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algorithm was given and in a simple case used to obt.ain the optimal network of sirports is considered, the minimization step becomes a 
solution. high dimensional nonlinear programming problem. The development 

An important  step in at.tacking the problem was t.o  show for t.he n- of efficient computer  algorithms for Carrying out the comput&,ion  in 
stage procw how t.he initial and terminal conditions implied in- more general cases appears to  be  an interest,ing area of research. 
equality  const.raink on intermediate values of the  state  and control 
variables of the problem. These inequalities rest.rict the domain over 
which t.he cont,rol and  the value  functions must  be defined, and  they  REFERENCES 

formulat.ion alloaed t,he optimal cont.ro1 law to be found by t.he 
dynamic programming. algorithm. 

t.hat  carrying out similar computations  for more realist.ic, more com- air traffic 11L’:;Vetzorks. vol. 1. pp. 303-331. 1971. 
plex systems will be difficult. In more general problenls, in which a program, S I A M  J .  A p p l .  .P..iath., vel. 14, pp. 8g-105,  1966. 

*O rest’rict’ the values which the controls ma37 take On‘ This re- [I]  J .  A.  Bather, “Optimal  regulation  policies  for  finite darns,” J .  Soc.Ind. A p p l .  

( 2 )  Richard  Rellman. D y m m i c  Programming. Princeton, K. J.: Princeton 
M a t h . .  v01. 10, pp. 395-4223, 1962. 

The  compu~at,ion for the wFas veri. complex and P I  L. J. Forys. H. Hefies. J . ,>I .  Holtman,  S.  Horing. E. J. Messerli. LT. I. 
University Press.  1957. 

Schwartz. and J. X .  Stiles, A study of the  analysis  and control of the flow of 
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Computation of Regions of Transient Stability of 
Multimachine Power Systems 

ARTHUR  R.  BERGEN AND GEORGE GROSS 

Absfract-A major difliculty in applying Lyapunov theory to the 
problem of specifying transient stability  regions of n-machine power 
systems is computational complexity, which increases  markedly 
with n. This note outlines  a  method, requiring only a nominal 
amount of computation, to  determine  such regions. 

I. INTRODGCTION 

The application of Lyapunov t,heory to  the  study of transient 
st,ability of mult.imachine power systems, initiated by power engi- 
neers in 1966 [l], [ 2 ] ,  has continued to the present  time. A recent 
paper  by Willems in  these TRANSAC~ONS [3] presents some of the 
more significant advances and provides an extensive bibliography. 

The chief att.raction of the Lyapunov  method is its potent.ial for 
reducing the computation  time associated wit.h investigating the 
transient stability of an n-machine interconnection. However, since 
the number and complexity of the computations increases rapidly 
with n, the potential  for savings in overall computation may  not be 
realized. In this  note, we present a technique providing significant. 
savings in computation; however, somewhat more conservat.ive 
regions are obtained. 

11. hIA4THENATICAL MODEL 

The start.ing  point for the analysis is the swing equation model of a 
multimachine power system. For a det.aiIed development of the 
model with the usual simplifying assumpt.ions see [3]. For an n- 
machine interconnection, the dynamics are  expresed in terms of the 
state vector ( q o )  by [4]. 

d! = Tu (1) 

P = -M-’ D u - M-’ T‘Lf(a) - f(aO))I 
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where 

M = d i a g ( M ; , i =  1 , 2 ; . . , n } , M i > 0 , D = d i a g ( D i , i =  1,2,...,n), 
D; 1 O , f ( a )  = C O ~  {fi(a): i = 1,2,. . -,n - 1) G t h  

n-1  
f;(a) = b;j sin(a; - ai) + b;, sin a;, i = 42,. . -,n - 1 

j = 1  
j #i 

(2)  

bi; = b,i 2 0, and u E (iln contains the velocity components. Here (Y 

is t.he n - 1 vector of intermachine angles obtained by  taking  the 
difference of the power angle of ith machine and  that. of the  nth 
machine which has been arbhmrily chosen as the reference machine. 

111. STABILITY 

To st.udy the st.abilit,y of the equilibrium point ( a 0 , O )  of (l), we 
pick t.he “total energy” as a Lyapunov  function V :  

V(,,u) = +(w,Mu) + W(a) (3 ) 

where 

W(a) A ([M3 - f(ao)l,d4. S: (4 1 
Since H ( a )  ( d f / d a ) ( a )  is symmetric, t.he integral is path inde- 
pendent  and welldefined. 

V vanishes at the equilibrium point ( d , O )  and along trajectories 
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V(1) = -(,,Do 5 0. (5)  IV. CONCLUSION 

It remains to specify a  bounded transient  stability region con- 
t.aining (ao ,O)  for which V(a,co) = I along t.he boundary and within 
which V((Y,W) is positive definite. Our method of finding this region 
is new. 

Taking  an exact second-order Taylor expansion of W (  . ) about Cro, 
we have 

where 

,4 new approach to specify regions of transient st.ability  for n- 
machine interconnections has been presented. -4n imporkant feature 
is that  the computational complexity does not increase with n. 
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1 
Q(a,d) Li  s, (1 - t)H[la! + (1 - t ) d ]  dt. (7 ) 

in (a - a“). In  fact Q(a,d) may be evaluated by carrying out  the Of Friedland’s and Lin-Sage’s 
The k t  two terms in (6) are zero, leaving  only the quadrat.ic terms 

indicat,ed integration. Bias Estimation Algorithms 
S. S. GODBOLE 

Q d  = diag h(cui,ap), i = 1,2, * .  .,n - 1 Abstract-Two recent sequential  algorithms due to Friedland and 
Lin-Sage for  bias  estimation  are shown to  be essentially identical. 

Here aij c ai - a?, and h(E,&) sio [sin u - sin 91 du.. 
We next  determine a region where W(a) is posit.ive definit.e. 

Consider the funct.ion h and suppose 191 < ( r / Z ) .  Then h(.,p) is a 
positive definite function  over the interval ( E ’ ,  p) with E’ A - T - p 
and 5” e ?r - $. We aSSume that a 0  E {a E  ail < go”, 
lai - ajl < go”, i ,j  = 1,2,..-,n - 11, and consider W ( . )  on the 
polytope. 

I. INTRODUCTION 

The implementation of a Kalman filter needs, among other things, 
the knowledge of t.he means of noises (and any  other biases) which 
influence the dynamics and measurements of the stochastic  system 
under consideration. The problem of identifying t,hese means, if not 
known to  start  with,  has been approached in the  past  by treat.ing the 
noise means as additional states and estimating  the augmented 
state vector.  Friedland [I] has shown how the augmented state 
vector can be est.imated with significant saving  in  computation by 
decoupling the bias est.imation from the  state est.imation. LmSage 
[2] have  recently applied the invariant imbedding technique for 
solving t.his problem. There, t.hey have also remarked that Fried- 
land’s algorithms [ l ]  are similar to  their algorithms. Here we wish 

~ ( a o )  = {a E ( ~ n - 1 :  E (aiZ,a<n), aij E (a<i’,a<i=), 
to investigate  a  stronger  conjecture that  the two algorithms are, in 
fact, essentially identical. The basis for this conjecture is the well 

i , j  = 1,2,..-,n - 1).  (10) known fact  that  the same Kalman filter equations can be derived 

Now on P(a0) the symmet.ric matrix Q s ( a , C r o )  is posit,ive semidefinite 
and Q d ( a , a o )  is positive definite. It follows that, W ( .  ) is positive 
definite on P@). Furthermore, 

from several different considerations  such as minimum variance and 
maximum likelihood via  invariant imbedding [3]. It will be seen 
from t.he next section  t.hat t.he proof of the above  conjecture is not 
trivial. 

W a )  2 ((a - (YO) ,Qd(a ,oP) ( (Y  - 4) 
n - 1  

= bi,h(cui,aP) 
i= 1 

2 U ( a ) .  (11) 

Since on P@), U ( a )  increases monotonically along rays emerging 
from OP we may choose 

z = min { ~ ( a ) : a  E dQ)} (12)’ 

and  the bounded region &t of t.ransient stability is then 

L 2 r  = I ( i ,w) :  V(,,w) < zj. (13) 

Minimizing U(. ) along each of the hyperplanes which defines 
P(a0) is simple since U ( . )  is a sum of nonnegative uncoupled func- 
tions  and in fact reduces to a  one parameter minimization. The bound 
I is t.he smallest of the above  minima. It depends on the choice of 
reference machine and a judicious choice can lead to an improved 
bound. 

I p, a? denote,  respectively, the closure  and the boundary of P. 

11. LIK-SAGE ALGORITHM VERSUS FRIEDLXND’S ALGORITHM 

Since several  identical symbols are used by Lin-Sage 121, and 
Friedland [I] in a different sense, we will distinguish between such 
symbols by using boldface italic letters like Q, q when referring to  
[I]. Also we will refer to equations in [ l ]  by subscript F and those  in 
[2] by subscript LS. 

The system ( l ) ~ ,  ( 2 ) ~  considered by LinSage is given by 

z(k  + 1) = o ( k )  ~ ( k )  + r ( k )  ~ ( h - 1  + \ ~ r ( k )  ~ ( k )  (1) 

z(k) = H ( k )  z ( k )  + F ( k )  v(k) + N ( k )  w ( k )  (2 1 

where w ( k )  and v(k) are white, uncorrelated  random noise sequences 
with w ( k )  = A r [ p 4 k ) ,  V w ( k ) ] ,  v(k) = A’[p*(k), VJk) l ,  and X [ u ,  Bl 
denotes  a Gaussian sequence with  mean ‘u’ and covariance B. 

The above  system can also  be expressed in  Friedland’s form 
(36 )~ ] ,  Vi% 
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