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algorithm was given and in a simple case used to obtain the optimal
solution.

An important step in attacking the problem was to show for the n-
stage process how the initial and terminal conditions implied in-
equality constraints on intermediate values of the state and control
variables of the problem. These inequalities restrict the domain over
which the control and the value functions must be defined, and they
also restrict the values which the controls may take on. This re-
formulation allowed the optimal control law to be found by the
dynamic programming: algorithm.

The computation for the example was very complex and suggests
that carrying out similar computations for more realistic, more com-
plex systems will be difficult. In more general problems, in which a

Technical Notes and Correspondence

Computation of Regions of Transient Stability of
Multimachine Power Systems

ARTHUR R. BERGEN anp GEORGE GROSS

Abstract—A major difficulty in applying Lyapunov theory to the
problem of specifying transient stability regions of n-machine power
systems is computational complexity, which increases markedly
with n. This note outlines a method, requiring only a nominal
amount of computation, to determine such regions.

1. INTRODUCTION

The application of Lyapunov theory to the study of transient
stability of multimachine power systems, initiated by power engi-
neers in 1966 (1], [2], has continued to the present time. A recent
paper by Willems in these TraNsacTiONs [3] presents some of the
more significant advances and provides an extensive bibliography.

The chief attraction of the Lyapunov method is its potential for
reducing the computation time associated with investigating the
transient stability of an n-machine interconnection. However, since
the number and ecomplexity of the computations increases rapidly
with n, the potential for savings in overall computation may not be
realized. In this note, we present a technique providing significant
savings in computation; however, somewhat more conservative
regions are obtained.

II. MATHEMATICAL MODEL

The starting point for the analysis is the swing equation model of a
multimachine power system. For a detailed development of the
model with the usual simplifying assumptions see [3]. For an z-
machine interconnection, the dynamiecs are expressed in terms of the
state vector (e,w) by [4].

= Tw 1)
o= —M1Dw — M T[f(a) — fla®)]

Manuscript received May 12, 194‘7, revised August 20, 1973. This work was
supperted in part by the National Science Foundation Grant GK-10656x3.

The authors are with the Department of Electrical Engineering and Computer
Sciences and the Electronics Research Laboratory, University of California,
Berkeley, Calif. 94720.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, APRIL 1974

network of airports is considered, the minimization step becomes a
high dimensional nonlinear programming problem. The development
of efficient computer algorithms for carrying out the eomputation in
more general cases appears to be an interesting area of research.
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where
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M = diag {M:, s = 1,2,---,n}, M; >0, D = diag {D;, 5 = 1,2,- - -,n},
D; >0, f(a) = col {file): < = 1,2,---,n — 1} with
n—1
filw) = 3 bsin(a; — ;) + binsin s, 1= 12,-.n — 1
£t
;’#i
)

bi; = bj; > 0, and @ € ®" contains the velocity components. Here a
is the n — 1 vector of intermachine angles obtained by taking the
difference of the power angle of ¢th machine and that of the nth
machine which has been arbifrarily chosen as the reference machine.

I11. STaBILITY

To study the stability of the equilibrium point (e?0) of (1), we
pick the “iotal energy’’ as a Lyapunov function V:

Vieyw) = 3(o,Mo) + W(a) 3)

where

W) £ f {fE) ~ fla)],dE). (4)
[+

Since H(x) £ (9f/da)(er) is symmeiric, the integral is path inde-
pendent and well-defined.
V vanishes at the equilibrium point (e?,0) and along trajectories
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Voy = —(w,De < 0. )

Tt remains to specify a bounded transient stability region con-
taining (,0) for which V(er,0) = [ along the boundary and within
which V(e,w) is positive definite. Our method of finding this region
is new.

Taking an exact second—order Taylor expansion of W(-) about af,
we have

Wia) = W(e®) + <%%7 (e), (e — a°)>
+ {Qlea®) e — ), (@ — &)} (6)
where

1
Qerot) = f (1 — HHter + (1 — D] dt. )
0

The first two terms in (6) are zero, leaving only the quadratic terms
in (& — a). In fact Q(e,e®) may be evaluated by carrying out the
indieated integration.

We find Qa,e®) = Q¥e,a®) + Q%(aa?)
where
bin .
04 = dlag{(—-—a— h{es,a?), i=12--,n— ll (8)
n—1 b
h(a,z,a,]“), Tt =7
=1 (all (277 )
@9y = { ¥ ©)
by hlaijyen0), 4 % ]

(aij — ;)

Here a;; & o; — oy, and h(55) 2 fgu [sin # — sin £°) du.

We next determine a region where W(a) is positive definite.
Consider the function % and suppose Isﬂl < («/2). Then h(-,£%) is a
positive definite function over the interval (£, £=) with &8 £ —rz — g
and £+ £ 7 — . We assume that o € {a € G»1:|a:| < 90°,

|a,; — a,-] < 90° 4, = 1,2,---,n — 1}, and consider W(-) on the
polytope.
Pla®) = {a € @71 a; € (adav), ai; € (aijh,au®),

4,5 = 1,2,---,n — 1}. (10)

Now on P(a?) the symmetric matrix @%(e,a?) is positive semidefinite
and Q4(e,e?) is positive definite. It follows that W(-) is positive
definite on P(a?). Furthermore,

Wie) > (e — o), Q¥xe®) (e — o))
n—1

Z binh oz, e:®)
i=1

2 Ule). (11)

Since on P(a?), U(a) increases monotonically along rays emerging
from o we may choose

! = min {U(ax):a € P(a)} (12
and the bounded region 2; of transient stability is then
Q= {(a,w) Vi) < I}. (13)

Minimizing U(-) along each of the hyperplanes which defines
P(a?}) is simple since U/(+) is a sum of nonnegative uncoupled func-
tions and in fact reduces to a one parameter minimization. The bound
! is the smallest of the above minima. It depends on the choice of
reference machine and a judicious choice can lead to an improved
bound.

1 P, 3P denote, respectively, the closure and the boundary of P.
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IV. CoNcLUsION

A new approach to specify regions of transient stability for n-
machine interconnections has been presented. An important feature
is that the computational complexity does not increase with n.
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Comparison of Friedland’s and Lin-Sage’s
Bias Estimation Algorithms

S. 8. GODBOLE

Abstract—Two recent sequential algorithms due to Friedland and
Lin~-Sage for bias estimation are shown to be essentially identical.

I. INTRODUCTION

The implementation of a Kalman filter needs, among other things,
the knowledge of the means of noises (and any other biases) which
influence the dynamics and measurements of the stochastic system
under consideration. The problem of identifying these means, if not
known to start with, has been approached in the past by treating the
noise means as additional states and estimating the augmented
state vector. Friedland [1] has shown how the augmented state
vector can be estimated with significant saving in computation by
decoupling the bias estimation from the state estimation. Lin—Sage
[2] have recently applied the invariant imbedding technique for
solving this problem. There, they have also remarked that Fried-
land’s algorithms [1] are similar to their algorithms. Here we wish
to investigate a stronger conjecture that the two algorithms are, in
fact, essentially identical. The basis for this conjecture is the well
known fact that the same Kalman filter equations can be derived
from several different considerations such as minimum variance and
maximum likelihood via invariant imbedding [3]. It will be seen
from the next section that the proof of the above conjecture is not
trivial.

II. Lin—-SAGE ALGORITHM VERSUS FRIEDLAND’S ALGORITHM

Since several identical symbols are used by Lin—Sage [2], and
Friedland [1] in a different sense, we will distinguisk between such
symbols by using boldface italic letters like Q, g when referring to
[1]. Also we will refer to equations in [1] by subseript F and those in
[2] by subscript LS.

The system (1)1s, (2)vs considered by Lin—Sage is given by

ok + 1) =
z(k) =

®(k) z(k) + Tk) wk) + (k) u(k) 1
H(E) z(k) + F(k) v(k) + N (k) w(k) 2

where w(k) and »(k) are white, uncorrelated random noise sequences
with w(k) = Nlme(k), Vu(k)], v(k) = Nlu.(k), V.(k)], and N{a, B]
denotes a Gaussian sequence with mean ‘e’ and covariance B.

The above system can also be expressed in Friedland’s form
[(353)17) (36)F]; viz.,
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