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Computation of Shocked Flows in

Compressor Cascades

S. GOPALAKRISHNAN	 R. BOZZOLA

T-Ti... ";CTION

Many modern axial flow compressors are de-

signed to be "transonic"; i.e., the relative flow
at the inlet of the compressor varies from sub-

sonic at the hub to supersonic at the tip. The

exit relative flow is often completely subsonic.

The flow at the tip decelerates from supersonic

to subsonic through a normal shock. When the

exit relative flow is supersonic, the decelera-

tion is achieved through a system of oblique shocks

In the design of such compressors, it is important

to know the position and orientation of the shocks

in order to estimate the losses and the mass flow
through the machine.

Even when the blade element flow is assumed

to be two-dimensional, the computation of the tip

section is very complicated when normal shocks

form. A purely supersonic flow can be calculated

by the method of characteristics, and a purely

subsonic flow, by the relaxation technique. But

a mixed supersonic-subsonic flow with shocks re-

mained intractable until recently.

The advent of the tim-dependent finite di_'-

ference technique, along with modern high-speed

computers, has provided a powerful tool for such
mixed problems. An application of this technic c

to turbomachinery cascades is presented in refer-

ence ( 1 ). 2 The basic idea of this method is to
convert the steady problem into an unsteady one.

thereby making the flow equations have a hyper-

bolic character whether or not the flow is super-

sonic. Since the character of the flow equatioe

is the same everywhere, a single mathematical

technique can be used at all points. The tech-
nique usually takes the form of representing the

differential equations in terms of finite differ-

ence equations and solving the resulting equatic s

algebraically. The concepts of stability and ac-

curacy associated with such finite differe!,ce
techniques are analyzed in reference !2).

2 Underlined numbers in parentheses deair_a c.
References at end of paper.

NOMENCLATURE

a = local speed of sound

A= Jacobian matrix of I with respect to

b = height of lower wall above datum line

E = total internal energy per unit volume
f = factor used in equation (6)

F column vector defined in equation (2),

and (7)

Ft = tangential force per unit span
eigen value of matrix G

= column vector defined in equation (2)

h = height of upper wall above datum line

L = a characteristic length dimension
m = axial momentum per unit volume

M = Mach number

p = static pressure

PT = total pvess.cre

Q - mass flog

Re = Reynolds --.r::)er

t = blade pitch

= column vector defined in equation (7)
anal	a.- , e _c r i ,l reicci_`	.cups cuta

W = column vector defined in equation !2'

x,y = independent space variables

2 = flow angles

y = ratio of specific !,eats

A = incremental quantit

e = shock thickness

= smoothing factor

= eigen value of matrix. A
A = matrix, JAAt/ex

p = density

v = artificial kinerntic c	:osi-,

Subscripts

1 =- inlet clr a

exi -:, rice

e:scrip'.

A	nor-ci i e_isic __ carictir
cc	c ccc tic
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decreased to about 1.5 depending upon -.e

magnitude of `e,

SHOCK COMPUTATION

In the absence of viscosity effects, the

shock transition occurs discontinuously. The

flow variables on either side of the shock sat-

isfy the Rankine-Hugoniot conditions. In real

fluids with small viscosity, this jump in flow

variables takes place smoothly, although very

rapidly. The idea of Von Neumann and Richtmyer

(2) was to introduce an artificial dissipative

mechanism, which will produce a smooth transition

in the flow variables through the shock. The

choice of this artificial viscosity was made such

that the smearing of the shock would be independ-

ent of the shock strength. The artificial dissi-

pation was introduced in their scheme by means of

an artificial viscous pressure proportional to the

square of the spatial derivative of the velocity.

Examples of such shock calculation can be found

in reference ( 2 ). Typically, if the artificial

viscosity is too small, the shock transition is

rapid, but there are unacceptable oscillations

behind the shock. By increasing the viscosity,

the oscillation can be cut down, but the shock

transition is less rapid. An acceptable result
can be obtained by suitable choice of the vis-

cosity. In any case, the artificial viscosity

is very much larger than the true viscosity.

In the present method, artificial dissipa-

tion is introduced by means of the smoothing op-

erator. A linear analysis of the one-dimensional
equation of fluid mechanics is carried out in the

Appendix and indicates the effect of the smooth-
ing operator on the dissipative properties of the

system. The smearing produced on the shock by

the smoothing step is a function of the shock

strength, a weak shock being smeared much more

than a strong shock. However, no decrease in

allowable time step size, At, is necessary; where-

as for the Von-Neumann Richtmyer viscosity, the

allowable At is reduced significantly (4).

APPLICATION TO COMPRESSOR CASCADES

In the operation of a compressor rotor with

supersonic relative inlet Mach number, but with

subsonic axial velocity, it is known ( 5 ) that

there is a unique incidence associated with the

given inlet Mach number as long as the shock is

not spilled out. If the flow is not at this in-

cidence, a wave emanates from the rotor and chang-

es the inlet flow angle to the right direction.

The exit angle depends upon the blade circulation

which, in turn, is fixed by the Kutta condition.

G

known a priori for the usual transonic compre^-_

operation. The only flow properties that are

independently variable are the inlet Mach nur'_

and the static pressure ratio. The problem i

then to find the entire flow field given the

geometry, the inlet Mach number, and the stat!

pressure ratio. The inlet and exit angles, r

well as the total pressure loss of the

must be computed as part of the solutie

A channel for the flow is defined

AE and DH are the inlet and exit planes. The lU

AB, CD, EF, and OH are imaginary boundaries whit

the fluid is allowed to cross. The x and y coor

dinates are suitably transformed to achieve a re

tangular computational domain with equal Ax and

equal Ay. The initial conditions are arbitrari!

assigned as in reference (1). They have no eff'

on the final solution,

to reach convergence.

The flow variat1C:
computed by a first-order analog of the differ - -

tial equations using one-sided derivatives. --

condition of tangency of the flow to the blat-

surface is used in place of the tangential it 

tun equation. The boundaries AB, CD, EF, and

are computed using the periodicity properties.

The inlet angle is allowed to be time-dependent.

and computed at every cycle by equating the mas;-

flow at the inlet plane to that of the previous

cycle at a plane between the leading and traili

edges. The physical basis for such a technique

is that the change in inlet angle produced by t}-

wave system is felt as a change in mass flow.

the computation of the exit angle, the flows on

the pressure and suction surfaces are assumed t,
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Fig. 3 Approach to convergence of inlet and exit
angles

join at the trailing edge, thereby impcsin~ a re-

striction similar to the Kutta conditic•..

0.4

^0.86 -	
^' INLET A

Q

AA 0.821

0.78	 J-

0.74

0 'L	2 0	460	600	800	1000
NUMBER OF TIME ITERATIONS
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^
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fT NET	
_

F T

.4. ., --

?ig. 4 Approach to converc'e

tnr*enti al mon_entrC.

RESULTS Cectio.	-	c,rara	_.:e	r l _	_, .

The method outlined in the foregoing has total pressure drops as the shock is crosser.

been applied to the flow through the tip section Along section C-C,	total pressure has deer<=.c.s-.

of a compressor rotor.	The change in the stream- over the whole width.	This shows that the

line radius and the stream filament thickness were pressure losses are computed by t+H: °_

ignored, thereby reducing the flow to a two-dimen- manner consistent to shocked flow.

sional one.	The inlet relative Mach number is Fig. 3 shows the approach tc

1.42, and the static pressure ratio is varied from of the inlet and exit angles with the number

1.2	to	2.7, time iterations.	The inlet angle is held con-

Fig, 2 shows the computed constant Mach stant for the first 300 cycles at an initiall,

number lines for the pressure ratio of 1,64.	The guessed value.	After about 1000 cycles, the t

computed flow angle is 66 .51 and is parallel to angles have settled down to very nearly their

the nearly flat inlet region of the suction sur- asymptotic values.

face.	The pressure side makes a small angle of Convergence is also checked by plotting

about 3 deg to this direction, and, hence, an variation of the mass flow at an arbitrary sec-

oblique wave forms.	This wave is smeared over tion, as well as the net change in tangenti--,

several mesh spaces for reasons mentioned in the mentum.

Appendix.	This wave interacts with the expansion The following definitions are emplo,CJ,

fan produced on the suction surface resulting in

the closure of the Mach number lines on to the
Qrhlef	'	M;,':

pressure surface.	At the end of the expansion, Q «

the surface Mach number reaches a value of about

1.6, and a strong curved shock is formed.	This

shock spans the passage width, and the Mach nun _ 	_;;.	1

ber is reduced to high subsonic values.

The pressure ratio of 1.64 is too small tc

be obtained by a normal shock with M 1 = 1.42 and

too big to be obtained by a system of oblique '- P	QaI	--
^	I	p

shocks.	Hence, the flow adjusts by expanding to

low enough pressures and high enough Mach numbers

and then going through a strong nearly, normal where subscript 1 refers to the inlet p1

shock wave.	This behavior is analogous to that script 2. refers to the exit plane,	superscthpC

of the one-dimensional flow in Laval nozzles at refers to the sonic condition, t pitch of the car

low back pressures. cade, and L is a characteristic length dimension.
Fig.	2 also shows the variation of total At any arbitrary transverse sta`-;	. ...

pressure in the transverse direction.	Along sec- is:
tion A-A, the ratio, Pt/Ptl , is very nearly equal j^	A A
to 1.	The oblique shock losses are very small. Q =	16A	f u
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The net change in tangential momentum is

n	n n n	n	n

F = t Q, u, tJz iF,

At steady state, this must equal the integral of

the blade pressure forces in the tangential direc-

tion.

Fr	1p ax

The upper part of Fig. 4 shows the varia-

tion ofQinlet and Q with the number of time iter-

ations. For the first 300 cycles, Qiniet is held

constant at the given initial value. Later it is

allowed to change. By about 1000 cycles, conver-

gence is reached.

The lower part of Fig. 4 shows the varia-

tion of FT and FT . After the rapid initial

oscillations, the variations subside by about

1000 cycles. When the variations in all five
A . n

variables (Rl ,R 2 ,Q,FT ,F
T
	s) die down to satis

 levels, convergeci^e is taken to be reached

and the solution is taken as the steady-state

solution.

It is instructive to consider the effect

of back pressure on the cascade operation. With

the inlet Mach number held at 1.42, the pressure

ratio of the cascade was increased to 2.2. In
running this and the next cases, At was increased

somewhat and le decreased to keep the damping given

by -,Q of constant. This resulted in reducing the 3

number of time cycles required for convergence.

The Mach number contours for this pressure ratio

of 2.2 are shown in Fig. 5. The shock has moved

close to the leading edge, and a jump in flow

variables nearly equal to that given by the nor-

mal shock relations takes place in about 3 mesh

spaces. After the shock transition on the suc-

tion surface, diffusion takes place due to area

change.

Fig. 6 shows the Mach number contours when
the pressure ratio is increased to 2.7. The shock

is now spilled out. The computed inlet angle is

71.15, and the suction surface is at a positive

incidence. As the flow goes around the leading

edge, expansion waves are generated and these

interact with the extended bow shock. The bow

shock gets attenuated in strenc'th and. Pierce, : as

only a finite extent.

Fig. 7 shows the Mach n' ni en coo-a- o'':.rs when

3	With a 34 x 11 grid, the computation time

per case is about 10 min. on an IBM 370/155 sys-

tem,

is e pressi:-r'e "3 ',U ..s i'ed .: '; CC:	o	 1.e c.__ Q1.:e

shock and the expansion waves from the suction

surface are seen as in Fig. 2. An oblique shoal;
is formed at the trailing edge, but its reflec-
tion from the pressure surface is too weak to 1-!

seen.
Fig. 8 shows the variation of inlet and Exit;

angles and total pressure loss with the presst..re

ratio. Until the shock spills, the inlet angle

is such that the flow is parallel to the suctio::
surface. Thereafter, the mass flow is decreased

as the inlet angle increases. The flow turning
is quite high at high back pressure levels. The

total press- -,o loss .r.creases as !:rye bac1c press re

increases.
No a`ter;pt . as ;;se-- ode to c,,:.uae tl ese

results with experimental data because of the ir_-
availability of detailed two-dimensional compressor

cascade data with little shock boundary-layer inter-

action. However, satisfactory agreement has been

indicated with an exact solution for a simp]e two-
dimensional supersonic flow in reference '1`.

CONCLUSICi .':

1 The time-dependent finite difference

technique is a useful tool for the study of

shocked flow in compressor cascades. The posi-

tion, orientation, and magnitude of the shocks

can be easily identified.
2 The method predicts the incidence as a

function of the static pressure ratio for cas-

cades having supersonic inlet relative flow.

3 The method also yields informatio:- ;

the inviscid total pressure losses and turnip,

of the cascade.
4 The smoothing operator introduced in

equation (5) is an effectve damping device for
oscillat ons rener-ter9 ' te vicinit.- of the

sho ok .
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The equations of one-d ' ne..si o: al, .: stead ;r.

or.'preasi_'Ife I'l':id fi^.. car. ire written

damT 	r(u) :Q

a	-► -r
where U and F ( i) are col^ s:.r_ °,*ec'tcr. s iv e:
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Fig. 8 Effect of pressure ratio on some flow

parameters
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11 13	15	17	19	21	23	25	27

XhX

Fig.	9 Effect of damping on oscillations

AX

7T>k:

M =

E = .L .

(-I	2

The foregoing set of equations is nonlinear,
and its numerical approximations cannot be analyzed

in the general form. The most successful technique
has been to linearize the foregoing in the follow-
ing way. The differential equation is rewritten

as:

	bLon is li:iearized.	ibe nesults of such a:

sis can be expected to give at least qualit

ance with regard to stability, accuracy, et.

The	coniaack scheme soplied to the

yields:

-'t#e	e	z,	-

7 

Ut

where	is the Jacobian matrix of F with respect
to U.

[	0	 1	 0

where u, L represents the value of Uat time
sud at the point ri°x. The subscript, sm, repro-

4 -

rrS

-(E+p)i-'P	(lip-) + rn	 ?

The numerical approximatio: tivei. b. , eq -

tions (10) and (11) represent equation (9) to

certain accuracy. To obtain a magnitude for t Is

accuracy, equation (10) is introduced in equatio

(ll) , and the terms of the latter are expanded

When
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cated consistently, and after making repeated use
of equation (9) itself, one can get:

aU +	dV _	dX2 d :U	(12)
at	?X	faf7 dt	d X z

The right-hand side represents the modification

of the differential equation and, hence, consti-

tutes the error. If a 2u/ax2 is of order (1), and

is of order (1/A), the error is of order (A 2 ).

The error term can be shown to be dissipa-

tive (1) and, hence, may be considered as an "ar-
tificial viscosity" term. The "coefficient of

viscosity" can be defined

y = ax a_x
rf-2	dt

Since .0 is at least of (1/A), the foregoing can

be approximated as

3: 7a (

When Ax is constant, the damping is produced by

the combinationAt. Fig. 9 shows the effect of

the'eAt term on the oscillations which appear in

the computation of a shock. Ax is held constant,

and as;t?At increases (i.e., damping dicreases),

strong oscillations in Mach number appear. For

lower At, the oscillations are reduced, but the

shock gets smeared further, A compromise in the

value ofAt is indicated.

It is instructive to compare the magnitude

of this artificial viscosity with the physical

viscosity. To this end, one may construct a Rey -

nolds number based on the characteristic physical

dimension of problem.

Re: u 	_ "
-h-
 cp dt

Y	QX	ax

For transonic flow (u	a), equation (6) gives

4t
dX - 2f

Hence

Re = L `^
dx 2f

With Ax/L = 0.02 (a higher resolution is

impractical) and p = 500, the Reynolds number is

about 1000. This is much smaller than the usual

Reynolds number for high-speed flow (-10 6 1, and,

consequently, the computed shock has considerably

larger thickness than would normally be observed.

STABILIT`

!,,hen eq.atior_ -.101 is -rtroduced __. ec_ ,

tion (11), one can get:

(Of1)(U,h)SM -	UN` - r 2 ` UH+! - Un^

f r712/ p - Un e - Z jt /

( 
n+r fl-e l	n	2	n+z	U r

f A 2 (U e + U
2	h+2	n-2

Where A is the matrix,(At/^x,.

Considering a s i_n rle comps -:e t o C	>: .ned

solution of the form:

Ul_ 
Z8
	e e mx

n	m

C, =	1	r it- 4n Sin x - 4 2 (/- cos x)y^v
Svf1 L ^	 /

.f. (1_ j?) 2 Cos x f 4
2

St:, 2x t A 2 CO5 1X j

where His the unit diagonal matrix. If X is a

eigen value of A, the correspo:.d`.r. r ei. e : a e,

of -.1atrix G is

Q _1	1 - i A. Sin x - A 2 (1- Cos 2X) f

a	(f+2

(j_ Az)2 Cos x + ^ Z -	A S:n 2x + A 2 Co: 2x j

?he usual value of ip is lar_-e 0.0	so	 e

foregoing may be approximated as

C	I Sin x - l 2 (1 cos 2+)

bility limit associated with equation (14' is ?.C1.

Then the introduction of the damping opera tio: -_ _k es

not reduce the permissible At. The Von-Neuman:.

Richtmyer viscosity scheme reduces the allowable

At significantly (2), thus requiring larger nor.`: so

of time cycles for converuence anf, hence, ri;-'er

computer costs.

SHOCK THICKNE

From equation (12), the mome. hI	on

in the x-direction can be deduced :.

(13)	the amplification matrix,G, ca: be shown  o ' e:
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m 2	

J ax	C 9
 a^	L? +	 t2 m + a	am	dE

at + I - s2	aq	 a I ax	aE ax

AX 2 2 2 m

(p+2	Dt	ex 2

This may be simplified to

_	I	AX 2 a , (su ) (15)

at ^4u)	aX (4uZ{p)	YP+ 2 of	axe

If the continuity equation

as + 	(Lt) _	' 	ox^ a'4

at	ax	£q+2	Dt	ax'

is substituted in equation (15), the moment.:.m

equation becomes, in the steady state,

u au ; ' ap = ! dz 2 ?"	(16)
ac	4 ax+2 nt	ax 2

This equation has the same form as that for one-

dimensional viscous flow through a shock wave (6)

u au + i ^i = -J J?u	 (17)

3x	4 ax	Jx2

where the right-hand side represents the compress-

ive stress due to viscosity effects, and v` is an

appropriate coefficient of kinematic viscosity.

It is shown in reference (6) that the shock thick-
ness, F (defined in any reasonable manner), can

be expressed as:

E c V

4a

where Au is the jump in velocity across the shock

wave. Since equations (16) and (17) have the same

form, the shock thickness obtained in the computa-
tion can be written as:

E	dx2	
r

Tdt ALc

zeplacir.g So#2 b, ; '	1'or large

Thus large values of(0(At/ x) ;i.e., little

damping) produce narrow shock layers as expected.

However the shock thickness depends upon the shock

strength. Weak waves are smeared much more than

the strong ones. The weak oblique wave at the

leading edge in Figs. 2 and 7 is smeared much

more than the much stronger wave at the trail s:

edge.

The Von-Neumann Richtmyer viscosity is tail-

ored to overcome this drawback. '[he viscous stress

in their scheme is proportional to

Ux^2

:,-_d the shock thickness h-gas 'ten shown to be inde-

pendent o" 'he shock streni-i	2'.
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