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Abstract

In this paper, Harmonic Balance based methods, namely Incremental Harmonic Balance Method

and the method of Harmonic Balance with Alternating Frequency and Time traditionally used

to compute periodic orbits of smooth nonlinear dynamical systems are employed to investigate

dynamics of a non-smooth system, a piecewise linear oscillator with a play. The Incremental

Harmonic Balance Method was used to compute the period one orbits including those exhibiting

grazing and large impacts. The method of Harmonic Balance with Alternating Frequency and Time

was implemented to calculate more complex orbits and multi stability. A good agreement between

obtained approximate solutions and numerically calculated responses indicates robustness of the

implemented HBMs, which should allow to effectively study the global dynamics of non-smooth

systems.

Keywords: Piecewise linear oscillator with play, Incremental Harmonic Balance Method, IHBM,

Harmonic Balance with Alternative Frequency and Time, HB-AFT, Computation of periodic

orbits

1. Introduction

Mathematical models of non-smooth systems have been extensively studied in the past decades

by both analytical and numerical methods. The periodically forced single degree-of-freedom piece-

wise linear oscillator is the archetype of such systems, where the non-smoothness is present in the

restoring force, which was first comprehensively investigated by Shaw and Holmes [1]. Another

type of a single degree-of-freedom piecewise linear oscillator namely oscillator with a backlash or a

play considered in this paper was studied earlier by Kleczka et al. [2]. Luo et al. [3] numerically

investigated its global chaotic behaviour and Wiercigroch [4] provided a further overview of the

system dynamics through computing codimension-1 bifurcation diagrams. In addition, it is relevant
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to mention the works on gear systems with a backlash by Kaharaman et al. [5], Theodossiades et

al. [6] and de Souza et al. [7]. An exact solution for periodic symmetric responses in an oscillator

with a symmetrical trilinear spring subjected to harmonic excitation was considered by Natsiavas

[8] and reflected upon by contrasting again other non-smooth systems in his recent compressive

review [9].

To analyse the motion undergoing grazing impacts, several methods were proposed. The discrete

mapping and the discontinuity mapping were respectively developed and employed to investigate

the dynamics of the grazing cases by Nordmark [10] and Dankowicz and Nordmark [11]. Then the

latter was generalized to the system with discontinuities in the vector field by Molenaar et al. [12]

and Dankowicz and Zhao [13]. The other unique behaviour of piecewise smooth systems is the so-

called border–collision bifurcation, and classification of border–collision bifurcation scenarios can

be found in works by di Bernardo et al. [14]. Nusse and Yorke [15] provided a general criterion

for the occurrence of such bifurcations in two-dimensional piecewise smooth maps. Moreover, their

classification was also discussed by Banerjee and Grebogi in [16].

Di Bernardo et al. [17], [18] presented a unified framework for grazing and sliding bifurcations

in n-dimensional piecewise smooth dynamical systems of ODE’s by deriving their normal form

Poincaré maps. Impacting systems between rigid and elastic impact oscillators have been studied

by Ma et al. [19]. Furthermore, in [20] the effects of the individual components on the character of

the normal form map were numerically and experimentally investigated.

Among other important experimental investigations concerned with grazing events are those

conducted by Stensson et al. [21], by Piiroinen et al. [22] and by the Centre of Applied Dynamics

Research at the University of Aberdeen [23] – [27]. In [25], a narrow band of chaos near the grazing

condition was discovered and in [26], a rich dynamical behaviour of the oscillator close to grazing

was unveiled by analysing bifurcation scenarios with a large number of co-existing attractors. The

study undertaken in [27] was focussed on the dynamics of the system with a play showing new

types of bifurcations and providing for the first time a global overview of dynamics where all

control system parameters except the gap were used. It also touched upon grazing and crisis

bifurcations employing newly developed in-house Matlab-based computational suite ABESPOL

[28, 29]. Various computational approaches have been applied recently to non-smooth dynamical

systems including hybrid symbolic-numeric computations [30], a combined method of harmonic

balance and path following [31] and a smoothing procedure to enable the use of the harmonic

balance method effectively [32].

It is widely known that the piecewise linear systems may exhibit very rich dynamical be-

haviour [1, 33, 34]. However, it is difficult in general to obtain closed–form solutions even for
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simplest nonlinear systems of these types. It is also difficult to analyze the piecewise linear sys-

tems employing the standard perturbation methods such as Poincaré–Lindstedt, multiple scale,

or Krylov–Bogoliubov–Mitropolski methods [35, 36], since they are valid only for continuous and

weakly nonlinear dynamical systems. However, Harmonic Balance Methods (HBM) based on the

Galerkin approximation can deal with systems with strong nonlinearities as they do not require

systems to be continuous. They have been originally developed to study structural vibration of

elastic systems [37]. As explained in [38], the Incremental Harmonic Balance Method (IHBM) is

particularly suitable for computer implementation. In this method, firstly, a periodic solution of

nonlinear dynamical system is represented by a Fourier series with small number of harmonics and

then the considered system is transformed into a set of linearized incremental algebraic equations

in terms of the Fourier coefficients. Next, these linearized equations are solved iteratively in each

incremental step, with the formulation being carried out when changing the number of harmonic

terms in the Fourier series of the solutions. Finally, the Fourier coefficients can be determined if

the obtained solution converges. Compared with the classical approaches, the IHBM is remarkably

effective for obtaining solutions with a desired accuracy over a wide range of varying parameter,

where both stable and unstable solutions being computed directly. The IHBM has already been

successfully applied to a wide range of dynamical systems, for example [38] – [41]. IHBM can also

be employed to investigate the bifurcation and route-to-chaos [42], analyze the nonlinear dynamics

of the time-varying dynamical system [43], predict the limit cycle oscillations under uncertainty [44]

and other nonlinear problems [45] – [48], where periodicity of the anticipated solutions is expected.

The IHBM also finds its way in some class of piecewise linear dynamical systems, (see [49] –[52]).

With regards to the system with play, although we have found in our recent study [27] a complex

and rich dynamical behaviour numerically, the profound mathematical reason behind this work is

to investigate periodic orbits in more rigorous manner. To this end, based on the work presented

in [51, 52], we will model and analyse nonlinear vibration of the piecewise linear oscillator with a

play [2, 27] by the IHBM.

The layout of this paper is as follows. Section 2 presents the mathematical model of the

considered system and its global dynamics. In Section 3, the HB based methods are described. In

Section 4, a numerical simulation is carried out to compare results obtained from direct numerical

simulation and HB based methods. Finally, conclusions are drawn in Section 5.

2. Mathematical model of a system with play and its global dynamics

The physical model of the considered system is a single-degree-of-freedom oscillator excited by

a harmonic external force. In this oscillator, the mass is attached to a linear damper and comes
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into contact with a linear spring when the amplitude of the oscillations exceeds a gap.

The motion of the system is governed by the piecewise linear ordinary differential equation

[4, 27, 28] which can be written in non-dimensional form as

x′′ + 2 ξ x′ + g(x) = a cos (ωτ) . (1)

Here non-dimensional displacement x and time τ are defined by using a reference displacement and

linear natural frequency. Prime stands for differentiation with respect to the non-dimensional time

τ , a and ω are the non-dimensional forcing amplitude and frequency, ξ is the damping ratio and

g(x) is the non-dimensional restoring force given by

g(x) =


x− e , x > e

0 , |x| ≤ e

x+ e , x < −e

(2)

where e is the non-dimensional gap.

The respective vector field of the system in non-autonomous and autonomous form is presented

below in equations (3) and (4) respectively. In the autonomous form, s = ωτ mod 2π defines an

angular variable.  x′ = v

v ′ = a cos (ωτ)− 2 ξ v − g (x)
, (3)


x′ = v

v ′ = a cos (s)− 2 ξ v − g (x)

s′ = ω

. (4)

Direct numerical simulations for the considered system were presented in [27]. Those simulations

were performed by using the computational suite of numerical codes for non-smooth systems,

ABESPOL [28]. This suite enables the user to explore the dynamics of piecewise smooth dynamical

systems by computing their responses through its module of direct numerical simulation and module

of numerical continuation. Unlike any other available software, ABESPOL has these two modules

connected, providing the user with the choice to start a numerical continuation directly from a

bifurcation diagram computed by a direct numerical simulation. To run a numerical continuation,

ABESPOL has an interface that connects it to the computational continuation core COCO [29], in a

way that, the existing general-purpose routines supplied by COCO for continuation and bifurcation

analysis of smooth and non-smooth dynamical systems are used in a user-friendly and quick manner.
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Figure 1: Bifurcation diagram of displacement as a function of the forcing amplitude, a, computed for ξ = 0.02,

e = 1 and ω = 1, where the control parameter was increased. Dashed vertical lines stand for grazing incidence.

Additional panels show trajectories and Poincaré maps on the (x, v) planes computed for the following amplitudes:

(a) a = 0.50278, (b) a = 0.75820, (c) a = 0.99814, (d) a = 1.08330, (e) a = 1.19940. There, operation in No-Contact

mode is in green, whereas operation in Contact-Up and Contact-Down is in blue; points of the Poincaré maps are

in the same colours used in the bifurcation diagram; and magenta vertical lines denote the discontinuity boundaries.

Adopted from [27].

One of the bifurcation diagram computed by a direct numerical simulation in [27] is shown in

Fig. 1, where the forcing amplitude was varied from 0.01 to 1.30. The other parameter values

were fixed to ω =1.0, ξ = 0.02 and e = 1.0. As described in [27], each periodic orbit presents a

number of crossings to the Contact-Down and to the Contact-Up modes. Because of this, they

were classified as a period-(n, m, k) response, where n stands for its number of periods, and m and

k stand for the number of crossings from the No-Contact mode to the Contact-Down mode and

to the Contact-Up mode, respectively. The term symmetric was used for those responses whose

trajectory has rotational symmetry with respect to the origin of coordinates of the (x, v) plane,

and the term asymmetric was used otherwise.

In Fig. 1, with the increase of the forcing amplitude, non-impacting period-(1,0,0) attractors

are observed at a ∈ (0.0100 , 1.0007). Representative trajectories and Poincaré maps are shown

in Figs 1(a) – 1(c). A grazing incidence, at a = 1.00330, takes place giving birth to period-(1,1,1)

attractors, for which representative examples are shown in Figs 1(d) and 1(e).
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3. Incremental Harmonic Balance Method (IHBM)

In this section we consider a case of e = 1 and employ IHBM to obtain the Periodic Solutions

(PS) of the system described by Eq. (1). For the convenience, let t = ωτ , and the original system

Eq. (1) can be rewritten as

ω2ẍ+ 2ξωẋ+ g(x) = a cos(t), (5)

where dot represents the derivative w.r.t. t, and let q0(t) = a cos(t).

For system Eq. (5), we assume that x0(t) is the initial approximate solution corresponding to

the excitation parameters ω0 and q0. Then its nearby solution is

x(t) = x0(t) + ∆x(t), ω = ω0 + ∆ω, q = q0 + ∆q, (6)

where ∆x(t),∆ω and ∆q are small increments.

Correspondingly, the piecewise linear function g(x) can be represented as the following first-

order Taylor’s series expansion,

g(x) = g(x0) + g′(x0)∆x, (7)

where g′(x0) represents the value of the first derivative of g(x) w.r.t. x at x0.

Substituting Eqs (6) and (7) into Eq. (5) and omitting the nonlinear higher-ordered terms of

the small increments, the system Eq. (5) can be rewritten as the following,

ω2
0∆ẍ+ 2ξω0∆ẋ+ g′(x0)∆x = R+ S∆ω + ∆q, (8)

where

R = −(ω2
0ẍ0 + 2ξω0ẋ0 + g(x0)− q0), S = −(2ω0ẍ0 + 2ξẋ0), (9)

R is the corrective term which goes to 0 when the solution is reached and S is the unbalanced force

term due to unit frequency shifting.

Though Eq. (8) is linear, there is variable coefficient due to piecewise linearity of the elastic

force and it is not feasible to be solved directly. Hence we apply the Galerkin procedure in the

following way. The initial approximate periodic solution and its small increment may be expressed

as

x0 =
c0
2

+

N∑
n=1

(cn cos(nt) + bn sin(nt)) , ∆x =
∆c0

2
+

N∑
n=1

(∆cn cos(nt) + ∆bn sin(nt)) , (10)

where N is the number of the harmonic terms taken in the truncated Fourier series. Denoting the

base functions vector, the coefficients vector and its incremental vector, are expressed by

p =

(
1

2
, cos(t), cos(2t), · · · , cos(Nt), sin(t), sin(2t), · · · , sin(Nt)

)T
,

m = (c0, c1, c2, · · · , cN , b1, b2, · · · , bN )T ,

∆m = (∆c0,∆c1,∆c2, · · · ,∆cN ,∆b1,∆b2, · · · ,∆bN )T .
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Multiplying both of the sides of Eq. (8) respectively with every element of the base functions vector

and integrating them from 0 to 2π, the following (2N+1)-dimensional linear algebraic equations

with the unknown variables ∆ci,∆bi, i = 0, 1, · · · , N, j = 1, · · · , N are obtained,

C ·∆m = R + S∆ω + ∆Q, (11)

where matrix C and vectors R, S and ∆Q are presented in Eqs (23)–(32) in Appendix A. The

solution is obtained by iterating Eq.(11) as explained in the following section.

4. Period One Impacting Orbits

Period one response is fundamental for most of the operating systems and machinery, therefore

its effective computing is essential. Generally, in the study of forced vibration of dynamical systems,

the excitation level is kept as constant, thus ∆Q = 0. We choose increment option for which the

frequency increment is prescribed and ∆ω is 0 in the subsequent iteration process. Thus Eq. (11)

reads as

C ·∆m = R, (12)

or

∆m = C−1R, (13)

where ∆m is the vector of ∆ci and ∆bi increments and C−1 is the inverse matrix of C. The

iteration process is carried out as follows

Ck ·∆mk+1 = Rk, mk+1 = mk + ∆mk+1,

where the updated matrices Ck+1,Rk+1 are then evaluated from Eqs (24)–(29) which only depend

on the iterations of the coefficients bn and cn with bk+1
n = bkn + 4bkn, ck+1

n = ckn + 4ckn, n =

0, 1, · · · , N, k ∈ Z+. When the norm of ∆mk, i.e., Absmax(∆mk) becomes sufficiently small, e.g.,

less than 10−16, then the corresponding bkn and ckn are considered to be constant. The converged

coefficients bkn and ckn obtained in the result of this process are substituted in Eq. (10) to generate

approximate periodic solution x0(t). The details of this derivation are presented in Appendix A.

Here we consider the second order approximation, N = 2, and in Table 1 we present the

computed coefficients b and c for two different system parameters values. Examining the second

and third row of Table 1, it is clear we have obtained two different periodic orbits shown in Fig. 2

for the same parameters ξ = 0.19884, a = 0.1, ω = 0.3, e = 1, which means co-existing attractors

(bi-stability).
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Table 1: Amplitude components by the IHBM for the second order harmonics.

ξ a ω0 c0 c1 b1 c2 b2

0.020000 0.500000 1 0 -0.499201 0.019968 0 0

0.19884 0.10000 0.3 0 -0.402983 0.534194 0 0

0.19884 0.10000 0.3 0.272 -0.402983 0.534194 0 0
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Figure 2: Comparisons of the co-existing responses of the system (1) calculated by IHBM and the numerical

simulations, where ξ = 0.19884, e = 1, ω = 0.3 and a = 0.1 for the following initial conditions (a) x(0) = 0,

x′(0) = 0 and (b) x(0) = −1.87, x′(0) = 0. The blue points are those of the numerical simulations and the

black solid lines are those of the IHBM. Red vertical lines denote the discontinuity boundaries.

It should be noted here that infinite number of periodic solutions co-exist in the gap between −e

and e. If the mass does not come in contact with any of the constraints, the system becomes linear

and the solution depending on the initial conditions x(0) = x0 and x′(0) = v0 can be obtained as

x(τ) = x0 +
v0
2ξ

+

(
a

4ξ2 + ω2
− v0

2ξ

)
exp(−2ξτ) +

a

ω2 + 4ξ2

(
− cos(ωτ) +

2ξ

ω
sin(ωτ)

)
. (14)

This means that the centres of such periodic orbits are located at horizontal axis at x = x0+ v0
2ξ and

the amplitude of the response is a

ω
√

4ξ2+ω2
. These orbits have to fit within the gap, i.e. |x| < e to

exist, and therefore the limits for initial conditions and excitation parameters could be evaluated.

So we obtain the limitations on the initial displacement and velocity:

−e+
a

4ξ2 + ω2
< x0 +

v0
2ξ

< e− a

4ξ2 + ω2
. (15)

Example is shown in Fig. 3 computed for ξ = 0.13058, e = 1, ω = 0.3 and a = 0.1. Fig.

3(a) demonstrates the basins of attractions for multiple non-impacting solutions (one of them is
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Figure 3: (a) Basins of attraction for multiple co-existing solutions marked in bright colours and computed

for ξ = 0.13058, e = 1, ω = 0.3 and a = 0.1. A pair of the vertical lines depicts the discontinuity boundaries

whilst the slanted ones indicate the limits described by Eq. (15); (b) trajectory of the non-impacting

symmetric solution; (c) trajectory of the impacting solution with light yellow basin.

presented in Fig. 3(b)) and impacting solution shown in Fig. 3(c). Here the vertical lines show

the discontinuity boundaries and black lines in Fig. 3(a) indicate the limits described by Eq.

(15). As can be seen from Fig. 3(a), although the numerical simulations capture a number of

non-impacting solutions, the full complexity of the system can not be described and the results

depends significantly on the precision and calculation settings. Examples of basins of attraction

calculated for ξ = 0.19884, e = 1, ω = 0.3 and a = 0.1 (case of the multiple non-impacting solutions

presented in Table 1) are shown in Fig. 4 where the time step of calculations (characterised by the

step per cycle parameter ”spc” as specified in the caption of Fig. 4) is smaller in Fig. 4(a) than in

Fig. 4(b). Also a different number of initial checks (characterised by maximum checks per initial

point parameter ”mc”) is used to determine the different attractors using mapping techniques in

software Dynamics [55]. Figures 4(c) and (d) present samples of multiple co-existing non-impacting

solutions. Although a number of solutions is identified by the numerical simulation, there is still a

lot of uncertainties in the results and no specific solution was found for the initial conditions within

the light yellow basins. For this basin, multiple (infinite number of) solutions co-exist as previously

explained.

The accuracy of the IHBM is evaluated here by comparing its results against those obtained

from direct numerical simulation, which uses a high accuracy Runge-Kutta scheme with a precise

determination of discontinuity occurrences. Figures 5 and 6 compare the steady state solutions

computed by the IHBM and marked by the black solid lines with the results of numerical simulations
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Figure 4: Basins of attraction for multiple co-existing solutions marked in bright colours and computed for

ξ = 0.19844, e = 1, ω = 0.3 and a = 0.1. A pair of the vertical lines depicts the discontinuity boundaries

whilst the slanted ones indicate the limits described by Eq. (15): (a) spc=500, mc=200 and (b) spc=2000,

mc=300. (c) and (d) trajectories of the non-impacting symmetric solutions.
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Figure 5: Comparisons of the corresponding phase portraits of the system (1) shown in Fig. 2 calculated by

IHBM and the numerical simulations, where ξ = 0.02, e = 1, ω = 1 and (a) a = 0.75820, (b) a = 0.99814,

(c) a = 1.08330, (d) a = 1.19940. The blue points are those of the numerical simulations and the black solid

lines are those of the IHBM. Red vertical lines denote the discontinuity boundaries.
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Figure 6: Comparisons of the corresponding phase portraits of the system (1) calculated by IHBM and the

numerical simulations, where a = 0.1, e = 1, ω = 0.3 and (a) ξ = 0.07754, (b) ξ = 0.12395, (c) ξ = 0.13994,

(d) ξ = 0.19884. The blue points are those of the numerical simulations and the black solid lines are those

of the IHBM. Red vertical lines denote the discontinuity boundaries.

[27] as blue discrete points. Period one motions, including not only the non-impacting orbits as

shown in Figs 5a, 6b, 6c and 6d, but also the grazing orbits shown in Figs 5b and 6a, and impacting

orbits presented in Figs 5c and 5d are computed successfully.

5. Complex Impacting Periodic Solutions via Harmonic Balance with Alternating Fre-

quency and Time

When using the IHBM, some complex impacting periodic solutions cannot be easily computed.

However this can be overcome with the method of Harmonic Balance with Alternating Frequency

and Time (HB-AFT). There are significant differences between IHB and HB-AFT methods, which

are used for strongly nonlinear systems. In essence the IHBM develops the periodic solution (PS)

by incrementing the frequency and amplitude using the linear terms of Taylor’s expansion, which

leads to the main problem. The Taylor’s expansion has certain constraints to ensure its validity,

specifically, the smoothness of the function being approximated. This is fine for smooth nonlinear

systems (e.g. Duffing oscillator), but for the non-smooth system, a such condition simply does
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not hold. In contrast, when applying the HB-AFT method, the smoothness is not required and

once we assume that the solution is periodic, the frequencies and amplitudes of the harmonics of

these complex periodic solutions can be easily determined by using Discrete Fourier Transformation

(DFT).

In the HB-AFT method, first x(t) and the nonlinear part can be written as two groups of

Fourier series expansions with the same orthogonal basis. According to system (1), one can get an

implicit nonlinear algebraic relationship between the harmonic coefficients of x(t) and the nonlinear

part. Then with the help of the Discrete Fourier Transform (DFT) and the Inverse Discrete Fourier

Transform (IDFT), the information used to iterate the implicitly algebraic can be obtained. Thus, it

can be easily seen that the HB-AFT method is different from the IHBM. It establishes relationships

for each order harmonic term directly from the discrete time frequency features, and there is little

integration and analytical work required during the solving process of the HB-AFT method. Thus,

this method can be considered to be more versatile for the strong nonlinear problems with piecewise

linearity. The detailed formulation is presented in Appendix B.

The accuracy of the HB-AFT is evaluated here by comparing its results against those of the

numerical analysis of the global dynamics of the piecewise linear oscillator with a play in [27].

Figures 7–9 compare the corresponding steady state solutions computed by the HB-AFT denoted

by the black solid lines with the results of direct numerical simulation [27], which are presented by

blue discrete points at the same phase planes, showing great accuracy. Complex impacting period

one motions presented in [27] (see Figs 4d and 4e, Figs 5a and 5b and Figs 9b, 9c, 9d and 9f in

[27]) are computed successfully as can be seen from Figs 7–9.

The generic explicit expression of the system (1) for HB-AFT is the following,

x(t) =
e0
2

+

N∑
n=1

(en cos((2n− 1)t) + dn sin((2n− 1)t)). (16)

Its corresponding expression of y(t) can be obtained by assuming y(t) = ωẋ(t). The coefficients of

formula Eq. (16) used to compute Figs 7–9 of system (1) by the HB-AFT are listed in Table 2,

where the parameters ω, e, ξ, a are presented in the captions of Figs 7–9 and e0 = 0 for all cases.

As can be seen from Figs 7 – 9, for N = 6 complex trajectories with impacts and internal

sub-loops could be approximated well by the HB-AFT method. It should be noted here that no

co-exiting solutions were found for the parameter values from Figs 7, 8a and 9a, 9b, 9c. However

multiple non-impacting solutions co-exist with one impacting period-1 response for the parameters

from Figs 8b and 9d as discussed above, and their basins of attractions are presented in Figs 3 and

10, respectively.
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Table 2: Amplitude components of the explicit expression Eq. (16) used to compute by HB-AFT Figs 7–9 for N = 6.

Figures e1 e2 e3 e4 e5 e6

Fig.7(a) -1.145600 -0.005700 -0.001300 -0.000200 0 0

Fig.7(b) -1.779500 -0.028000 0.000500 0.000700 0 0

Fig.8(a) 1.090000 0.068600 -0.021900 0 0 0

Fig.8(b) 0.104900 -0.079500 0.023500 -0.006500 0 0

Fig.9(a) 1.219100 0.252000 -0.108600 -0.120800 -0.085400 -0.032400

Fig.9(b) 1.065300 0.338900 0.164700 0.087900 0 0

Fig.9(c) 0.688800 -0.148600 0.002800 0 0 0

Fig.9(d) -0.353500 0.030600 -0.007200 -0.00100 0 0

Figures d1 d2 d3 d4 d5 d6

Fig.7(a) 0.048600 0.000800 0.000300 0.000100 0 0

Fig.7(b) 0.106200 0.005500 -0.000200 -0.000300 0 0

Fig.8(a) 0.578000 0.181100 0.035100 0 0 0

Fig.8(b) 1.151600 -0.078100 0.014000 -0.0014000 0 0

Fig.9(a) 0.870800 -0.274400 -0.150300 -0.007400 0.005200 0.012500

Fig.9(b) 1.001900 -0.075900 -0.115100 0.007400 0 0

Fig.9(c) 1.342900 0.059900 -0.018800 0 0 0

Fig.9(d) 1.366300 -0.070500 0.005400 -0.000100 0 0
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Figure 7: Comparison of the corresponding phase portraits in Fig. 4 (respectively d and e) in [27] of the

system (1) by HB-AFT and the numerical simulations, where ω = 1, e = 1, ξ = 0.02 and (a) a = 1.08330,

(b) a = 1.19940. The blue points are those of the numerical simulations and the black solid line is that of

the HB-AFT. Red vertical lines denote the discontinuity boundaries.

6. Conclusions

Two Harmonic Balance based methods, namely the method of Incremental Harmonic Balance

(IHBM) and the method of Harmonic Balance with Alternating Frequency and Time (HB-AFT) are

13
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Figure 8: Comparison of the corresponding phase portraits in Fig. 5 (respectively a and b) in [27] of the

system (1) by HB-AFT and the numerical simulations, where ω = 0.3, e = 1, a = 0.1 and (a) ξ = 0.05063,

(b) ξ = 0.13058. The blue points are those of the numerical simulations and the black solid line is that of

the HB-AFT. Red vertical lines denote the discontinuity boundaries.

successfully employed to analyze dynamics of the piecewise linear oscillator with a play investigated

in [27]. Computations of periodic responses for this non-smooth system were effectively carried

out using the IHB and HB-AFT methods for various values of the system parameters. Periodic

orbits, including not only the non-impacting, but also the grazing and impacting, were effectively

determined. Increasing number of terms in the HB-AFT approximation allows to compute more

complex impacting trajectories including those with internal sub-loops in the contact regions.

It was found that an infinite number of non-impacting solutions can co-exist in the gap where

mass is not in contact with the spring and the approximate boundaries of the region on the phase

plane for such cases were determined analytically. It was shown that the numerically computed

basins of attraction correspond well to the established boundaries described by Eq.(15).

The obtained good agreements with the direct numerical integration results confirm robustness

of the applied Harmonic Balance based methods, which can be used to study global dynamics of

non-smooth systems.
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Figure 9: Comparison of the corresponding phase portraits in Fig. 9 (respectively b, c, d and f) in [27] of the

system (1) by HB-AFT and the numerical simulations, where a = 0.3, e = 1, ξ = 0.2 and (a) ω = 0.11246,

(b) ω = 0.16260, (c) ω = 0.40022, (d) ω = 0.50050. The blue points are those of the numerical simulations

and the black solid line is that of the HB-AFT. Red vertical lines denote the discontinuity boundaries.

Appendix A

In this appendix, the detailed process of the Eq. (11) is presented here due to its length and

tediousness. Substituting Eq. (10) into Eq. (8), then multiplying it by 1
2 and integrating it from 0

to 2π, it follows that∫ 2π

0

1

2

(
ω2
0∆ẍ+ 2ξω0∆ẋ+ g′(x0)∆x

)
dt =

∫ 2π

0

1

2

(
ω2
0

(
N∑
n=1

−n2 (∆cn cos(nt) + ∆bn sin(nt))

)

+2ξω0

(
N∑
n=1

−n(∆cn sin(nt)−∆bn cos(nt))

)
+ g′(x0)

(
∆c0

2
+

N∑
n=1

(∆cn cos(nt) + ∆bn sin(nt))

))
dt

=
∆c0

4

∫ 2π

0
g′(x0)dt+

1

2

N∑
n=1

∆cn

∫ 2π

0
g′(x0) cos(nt)dt+

1

2

N∑
n=1

∆bn

∫ 2π

0
g′(x0) sin(nt)dt, (17)
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Figure 10: (a) Example of basins of attraction for multiple co-existing solutions marked in bright colours

and computed for ξ = 0.2, e = 1, ω = 0.5005 and a = 0.3. A pair of the vertical lines depicts the

discontinuity boundaries whilst the slanted ones indicate the limits described by Eq. (15); (b) trajectory of

the non-impacting symmetric solution; (c) trajectory of the impacting solution with light yellow basin.

∫ 2π

0

1

2
(R+ S∆ω + ∆q) dt =

∫ 2π

0

1

2

(
−

(
ω2
0

(
N∑
n=1

−n2(cn cos(nt) + bn sin(nt))

)

+2ξω0

(
N∑
n=1

−n(cn sin(nt)− bn cos(nt))

)
+ g(x0)− a cos(t)

)
−

(
2ω0

(
N∑
n=1

−n2(cn cos(nt) + bn sin(nt))

)

+2ξ

(
N∑
n=1

−n(cn sin(nt)− bn cos(nt))

))
∆ω + ∆a cos(t)

)
dt

= −1

2

∫ 2π

0
g(x0)dt, (18)

∆q = cos(t)∆a due to q0(t) = a cos(t) and Eq.(6).

Multiplying Eq. (8) by cos(it), i = 1, · · · , N and integrating it from 0 to 2π, it follows that∫ 2π

0
cos(it)

(
ω2
0∆ẍ+ 2ξω0∆ẋ+ g′(x0)∆x

)
dt =

= −ω2
0i

2∆ciπ + 2ξω0i∆biπ +
∆c0

2

∫ 2π

0
g′(x0) cos(it)dt+

N∑
n=1

∆cn

∫ 2π

0
g′(x0) cos(it) cos(nt)dt

+

N∑
n=1

∆bn

∫ 2π

0
g′(x0) cos(it) sin(nt)dt, (19)
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∫ 2π

0
cos(it) (R+ S∆ω + ∆q) dt = (20)

= ω2
0i

2ciπ − 2ξω0ibiπ −
∫ 2π

0
g(x0) cos(it)dt+ aπδ1,i + (2ω0i

2ciπ − 2ξibiπ)∆ω + ∆aπδ1,i,

where δi,j =

1, for i = j,

0, else
is the Kronecker function.

Multiplying Eq. (8) by sin(it), i = 1, · · · , N and integrating it from 0 to 2π, it follows that∫ 2π

0
sin(it)

(
ω2
0∆ẍ+ 2ξω0∆ẋ+ g′(x0)∆x

)
dt = (21)

= −ω2
0i

2∆biπ − 2ξω0i∆ciπ +
∆c0

2

∫ 2π

0
g′(x0) sin(it)dt+

N∑
n=1

∆cn

∫ 2π

0
g′(x0) sin(it) cos(nt)dt

+
N∑
n=1

∆bn

∫ 2π

0
g′(x0) sin(it) sin(nt)dt,

∫ 2π

0
sin(it) (R+ S∆ω + ∆q) dt = (22)

= ω2
0i

2biπ + 2ξω0iciπ −
∫ 2π

0
g(x0) sin(it)dt+ (2ω0i

2biπ + 2ξiciπ)∆ω.

In Eq. (11), the matrix and vectors are defined as follows:

C =

C11 C12

C21 C22

 ,
where C11,C12,C21,C22 are respectively (N + 1) × (N + 1), (N + 1) ×N,N × (N + 1), N ×N –

dimensional, and

R =

R1

R2

 , S =

S1

S2

 , ∆Q =

∆Q1

ϑ

 , (23)

where ϑ is the (N + 1)× 1 – dimensional zero vector.

The elements of these matrix and vectors are

[C11]ij = −δijω2
0j

2π + αiαj

∫ 2π

0
g′(x0) cos(it) cos(jt)dt, i, j = 0, 1, · · · , N, (24)

which are the coefficients of 4cj , where αj =

1, for j 6= 0,

1
2 , for j = 0.

[C12]ij = 2δijξω0jπ + αi

∫ 2π

0
g′(x0) cos(it) sin(jt)dt, i = 0, 1, · · · , N, j = 1, · · · , N, (25)
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which are the coefficients of 4bj .

[C21]ij = −2δijξω0jπ + αj

∫ 2π

0
g′(x0) sin(it) cos(jt)dt, i = 1, · · · , N, j = 0, 1, · · · , N, (26)

which are the coefficients of 4cj .

[C22]ij = −δijω2
0j

2π +

∫ 2π

0
g′(x0) sin(it) sin(jt)dt, i, j = 1, · · · , N, (27)

which are the coefficients of 4bj . And

[R1]i = (ω2
0ciπi

2 − 2ξω0ibiπ) + δ1iaπ − αi
∫ 2π

0
g(x0) cos(it)dt, i = 0, 1, · · · , N. (28)

[R2]i = (ω2
0biπi

2 + 2ξω0iciπ)−
∫ 2π

0
g(x0) sin(it)dt, i = 1, · · · , N. (29)

[S1]i = (2ω0ciπi
2 − 2ξibiπ), i = 0, 1, · · · , N. (30)

[S2]i = (2ω0biπi
2 + 2ξiciπ), i = 1, · · · , N. (31)

[∆Q1]i = δ1i∆aπ, i = 0, 1, · · · , N, (32)

where R,S only depend on the coefficients bn and cn and they can be re-calculated at each iteration

with bk+1
n = bkn + ∆bkn, ck+1

n = ckn + ∆ckn, n = 0 or 1, · · · , N, k ∈ Z+.

The computation of the nonlinear parts in Eqs (24–29), i.e., the integration parts, needs to know

the roots of the equation |x0(θ)| = 1, where x0(θ) is the initial approximate solution corresponding

to the excitation parameters ω0 and q0 in Eq. (6) and Eq. (10). In the computer program, this is

achieved at each iteration through a procedure which uses bisection and interpolation methods on

the trigonometric equation |x0(θ)| = 1. These roots belonging to the interval between θ0 = 0 and

θM+1 = 2π, are θ1 < θ2 < · · · < θM .

To simplify computation of the nonlinear integration parts, we define two functions Sm,n and

H(x, y) to express the functions g(x0) and g′(x0) in different intervals (m = 1, 2, ...,M + 1 and

n = −2,−1, 0, 1). The step function H(x, y) is

H(x, y) =

1, for xy < 0,

0, for xy > 0.
(33)

And function Sm+1,n = sign(x0(θ) − en), θ ∈ [θm, θm+1]. Then S1,n, S2,n, · · · , SM+1,n be the sign

functions of the functions x0(θ) − en, where for the four specified values of n we have e−2 =
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−∞, e−1 = −1, e0 = 1 and e1 = +∞. The subscript indexes n of the non-differentiable points

of the piecewise linear non-dimensional function g(x) (Eq. (2)) are n = −1 and 0. For example,

x0(θ) + 1 corresponds to n = −1, i.e., e−1 = −1 and x0 − 1 corresponds to n = 0, i.e., e0 = 1.

H(Su+1,v0 , Su+1,v0+1) = 1 means that by the definition of function Sm,n we have θ ∈ [θu, θu+1]

since the first subscript indexes of both Su+1,v0 and Su+1,v0+1 are same. SinceH(Su+1,v0 , Su+1,v0+1) =

1, so Su+1,v0Su+1,v0+1 < 0, and since Su+1,v0 > Su+1,v0+1, so it must hold that Su+1,v0 > 0 >

Su+1,v0+1, i.e., x0(θ) ∈ [ev0 , ev0+1]. Since there are only two non-differentiable points e−1 = −1

and e0 = 1 in this paper, for any interval [θu, θu+1], it must satisfies that |x0(θu)| = |x0(θu+1)| = 1

and only the following three cases hold, x0(θ) > 1, θ ∈ (θu, θu+1), x0(θ) < −1, θ ∈ (θu, θu+1) or

−1 < x0(θ) < 1, θ ∈ (θu, θu+1). So in any interval (θu, θu+1), it holds that g(x0) = x0+1, g′(x0) = 1,

or g(x0) = x0 − 1, g′(x0) = 1, or g(x0) = g′(x0) = 0.

For any integration interval (θu, θu+1), the nonlinear part can be expressed as the following,∫ θu+1

θu

g′(x0) cos(it) cos(jt)dt = (H(Su+1,−2, Su+1,−1) · 1 +H(Su+1,−1, Su+1,0) · 0 (34)

+H(Su+1,0, Su+1,1) · 1)

∫ θu+1

θu

cos(it) cos(jt)dt,

where · is the multiplication sign. This can be proved in the following way. For the last case

−1 < x0(θ) < 1, θ ∈ (θu, θu+1), it follows that H(Su+1,−1, Su+1,0) = 1, H(Su+1,−2, Su+1,−1) =

H(Su+1,0, Su+1,1) = 0, so H(Su+1,−2, Su+1,−1) ·1+H(Su+1,−1, Su+1,0) ·0+H(Su+1,0, Su+1,1) ·1 = 0.

It is consistent with that g′(x0) = 0 for −1 < x0(θ) < 1, θ ∈ (θu, θu+1). It also holds for the

other two cases. For the first case 1 < x0(θ), θ ∈ (θu, θu+1), it follows that H(Su+1,0, Su+1,1) = 1,

H(Su+1,−2, Su+1,−1) = H(Su+1,−1, Su+1,0) = 0, so H(Su+1,−2, Su+1,−1) ·1 +H(Su+1,−1, Su+1,0) ·0 +

H(Su+1,0, Su+1,1) · 1 = 1. It is consistent with that g′(x0) = 1 for 1 < x0(θ), θ ∈ (θu, θu+1). For the

second case x0(θ) < −1, θ ∈ (θu, θu+1), it follows that H(Su+1,−2, Su+1,−1) = 1, H(Su+1,0, Su+1,1) =

H(Su+1,−1, Su+1,0) = 0, so H(Su+1,−2, Su+1,−1)·1+H(Su+1,−1, Su+1,0)·0+H(Su+1,0, Su+1,1)·1 = 1.

It is consistent with that g′(x0) = 1 for x0(θ) < −1, θ ∈ (θu, θu+1). So the above formula (34) is

proved.

Let e−2 = −∞, e−1 = −1, e0 = 1, e1 = +∞. Then the nonlinear parts of (24-29) can be

obtained as the following,

[C11]
NL
ij = αiαj

∫ 2π

0
g′(x0) cos(it) cos(jt)dt (35)

= αiαj

M∑
u=0

((H(Su+1,−2, Su+1,−1) · 1 +H(Su+1,−1, Su+1,0) · 0

+ H(Su+1,0, Su+1,1) · 1)(Aij(θu+1)−Aij(θu)))

= αiαj

M∑
u=0

((H(Su+1,−2, Su+1,−1) +H(Su+1,0, Su+1,1))(Aij(θu+1)−Aij(θu))),
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where

Aij(θ) =


1
2( sin((i−j)θ)i−j + sin((i+j)θ)

i+j ), for i 6= j,

θ
2 + sin(2iθ)

4i , for i = j 6= 0

θ, for i = j = 0.

[C12]
NL
ij = αi

∫ 2π

0
g′(x0) cos(it) sin(jt)dt (36)

= αi

M∑
u=0

((H(Su+1,−2, Su+1,−1) +H(Su+1,0, Su+1,1))(Bij(θu+1)−Bij(θu))),

where

Bij(θ) =


1
2( cos((j−i)θ)i−j − cos((i+j)θ)

i+j ), for i 6= j,

− cos(2iθ)
4i , for i = j.

[C21]
NL
ij = αj

∫ 2π

0
g′(x0) sin(it) cos(jt)dt (37)

= αj

M∑
u=0

((H(Su+1,−2, Su+1,−1) +H(Su+1,0, Su+1,1))(Bji(θu+1)−Bji(θu))).

[C22]
NL
ij =

∫ 2π

0
g′(x0) sin(it) sin(jt)dt (38)

=

M∑
u=0

((H(Su+1,−2, Su+1,−1) +H(Su+1,0, Su+1,1))(Dij(θu+1)−Dij(θu))),

where

Dij(θ) =


1
2( sin((j−i)θ)j−i − sin((i+j)θ)

i+j ), for i 6= j,

θ
2 −

sin(2iθ)
4i , for i = j.

[R1]
NL
i = −αi

∫ 2π

0
g(x0) cos(it)dt (39)

= −αi
M∑
u=0

∫ θu+1

θu

((H(Su+1,−2, Su+1,−1)(
N∑
n=0

αncn cos(nt) +

N∑
n=1

αnbn sin(nt) + 1)

+H(Su+1,0, Su+1,1)(
N∑
n=0

αncn cos(nt) +

N∑
n=1

αnbn sin(nt)− 1)) cos(it)dt

= −αi
M∑
u=0

((H(Su+1,−2, Su+1,−1) +H(Su+1,0, Su+1,1))(
N∑
n=0

αncn(Ain(θu+1)−Ain(θu))

+

N∑
n=1

αnbn(Bin(θu+1)−Bin(θu))) + (H(Su+1,−2, Su+1,−1)−H(Su+1,0, Su+1,1))(Ei(θu+1)

−Ei(θu))),
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where

Ei(θ) =


sin(iθ)
i , for i 6= 0,

θ, for i = 0.

[R2]
NL
i = −

∫ 2π

0
g(x0) sin(it)dt (40)

= −
M∑
u=0

((H(Su+1,−2, Su+1,−1) +H(Su+1,0, Su+1,1))(

N∑
j=0

αjcj(Cij(θu+1)− Cij(θu))

+
N∑
j=1

αjbj(Dij(θu+1)−Dij(θu))) + (H(Su+1,−2, Su+1,−1)−H(Su+1,0, Su+1,1))

·(Fi(θu+1)− Fi(θu))),

and

Fi(θ) = −cos(iθ)

i
, i = 1, 2, · · · , N,

and

Cij(θ) = Bij(θ), i = 0, 1, 2, · · · , N, j = 1, 2, · · · , N.

Appendix B

The HB-AFT method for the system Eq. (1) included two computational schemes, namely the

HB and the AFT.

6.1. HB Scheme

The periodic solution x(t) to the transformed system (5) can be assumed as the following,

x(t) = ax0 +

K∑
k=1

(axk cos(kt)− bxk sin(kt)). (41)

The nonlinear part g(x)− a cos(t) can be assumed also as the following,

g(t) = g(x)− a cos(t) = cx0 +

K∑
k=1

(cxk cos(kt)− dxk sin(kt)), (42)

where K presents the number of the harmonic terms in Eqs (41) and (42).

Substituting Eqs (41) and (42) into Eq. (5), balancing the coefficients of each harmonic term,

one can obtain the algebraic equations g̃ = 0.
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It follows from Eq. (41) that

ẋ(t) =
K∑
k=1

k(−axk sin(kt)− bxk cos(kt)), (43)

and

ẍ(t) =
K∑
k=1

k2(−axk cos(kt) + bxk sin(kt)). (44)

Substituting (41)-(44) into (5), it follows that

K∑
k=1

k2ω2(−axk cos(kt) + bxk sin(kt)) + 2ξω
K∑
k=1

k(−axk sin(kt)− bxk cos(kt)) (45)

+cx0 +

K∑
k=1

(cxk cos(kt)− dxk sin(kt)) = 0.

Simplifying it, it follows that

cx0 +
K∑
k=1

(
(−k2ω2axk − 2ξωnbxk + cxk) cos(kt) + (k2ω2bxk − 2ξωkaxk − dxk) sin(kt)

)
= 0. (46)

The algebraic equation g̃ = θ can be obtained. For the constant term, it follows that

g̃(1) = cx0. (47)

For the cosine terms, it follows that

g̃(2k) = −k2ω2axk − 2ξωkbxk + cxk. (48)

For the sine terms, it follows that

g̃(2k + 1) = k2ω2bxk − 2ξωkaxk − dxk. (49)

Let P
Q

T

=

ax0 ax1 bx1 ax2 bx2 · · · axK bxK

cx0 cx1 dx1 cx2 dx2 · · · cxK dxK

T

, (50)

where P and Q represent the coefficients of harmonics of solutions and nonlinear terms, respectively.

In addition, we add the variable

P (2K + 2) = 0. (51)

Note that the frequency ω is unknown in the above analysis. In order to solve the algebraic equation

g̃ = θ for the Fourier coefficients and the response frequency ω, we impose a condition on the phase

of the first harmonic of the periodic solutions based on the fixed-phase method [53, 54], i.e. ax1 = 0

or bx1 = 0.
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Take P as unknown variables. According to Eqs (41), (42), (47)-(49), we can find the fixed

point P ∗ of g̃ by the iteration method. Here, the Newton-Raphson method is employed for the

iteration, i.e.,

P j+1 = P j − (J j)−1g̃j , (52)

where J is the Jacobian matrix of g̃, i.e. , J = ∂g̃
∂P .

After the process of harmonic balance, the values of Q and J in each step of iterations can be

obtained by the alternating frequency/time (AFT) technique.

6.2. AFT Scheme

The values of Q and J in each step of iterations can be obtained by the alternating fre-

quency/time (AFT) technique which are presented as follows.

For a supposed P , we can obtain the discrete value of x(t) employing the Inverse Discrete

Fourier Transform (IDFT),

x(n) = ax0 +
K∑
k=1

(axk cos(
2πkn

N
)− bxk sin(

2πkn

N
)), (53)

where n = 0, 1, · · · , N . Here, x(n) denotes the sampled point at the nth discrete time, i.e., x(n∆T ),

where ∆T = 2π/N , N is the number of samples in the time domain.

According to Eqs (53) and (42), the nonlinear part g(x)− a cos(t) can be discretized into

g(n) = g

(
ax0 +

K∑
k=1

(
axk cos(

2πkn

N
)− bxk sin(

2πkn

N
)

)
− a cos(

2πn

N
)

)
. (54)

The expressions of Q can be obtained by the discrete values of g(x) in the frequency domain

employing the DFT, i.e.,

cx0 =
1

N

N−1∑
n=0

g(n), (55)

cxk =
2

N

N−1∑
n=0

g(n) cos(
2πkn

N
),

dxk = − 2

N

N−1∑
n=0

g(n) sin(
2πkn

N
),

where k = 1, 2, · · · ,K.

23



According to Eqs (47)-(49), (53)-(55) and

g̃(1) = cx0 =
1

N

N−1∑
n=0

g

(
ax0 +

K∑
k=1

(axk cos(
2πkn

N
)− bxk sin(

2πkn

N
))

)
, (56)

g̃(2k) = −ω2k2axk − 2ξωkbxk +
2

N

N−1∑
n=0

(g

(
ax0 +

K∑
k=1

(axk cos(
2πkn

N
)− bxk sin(

2πkn

N
))

)

− a cos(
2πn

N
)) cos(

2πkn

N
),

g̃(2k + 1) = ω2k2bxk − 2ξωkaxk +
2

N

N−1∑
n=0

(g

(
ax0 +

K∑
k=1

(axk cos(
2πkn

N
)− bxk sin(

2πkn

N
))

)

− a cos(
2πn

N
)) sin(

2πkn

N
),

the elements of J in Eq. (52) can be deduced into

∂g̃(1)
∂P (1) = ∂g̃(1)

∂ax0
= 1

N

∑N−1
n=0 g

′
(
ax0 +

∑K
k=1(axk cos(2πknN )− bxk sin(2πknN ))

)
,

∂g̃(1)
∂P (2j) = ∂g̃(1)

∂axj
= 1

N

∑N−1
n=0 g

′
(
ax0 +

∑K
k=1(axk cos(2πknN )− bxk sin(2πknN ))

)
cos(2πjnN ),

∂g̃(1)
∂P (2j+1) = ∂g̃(1)

∂bxj
= − 1

N

∑N−1
n=0 g

′
(
ax0 +

∑K
k=1(axk cos(2πknN )− bxk sin(2πknN ))

)
sin(2πjnN ),

∂g̃(2k)
∂P (1) = ∂g̃(2k)

∂ax0
= 2

N

∑N−1
n=0 g

′
(
ax0 +

∑K
k=1(axk cos(2πknN )− bxk sin(2πknN ))

)
cos(2πknN ),

∂g̃(2k)
∂P (2j) = ∂g̃(2k)

∂axj
= −ω2j2δj,k + 2

N

∑N−1
n=0 g

′
(
ax0 +

∑K
k=1(axk cos(2πknN )− bxk sin(2πknN ))

)
cos(2πjnN ) cos(2πknN ),

∂g̃(2k)
∂P (2j+1) = ∂g̃(2k)

∂bxj
= −2ξωjδj,k − 2

N

∑N−1
n=0 g

′
(
ax0 +

∑K
k=1(axk cos(2πknN )− bxk sin(2πknN ))

)
cos(2πknN ) sin(2πjnN ),

∂g̃(2k+1)
∂P (1) = ∂g̃(2k+1)

∂ax0
= 2

N

∑N−1
n=0 g

′
(
ax0 +

∑K
k=1(axk cos(2πknN )− bxk sin(2πknN ))

)
sin(2πknN ),

∂g̃(2k+1)
∂P (2j) = ∂g̃(2k+1)

∂axj
= −2ξωjδj,k + 2

N

∑N−1
n=0 g

′
(
ax0 +

∑K
k=1(axk cos(2πknN )− bxk sin(2πknN ))

)
cos(2πjnN ) sin(2πknN ),

∂g̃(2k+1)
∂P (2j+1) = ∂g̃(2k+1)

∂bxj
= ω2j2δj,k − 2

N

∑N−1
n=0 g

′
(
ax0 +

∑K
k=1(axk cos(2πknN )− bxk sin(2πknN ))

)
sin(2πknN ) sin(2πjnN ),

(57)

where k = 1, 2, ...,K, g′(u) = dg(u)
du and δj,k is the Kronecker function in Appendix A.

By combining the processes of HB and AFT, the iterations of Eq. (52) can readily yield P ∗ in

proper accuracy. The procedure of the algorithm is as follows:
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Algorithm:

(i) For a supposed P (0), the values of g(0) and J (0) are

obtained by employing Eqs (47)-(55), respectively.

(ii) Iterate Eq. (52) once, and we can get the value of P (1).

(iii) Continue (i) and (ii) until the norm of P (j) − P (j−1) is less

than an allowed ε.

(iv) Return the value of P (j) which satisfies (iii).
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