein.

2. The point of application of the passive thrust is assumed to be located at a distance
of H/3 from the base of the wall.

3. The Coulomb’s law of friction is assumed to be valid along the entire failure surface.

Trial and error procedure
Considering the free body diagram of the failure wedge, JBD]J, the following forces are
identified (Figure 1).

P,, is the passive thrust on the vertical retaining wall, JB acting at a distance of /3
from the toe, ] of the wall and making an angle, § with the horizontal. W is the self

weight of the failure wedge, JBD]. R;p is the resultant soil reaction on the failure
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surface, JD. As this reaction passes through the pole of the log spiral, there will not be
any external unbalanced moment created due to Rjp.

The angle made by the initial radius of the log spiral with the vertical retaining wall, JB is
designated as 6,. Also, the angle made by the tangent to a log spiral with the horizontal at
the tail end portion is considered as 6,,. The entire failure surface could be completely speci-
fied by these two angles 6, and 8,,. By specifying the angles 6, and 6,, (as mentioned in the
next paragraph), and using the moment equilibrium condition about the pole of the log
spiral, it is possible to compute the magnitude of K,,, for the given combination of ¢, § and i.

Initially this problem was solved by treating the angle 6, as the only unknown parameter
and the angle 6, was assumed to be equal to the exit angle as suggested by Rankine
(1857) for the given combination of ¢, § and i. However, it was observed that, such type of
analysis does not provide the best possible critical solution. After this confirmation, the
angles 0, as well as 6,, are treated as the two unknown parameters. Then, for a specified
set of ¢, § and i, the combination of the angles 8, and 6, which yields the critical (mini-
mum) passive earth pressure coefficients is searched using a trial and error procedure. For
this purpose, a program is written in MATLAB and the analysis is carried out; the details

of which are given in the next section.

Analysis
Geometry of the proposed failure mechanism
The detailed calculations of all the geometrical distances and angles required in the
analysis are shown through the next sub-sections (Ref. Figure 2).
Computation of angle a
The angle between the final radius, OD and the sloping backfill, BD is designated as a,
which can be evaluated in terms of the angle 6., as given below.
At the point, D

180° = a + 6,,—i + 90° + @
90° = a + 0, + O-i
o =90-0,-D +i

Or

az%—@cr—q)—i—i (1)

Computation of angle 6,
The angle, 6,, between the initial and final radii is evaluated in terms of the angles 6,,
and 6, as given below.

At the point, O

90° =6, + 0,, + a—i
0,, =90°-0,—a +i
Or

O = g—@v—aJri (2)

After substituting Eq. (1) into Eq. (2)
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Figure 2 Geometry of the proposed failure mechanism.

em = ecr + ®_ev

Computation of initial and final radii

(3)

As seen from Figure 2, JB is the vertical wall of height, H retaining the inclined cohe-

sionless backfill with the curved (log spiral) failure surface, JD; the initial and final radii

of which are JO and OD respectively.

Also from the triangle JBS, the distances JS and BS are given as

H
S =
J cosf,
BS = H tané,

(4)
(5)

Applying the Sine rule for the triangle OBS, the distances OS and OB are given as

siny
siny

OS = BS

Substituting Eq. (5) into Eq. (6), the distance OS is rewritten as

0S = H tand, >
siny
and
0B = s <20
siny
Substituting Eq. (5) into Eq. (8), the distance OB is rewr
OB — H 51'r10‘,
siny

itten as

(6)

(8)

where, the angles 77 and y are evaluated as shown in the next subsection.

Now from the geometry (Figure 2), the initial radius, ry is given as

Page 5 of 17
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ro =JS + OS (10)

From Egs. (4) and (7), Eq. (10) is rewritten as

sinyg

+ H tan8, ——~
cosf, siny

ro =
Also from the geometry of the log spiral, the final radius, r is given as (Das, 1998)
OD = r = roe™tan® (12)

Computation of angles n and y
Applying the Sine rule for the triangle OBD [Figure 2]

sin(6,,—y)  sina _ sin(n-5-i)

BD OB oD (13)
Therefore, from Eq. (13), the distance BD is given as
BD = OBM (14-)
sina
From Eq. (13), the distance BD can also be given as
BD — ODM (15)
sin(mm-#-i)

Substituting Eqgs. (9) and (12) in Egs. (14) and (15) respectively and then solving Eqs. (14)
and (15), the angle # is obtained as

i Om tan®
sina (e )
= tan"!{ ————% —tani 16
g ( cosi. sinf, > (16)

Also from the triangle OBS, the angle y is given as
/s
y =26 (17)

Now, Egs. (16) and (17) are utilized to compute all the geometrical distances defined
through Egs. (6) to (12).

Self weight of the failure wedge, JBDJ

This is obtained by calculating the weight, W; of the log spiral part, OJD (Das, 1998)
and then subtracting the weights, W, and W3 of the triangular parts OBD and OB]J re-
spectively. The total required weight of the failure wedge, JBDJ is given as (Ref. Figure 2)

W=W,-W,-W; (18)
where,
Wl _ ly r(z) (eZHmtan(D_l) (19)
4’ tang

Also, the weights W, and W3 are computed using the co-ordinate method as men-
tioned below.

Wy = % [01(ya=y3) + %2 (y3-y1) + x3(y1-9,)]y (20)

Page 6 of 17
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1 0am9) + 5305 -31) + %200-32)ly (21)

W3=§[

where, the co-ordinates x; - x; and y; - y4 are given in Figure 2.

Computation of passive earth pressure coefficients, K,
The limit equilibrium method with the complete log spiral failure surface is considered
in the analysis. As mentioned by Soubra et al. (1999), the advantage of this particular
shape is that the resultant of soil reaction passes through the pole of the log spiral and
due to which the moment equilibrium equation about the pole of the log spiral is inde-
pendent of the stress distribution along the failure surface. Therefore, this moment
equilibrium equation alone could be used in order to determine the passive earth pres-
sure coefficients.

In the proposed analysis, for the specified combination of ¢, § and i, the passive earth

pressure coefficient, K, is computed by following the procedure as given below.

Koy
The forces acting on the failure wedge, JBDJ are shown in Figure 2. These forces

along with their respective locations from the pole of the log spiral are also mentioned
in Table 1.
Considering XM @ O =0

_ _ _ 2H
W1X1 —WzXz—Wng + Ppyvxz— pyH <OB sinly + T) =0 (22)

Also referring to Figure 2, the vertical and horizontal components of passive thrust

are given as
P,y = Py, sind (23)
Py = Ppy cosd (24)
Substituting Eqgs. (23) and (24) in Eq. (22)
W1X1-W)Xo-W3X5 + (Ppy sind) x—P,, cosd <OB sing + %) =0 (25)
From Eq. (25), the inclined component of passive thrust, P, is given as

2H _ _ _
Py, [sin&xz— cosd (OB siny + 3)} = - (W1 X;1-WX,-W3X3) (26)

Or

—(Wle —WzXz—WBX?:)
[sin5 Xy— COSO (OB sing + %)]

p Py = (27)
Finally, for the specified combination of ¢, § and i, the passive earth pressure coeffi-

cient, K, is computed as

2P,,

K, =
py yHZ

Page 7 of 17
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Table 1 Details of all the forces acting on the failure wedge, JBDJ with their respective
locations from the pole of the log spiral

Forces acting on the failure Point of application from the pole of the Sign convention
wedge, JBDJ log spiral [Clockwise - Positive]
1. Weight of the log spiral, OJD X1 = Yy cosB, + Xo sinB,0r X = Positive
(D] Yo sin(’—2Z + Hv)fxo cos(% + Gv)
where,
4 tng {ew”'“”"’(sin9m+3tanrbcosem)—3tané}
Xo = r0§(1+9atnan2¢){ o e2omtang 1) }
4 tng 1-e3mtan? ( cos6,,—3 tang sinBy, ) .
)1/095*)//0 E (]Jrgatr;nzq)) GRS (HUab/
2. Weight of the triangular portion, X, = *¢+0 *Negative
OBD (W)
3. Weight of the triangular portion, X3 = %t *Negative
OBJ (Ws)
4. Vertical component of the X2 Positive
passive thrust (P,,)
5. Horizontal component of the OBsinn + 2 Or —y,—4 Negative

passive thrust (P,

*Though weights, W, and W; are acting in a clockwise direction with respect to the pole of the log spiral, they are not
the part of the failure surface, and therefore, negative sign is shown in Table 1.

Results and discussion
In Table 2 are reported the proposed K, values obtained for the several possible com-
binations of ¢, § and i.

In order to check the validity of the proposed results, a comparison is made with the
other available theoretical as well as experimental investigations and the same is dis-
cussed in detail through the subsequent paragraphs.

Comparison with existing theoretical results

In Table 3 is shown a comparison of the proposed K,,, values with those given by sev-
eral other researchers. This comparison is exclusively presented for the case of a verti-
cal retaining wall with a horizontal cohesionless backfill.

In order to check the validity of the MATLAB program written, the analysis is carried
out for a smooth (§=0) vertical wall with a horizontal cohesionless backfill. As seen
from Table 3, for all the values of ¢ ranging from 20° -45° with & = 0, the K,, values ob-
tained from the present analysis are exactly the same as given by Rankine (1857).

It is seen from Table 3 that, the proposed K, values agree extremely well with those
given by Kerisel and Absi (1990), Soubra (2000), Antdo et al. (2011) and Reddy et al.
(2013); the scatter for which being less than 12% for all the combinations of ¢ and §/¢
values as reported in Table 3.

Lancellotta (2002) proposed the exact solution for the evaluation of passive earth
pressure coefficients using the lower bound theorem of plasticity. As seen from Table 3,
a fairly good agreement is seen between the proposed results and those obtained by
Lancellotta (2002). However, as § approaches towards ¢, this difference increases with
increasing ¢ values. For ¢p=45° and §/¢p=1, the scatter between the proposed results
and Lancellotta’s (2002) exact solution is 35.48%.

Shiau et al. (2008) employed finite element method coupled with the bound theorems
of limit analysis for the computation of K, values. It is observed from Table 3 that, the
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Table 2 Proposed K, values for ¢ ranging from 20° to 45°, for 6/¢ of 0, 1/3, 1/2, 2/3 and
1, and for i/¢ of 0, 0.2, 0.33, 0.4, 0.6, 0.66, 0.8 and 1

Fori/¢=0 For i/¢p = 0.2
8/¢ &/¢
¢ o0 1/3 1/2 2/3 1 o) o0 1/3 1/2 2/3 1

20 204 2.39 257 2.75 3.13 20 2.24 265 2.86 3.07 350
25 246 3.07 341 376 4.54 25 2.81 3.55 3.96 439 531
30 3.00 403 465 534 6.93 30 357 4.90 5.70 6.58 8.56
35 3.69 544 6.59 7.95 11.30 35 4.63 7.05 863 1048 14.91
40 4.60 762 9.82 12.60 20.01 40 6.16 1068 1397 18.08 28.64
45 583 1118 1562 21.70 3948 45 848 1739 2477 3475 62.52

For i/¢p = 0.33 Fori/¢=0.4

/¢ /¢

o (0 0 1/3 1/2 2/3 1 ¢ o0 1/3 1/2 2/3 1
20 237 281 3.04 328 374 20 244 290 3.14 339 3.86
25 3.03 387 432 481 582 25 3.16 4.04 4.52 5.03 6.10

30 3.96 551 643 744 9.69 30 4.18 585 6.84 793 10.32
35 532 8.24 10.15 12.36 17.56 35 5.72 8.94 11.04 1346 19.10
40 739 1316 1734 2251 3547 40 8.14 1467 1939 2521 3959

45 10.77 2292 3295 4636 82.52 45 1224 2651 38.25 53.86 95.26
For i/¢ = 0.6 For i/¢ = 0.66

/¢ /¢

o (0 0 1/3 1/2 2/3 1 6 o0 1/3 1/2 2/3 1

20 263 3.15 342 3.69 421 20 268 322 350 378 431
25 3.51 4.54 5.10 569 6.89 25 3.62 4.69 5.28 589 7.2
30 4.84 6.88 8.08 9.39 12.19 30 5.05 7.21 847 9.85 12.77
35 6.97 11.16 13.85 16.93 23.87 35 7.38 11.88 14.77 18.07 2542
40 10.64 19.78 2634 3428 53.21 40 1150 2157 2876 3744 57.86
45 1756 3969 5771 81.19 140.74 45 1955 4466 6501 91.38 157.39
For i/¢ = 0.8 For i/ =1

/¢ /¢

¢ o0 1/3 1/2 2/3 1 ¢(° o0 1/3 1/2 2/3 1

20 2.81 3.39 3.69 3.98 4.55 20 2.99 3.62 3.95 4.26 4.90
25 3.87 5.05 569 6.35 7.68 25 423 5.56 6.28 7.01 857
30 555 7.99 942 1095 14.16 30 630 9.17 10.83 1260 1661
35 841 13.71 1709 2090 29.24 35 10.06 1664 2078 2539 36.70
40 1377 2626 3510 4564 69.83 40 1769 3437 4598 59.61 96.10

45 2507 5847 8525 11946 20257 45 3564 8476 12339 17182 31514

proposed results fall well within the lower and upper bounds of limit analysis; and
therefore it can be inferred that, for the case of a vertical retaining wall resting against
the horizontal cohesionless backfill and for all the combinations of ¢ and &/¢ values as
reported in Table 3, the passive earth pressure coefficients obtained in this study are
very close to the true solutions.

Kame (2012) adopted the limit equilibrium approach coupled with the Kotter's (1903)
equation for the evaluation of K, coefficients. Kame (2012) fixed the unique composite
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Table 3 Comparison of the proposed K, values with the other theoretical results for the
case of a vertical retaining wall with a horizontal cohesionless backfill (i/¢ = 0)

¢(°) 6/¢p Proposed Keriseland Soubra Lancellotta Shiau Antdo Kame Reddy
analysis” Absi (1990)% (2000)% (2002)™ et al. etal. (2012)? etal.
(2008)"  (2011)" (2013)®
LB(UB) (UB)
20 0 2.04 2.05 2.04 2.04 204 (205) 204 2.58 2.04
1/3 2.39 240 2.39 2.37 23242 239 2.84 240
1/2 2.57 2.55 2.58 2.52 250 (262) 256 297 261
2/3 2.75 2.75 2.77 265 267 (282 273 3.09 2.85
1 313 3.10 312 2.87 302 (321 305 3.29 340
25 0 246 245 246 246 246 (248) 247 3.10 246
1/3 3.07 3.10 3.08 3.03 293 (311 307 361 3.08
172 341 340 343 3.30 326 (348) 339 385 346
2/3 3.76 3.70 3.79 3.56 359 (386) 372 4.10 391
1 4.54 4.40 4.51 4.00 433 (470) 436 4.56 4.95
30 0 3.00 3.00 3.00 3.00 3.00 (3.01)  3.00 3.70 3.00
1/3 4.03 4.00 4.05 3.95 378 (410) 402 4.66 4.05
1/2 4.65 4.60 4.69 444 437 (476) 462 513 4.73
2/3 534 530 540 493 502 (549 525 561 557
1 6.93 6.50 6.86 5.80 6.58 (7.14) 656 6.57 7.58
35 0 3.69 3.70 3.69 3.69 370372 370 4.60 3.69
1/3 544 540 548 5.28 500 (5.58) 542 6.16 546
1/2 6.59 6.50 6.67 6.16 6.08 (6.77) 652 7.04 6.71
2/3 795 8.00 8.06 7.09 7.32 (8.17) 7.76 7.98 8.32
1 11.30 10.50 11.13 8.85 10.99 10.58 10.02 12.33
(11.50)
40 0 4.60 4.50 4.60 4.60 460 (462) 461 5.70 4.60
1/3 762 7.60 7.70 7.28 687 (7.79) 757 843 762
1/2 9.82 9.60 9.99 8.92 879 (10.03) 967 10.10 10.00
2/3 12.60 12.00 12.83 10.71 11.30 12.19 12.00 13.27
(12.87)
1 20.01 18.00 19.62 14.39 18.64 18.15 16.46 21.64
(20.10)
45 0 5.83 5.80 583 5.83 582 (586) 584 NA NA
1/3 11.18 11.00 11.36 1048 969 (11.41)  11.09 NA NA
1/2 562 15.00 15.98 13.60 1342 1529 NA NA
(15.85)
2/3 21.70 20.00 2222 17.27 19.08 20.75 NA NA
(22.03)
1 3948 35.00 3861 2547 3852 34.99 NA NA
(45.14)

NA Not available.
@ Limit equilibrium method.
@ Solutions of Boussinesq’s equations.

G imit analysis (Upper bound).
™ | ower bound theorem of plasticity (Exact solution).

™ Finite element method coupled with the limit analysis.
" The values reported inside and outside the parenthesis correspond to the upper bound (UB) and lower bound (LB)
solutions respectively as obtained by Shiau et al. (2008)

Page 10 of 17
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(log spiral with planar) failure surface by fulfilling the horizontal as well as the vertical
equilibrium conditions. Later, the moment equilibrium condition was used by him to
locate the point of application of the passive thrust. As the methodology proposed by
Kame (2012) was different, his analysis yields a little higher values for the case of a
smooth vertical retaining wall. However, a fairly good agreement is observed between
the proposed results and those presented by Kame (2012) for rest of the other combi-
nations of ¢ and &/¢ values presented in Table 3.

Kumar and Chitikela (2002) and Subba Rao and Choudhury (2005) proposed the seis-
mic passive earth pressure coefficients using the method of characteristics and the limit
equilibrium method respectively. In Table 4 are compared the proposed K, values with
those given by the aforementioned researchers for the static case.

As seen from Table 4 (a), the proposed results agree extremely well with the results
of Kumar and Chitikela (2002) and Subba Rao and Choudhury (2005) except for ¢ =
40° and /¢ =1 where the proposed results are slightly higher; the scatter for which is
9.05% and 5.55% respectively.

For the static case, Subba Rao and Choudhury (2005) also presented the K, values for the
case of an inclined backfill. As seen from Table 4 (b), the proposed results are in excellent
agreement with those presented by Subba Rao and Choudhury (2005) for ¢=40° and i = 30".

As already shown in Table 1, the K,,, values are obtained from the proposed analysis
for the several possible combinations of ¢, § and i. All these K}, values are compared
with those presented by Kerisel and Absi (1990). Overall, it is observed that with the in-
creasing ¢ and i values and as § approaches towards ¢, the difference between the pro-
posed K,,, values and those given by Kerisel and Absi (1990) increases. As it is not
possible to show the comparison for each and every value mentioned in Table 1, it is
decided to present the comparison for the case of an inclined backfill and for ¢ values
varying from 20° to 45° with 6/¢ = 1; where the possibility of the maximum difference
is more as compared to the other values of &/¢.

As seen from Table 5, the proposed results agree extremely well with those given by
Kerisel and Absi (1990); the maximum difference for which does not exceed 10% for all

Table 4 Comparison of the proposed K, values with the other theoretical investigations
(a) for horizontal backfill (b) for inclined backfill

(a) for horizontal backfill (b) for inclined backfill (For ¢=40° and i=30°)
¢ (°) 6/¢ Proposed Kumarand SubbaRaoand &/¢p Proposed SubbaRaoand  Scatter
analysis” Chitikela Choudhury analysis Choudhury (%)
(2002)™  (2005)® (2005)
30 1/3 403 4.00 NA 1/2 3272 3260 038
172 465 NA 4.63 1 6545 69.54 —6.26
2/3 534 533 NA
1 6.93 6.56 6.68
40 173 762 7.78 NA
172 982 NA 9.64
2/3 1260 12.00 NA
1 20.00 18.19 18.89

NA Not available.
9 Limit equilibrium.
@ Method of characteristics.
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Table 5 Comparison of the proposed K, values with those given by Kerisel and Absi
(1990) for ¢ ranging from 20° to 45°, for i/¢ of 1/3, 2/3 and 1 and for § = ¢

¢ ) i’'p Proposed analysis Kerisel and Absi (1990) Scatter (%)
20 1/3 374 3.70 1.06
2/3 431 430 0.34
1 4.90 4.80 1.98
25 1/3 582 5.60 378
2/3 7.12 7.00 1.75
1 857 840 2.00
30 1/3 9.69 9.20 5.06
2/3 12.77 12.50 2.15
1 16.61 16.10 3.08
35 1/3 17.56 16.40 6.63
2/3 2542 25.00 1.66
1 36.70 35.00 4.62
40 1/3 3547 33.00 6.98
2/3 57.86 57.00 149
1 96.10 90.00 6.34
45 1/3 82.52 76.00 791
2/3 157.39 153.00 2.79
1 315.14 285.00 9.57

the combinations of ¢, § and i. It should be noted that the values reported by Kerisel
and Absi (1990) are based on the solutions of Boussinesq’s equations (Benmeddour
et al., 2012) whereas the proposed method is based on the simple limit equilibrium ap-
proach. Therefore, the proposed method could be considered as one of the alternatives
for the evaluation of K,,, coefficients.

Chen and Rosenfarb (1973) presented the least upper bound solution for the K, co-
efficients using the limit analysis method. They tried six different failure mechanisms
and showed that the critical solution could be obtained using the log sandwich mech-
anism. Later, Soubra (2000) improved the solution of Chen and Rosenfarb (1973) by
adopting the kinematical analysis of upper bound theorem with the translational multi-
block failure wedge mechanism. This improvement relative to the Chen and Rosenfarb’s
(1973) solution was around 22% for the case of a vertical wall and for ¢p= 8 =i = 45°.

Afterwards, Soubra and Macuh (2002) presented the best upper bound solution for
the K, coefficients. They employed the upper bound theorem of limit analysis with the
consideration of rotational log spiral failure mechanism. Their method attains the im-
provement of around 28% relative to the Soubra’s (2000) solution for the case of a verti-
cal wall and for ¢p=6=1i=45°.

In Figure 3 is shown a comparison of the proposed results with those given by Chen
and Rosenfarb (1973), Soubra (2000) and Soubra and Macuh (2002) for ¢ = § = 45° and
for i varying from 0°- 45°.

As seen from Figure 3, the present solution obtained using the limit equilibrium
method significantly improves the solution of Chen and Rosenfarb (1973) and Soubra
(2000) by 42.79% and 17.01% respectively for ¢p=§=i=45°. As far as the comparison
with Soubra and Macuh (2002) is concerned, it is observed that the improvement of
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Figure 3 Comparison of the proposed results for K,, with those reported by Chen and Rosenfarb
(1973), Soubra (2000) and Soubra and Macuh (2002) (for ¢=45° and 6/¢=1).

J

the proposed solution relative to that of Soubra and Macuh (2002) is 0.29% and 2.97%
for i=15° and 30° respectively. However, at i =45°, the proposed K, value is slightly
higher; the difference for which is 9.18%. Nevertheless, it is clear from Figure 3 that the
proposed results are very close to the solutions of Soubra and Macuh (2002) and there-
fore, it could be stated that the simple limit equilibrium method proposed herein is
capable of yielding the best possible upper bound solution.

Comparison with existing experimental results

Narain et al. (1969) conducted a model study on a vertical retaining wall with a dry
horizontal cohesionless backfill. For the translational wall movement, they compared
their experimental results with the other available theoretical investigations. This com-
parison is reproduced in Table 6. The results obtained from the present theoretical in-
vestigation are also reported in Table 6.

As seen from Table 6, for ¢p=38.5° and §=23.5°, the theories proposed by Caquot
and Kerisel (1948) and Coulomb (1776) overestimate the normal component of passive
earth pressure coefficients (K, values) while the Rankine’s (1857) theory significantly
underestimates the K, values. However, Terzaghi’s (1941) general wedge theory and
the proposed analysis make a better estimate of the passive earth pressure coefficients;
the differences for which are -6.55% and +10.12% respectively.

For ¢p=42° and § = 23.5°, except Rankine’s (1857) theory, all the theoretical investiga-
tions overestimate the passive earth pressure coefficients. However, among the other
theoretical investigations, the proposed analysis compares fairly well with the experi-
mental results of Narain et al. (1969); the scatter for which is 34.89%.

Fang et al. (1997) conducted the experiments on a vertical rigid retaining wall with a
sloping backfill. All these experiments were conducted under translational wall move-
ment. The main purpose of their study was to access the validity of the available theor-
etical solutions. In Table 7 is shown a comparison of the proposed K, values with the
experimental results of Fang et al. (1997) considering the failure criterion at a wall
movement of S/H =0.2.
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Table 6 Comparison of the proposed K,y values with the experimental results of Narain
et al. (1969)

for §=23.5° Narain Proposed Caquot and Terzaghi Rankine Coulomb

et al. analysis Kerisel (1948) (1941) (1857) (1776)

(1969)

Koyn Koyn Scatter K, Scatter K,, Scatter K,y Scatter K, Scatter

(%) (%) (%) (%) (%)

Loose sand 840 925 1012 11.80 4048 785 —6.55 400 -5238 1360 6190
(¢ =385
Dense sand  8.80 11.87 34.89 18.00 104.55 1660 88.64 6.05 —=3125 1994 12660
(p=42°)

As seen from Table 7, for ¢p = 30.9° and 6 =19.2° and for the backfill inclination, i
varying from 0° - 20°, the proposed theoretical predictions of the K, values agree ex-
tremely well with the experimental results of Fang et al. (1997).

In Table 8 are compared the results of the proposed analysis with the experimental
investigations of Rowe and Peaker (1965). A significant discrepancy is observed be-
tween the proposed results and those reported by Rowe and Peaker (1965). However, it
may be noted that, the values reported by Rowe and Peaker (1965) are based on the ex-
perimental investigations for which the failure criterion was assumed to be at a wall
movement of 5% of the wall height (i.e. S/H = 0.05); whereas as discussed earlier [dis-
cussion on comparison of the proposed results with those of Fang et al. (1997)], the
proposed analysis makes a better estimate of K),, values when the failure criterion is
considered as S/H = 0.2.

Fang et al. (2002) studied the effect of density on the passive earth pressures using
the critical state concept. The experiments were conducted on a vertical retaining wall
with a horizontal cohesionless backfill. In order to limit the scope of the study, all the
experiments were conducted under translational wall movement.

Fang et al. (2002) observed that, for a loose backfill (D, = 38%), the limiting pressure
was reached at a wall movement of S/H =0.17. Also for a medium dense (D, = 63%)
and dense backfill (D, = 80%), it was seen that the peak pressure reached at S/H =0.03
and S/H = 0.01 respectively. Thereafter, the peak passive pressure reduces and the state
of the ultimate passive thrust was observed at S/H =0.17 for medium dense backfill
whereas at S/H = 0.2 for dense backfill.

Based on these observations, Fang et al. (2002) concluded that for such a large wall

movement, the critical state is reached all along the failure surface and at this state, the

Table 7 Comparison of the proposed K,y values with the experimental results of Fang
et al. (1997) for ¢=30.9° and 8 = 19.2°

i) Proposed analysis Fang et al. (1997) Scatter (%)
0 5.19 5.00 3.66

5 6.20 6.00 323

10 7.30 7.60 —4.04

15 850 9.60 —12.94

20 9.77 10.80 -10.54
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Table 8 Comparison of the proposed K,y values with the experimental results of Rowe
and Peaker (1965)

For ¢=34° For ¢=42°

S (°) Proposed Rowe and Scatter S (°) Proposed Rowe and Scatter
analysis Peaker (1965) (%) analysis Peaker (1965) (%)

0 354 250 29.38 0 5.04 4.60 873

10 482 3.00 37.76 10 7.39 5.80 2152

20 6.32 3.60 43.04 20 10.57 720 31.88

30 7.88 430 4543 30 1449 8.80 39.27

shear strength of the soil should be represented in terms of the residual shear strength
parameter, ¢, and not in terms of peak shear strength parameter, ¢,.

Fang et al. (2002) compared their experimental results with the theories proposed by
Coulomb (1776) and Terzaghi (1941). This comparison is reproduced in Table 9 (a)
and (b). Based on this comparison, Fang et al. (2002) suggested that the ultimate pas-
sive thrust could be estimated in a better manner by adopting the critical state concept
to the Terzaghi (1941) or Coulomb’s (1776) theory.

In order to check the validity of the proposed theory, results obtained from the
present investigation are compared with the experimental results of Fang et al. (2002)
for both the states of the soil; i.e. considering the peak shear strength, ¢, as well as the
residual shear strength, ¢, in the analysis. As seen from Table 9 (a) that, for the
medium dense (D, = 63%) and dense sand condition (D, = 80%), the present analysis
makes a better estimate of the peak passive thrust as compared to the other two theor-
ies. Also as suggested by Fang et al. (2002), when the critical state concept is consid-
ered, all the theoretical investigations mentioned in Table 9 (b) make the excellent
predictions of the ultimate passive thrust. Overall it is seen that, all the theoretical in-
vestigations mentioned in Table 9 (a) and (b) underestimate the passive pressures for

the loose sand condition.

Table 9 Comparison of the proposed K.,y values with the experimental results of Fang
et al. (2002) (a) Peak shear strength (b) Residual shear strength

(a) Peak shear strength

Relative é » Fangetal. Proposed analysis”  Terzaghi (1941)"  Coulomb (1776)""
density (%) (%) ) (2002) Kpyn Scatter (%) Kpyn  Scatter (%) K,,n  Scatter (%)

38 9.8 330 50 456 —9.65 465 —753 476 -5.04

63 126 383 65 6.56 091 6.7 2.99 7.1 845

80 140 421 82 861 476 885 734 9.63 14.85

(b) Residual shear strength

Relative é ¢  Fangetal. Proposed analysis?  Terzaghi (1941)"  Coulomb (1776)
density (%) (2002) Koyn Scatter (%) Koyn  Scatter (%) K,  Scatter (%)
38 9.8 315 50 4.24 -17.92 465 —753 442 -13.22

63 126 315 48 457 —5.03 4.7 -2.13 491 224

80 140 315 48 4.74 —1.27 4.85 1.03 518 7.92

O Complete log spiral failure surface.
@ Composite curved failure surface.
(@ planar failure surface.
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Conclusions
A limit equilibrium approach along with the complete log spiral failure mechanism is

considered in the proposed analysis. The critical passive earth pressure coefficients, K,

are computed using the optimisation technique. The main conclusions which are

drawn from this study are as follows.

1. Generally, the limit equilibrium method yields an upper bound solution (Deodatis
et al,, 2014). However, an attempt is made to minimize the number of assumptions
involved in the proposed analysis and therefore, the solutions for the K,,,
coefficients obtained herein are very close to the best upper bound solution (by
Soubra and Macuh, 2002) available in the literature so far.

2. The proposed results agree extremely well with most of the theoretical as well as
the experimental results available in the literature.

3. The current practice in Geotechnical engineering is to use the earth pressure
coefficients presented by Kerisel and Absi (1990). For all the possible combinations
of ¢, § and i, an excellent agreement is seen between the proposed results and those
given by Kerisel and Absi (1990). Therefore, it could be stated that, as the method
developed herein is being simple to implement, it could be considered as one of the
alternatives for the evaluation of passive earth pressure coefficients for a vertical
retaining wall resting against the inclined cohesionless backfill.
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