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Abstract
Background: Gene Set Enrichment Analysis (GSEA) is a computational method for the statistical
evaluation of sorted lists of genes or proteins. Originally GSEA was developed for interpreting
microarray gene expression data, but it can be applied to any sorted list of genes. Given the gene
list and an arbitrary biological category, GSEA evaluates whether the genes of the considered
category are randomly distributed or accumulated on top or bottom of the list. Usually, significance
scores (p-values) of GSEA are computed by nonparametric permutation tests, a time consuming
procedure that yields only estimates of the p-values.

Results: We present a novel dynamic programming algorithm for calculating exact significance
values of unweighted Gene Set Enrichment Analyses. Our algorithm avoids typical problems of
nonparametric permutation tests, as varying findings in different runs caused by the random
sampling procedure. Another advantage of the presented dynamic programming algorithm is its
runtime and memory efficiency. To test our algorithm, we applied it not only to simulated data sets,
but additionally evaluated expression profiles of squamous cell lung cancer tissue and autologous
unaffected tissue.

Background
Modern high-throughput methods deliver large sets of
genes or proteins that can not be evaluated manually. For
example, cDNA microarrays are used to measure the
expression of a variety of genes under different condi-
tions, e.g. in normal and cancer tissues. Usually, for each
gene the expression quotient is computed and the genes
are sorted by their expression quotient. The question of
interest is whether over-expressed or under-expressed
genes accumulate in certain biological categories, as for
example biochemical pathways or Gene Ontology catego-
ries. To answer this question different approaches can be
applied. First, the so-called "Over-Representation Analy-
sis" (ORA) that compares a reference set to a test set of

genes by using either the hypergeometric test or Fisher's
exact test. Second, "Gene Set Enrichment Analysis"
(GSEA) evaluates the distribution of genes belonging to a
biological category in a given sorted list of genes or pro-
teins by computing running sum statistics.

Performing GSEA for a biological category C and sorted
list L of m genes of which l belong to C means that a run-
ning sum statistic RS is computed for L. RS statistics eval-
uate whether the genes of C are accumulated on top or
bottom of the sorted list or whether they are randomly
distributed. Hereby, the sorted list is processed from top
to bottom. Whenever a gene belonging to C is detected,
the running sum is increased by a certain number, other-
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wise it is decreased. The value of interest is the running
sum's maximal deviation from zero, denoted as RSC. An
example is provided in Figure 1 for a list containing 8
genes of which 4 belong to C. The black graph corre-
sponds to all possible running sum statistics. The red
pathway represents the example where the first three
genes and the seventh gene belongs to C. The RSC value of
the red path is 12.

Usually, the p-value is computed by nonparametric per-
mutation tests, i.e. RSC is calculated for permuted gene
lists. Two approaches to compute these lists exist. First, the
sorted gene list is randomly permuted. Second, if L is
sorted by the median expression quotient of expression
values in one group divided by the median expression
value in another group, the samples are randomly
assigned to the two groups and thereby permuted gene
lists are generated. Notably, these methods do not always
yield the same results. The permutation procedure is
repeated t times and the running sum statistics together
with the corresponding maximal deviations from zero,
denoted as RSi, i ∈ {1,...,t}, are computed. Usually, the p-
value computes as the fraction of RSi values that are larger
or equal than RSC:

Since its development in 2003 [1,2], Gene Set Enrichment
Analysis has been enhanced [3] and integrated in a
number of analysis tools [4]. Among the most popular
programs are "ermineJ" [5] and "GSEA-p" [6]. These two
tools estimate the significance values by using nonpara-
metric permutation tests. However, such tests entail three
disadvantages:

First, repeated runs of the permutation test algorithm may
lead to different significance values because of the ran-
dom sampling.

Second, the permutation test procedure causes problems
if the significance values are small. Given a running sum
statistic whose true p-value is 0.00001. If, as usual, 1000
permutation tests are performed, probably none will have
a higher maximal deviation as the original running sum
statistics. According to the formula given above, the p-

value would compute as , which may be a bad

estimation. Since the next iteration may lead to a higher
deviation, a more reasonable estimation would be

Since GSEA is often applied to many biological categories,
p-values have to be adjusted for multiple testing by using
Bonferroni Hochberg [7], Benjamini [8], or similar adjust-
ment approaches. However, given the above estimation
and the known multiple testing methods, the p-value can-
not be adjusted in an appropriate way.

Third, it is difficult to estimate how many permutations
should be performed to obtain a sample of reasonable
size. Obviously, if m = 20000 and l = 2000, a sample size
of 1000 permutations may be by far too small. Remarka-
bly, the number of possible different running sum statis-

tics amounts to . On the example given above, the

number of different running sums adds up to approxi-
mately 4·102821, emphasizing that 1000 permutation rep-
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Example of possible running sum statisticsFigure 1
Example of possible running sum statistics. The figure 
shows all possible running sum statistics for an ordered list of 
8 genes of which 4 belong to a functional category. The red 
labeled running sum statistic has a RSC value of 12 and the 

corresponding p-value is . The numbers on 

the x-axis refer to the index and the number of possible run-
ning sum values in the current step.
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resent a very small sample. The example shown in Figure
2 indicates that for a sorted list of length 2000 and a bio-
logical category including only 14 genes 1000 permuta-
tions do not yield reliable significance values. The
required large number of permutation tests leads to an
unacceptable computational effort, especially if thou-
sands of biological categories are tested. An alternative,
parametric method is the so called Parametric Analysis of
Gene Set Enrichment "PAGE" method [9] that calculates a
z-score for a given gene set and infers the significance
value of this z-score against standard normal distribution.

In this study, we address the exact and efficient p-value
computation for unweighted Gene Set Enrichment Analy-
sis. Unweighted means that the number by which the run-
ning sum statistic is increased if a gene of C is found and
the number by which the running sum statistic is
decreased if the gene does not belong to C are constants.
In our case, whenever a gene of C is found the running
sum is increased by m - l, and otherwise it is decreased by
l. The dynamic programming method is similar to the

"DRIM" approach ([10]) that computes the optimal parti-
tion of a gene set in a target and a background set.

We integrated our dynamic programing algorithm into
the gene set analysis tool "GeneTrail" [11] that is freely
available at genetrail.bioinf.uni-sb.de. GeneTrail tests a wide
variety of biological categories, among them Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathways [12],
TRANSPATH pathways [13], transcription factors [14],
Gene Ontology GO, [15], granzyme B clevage sites [16],
and protein-protein interactions [17-20]. GeneTrail relies
on the Biological Information System BN++ [21] that pro-
vides easy access to a wide variety of biological data.

Results and Discussion
Dynamic programming algorithm
Before presenting our algorithm, we discuss some impor-
tant features of the running sum statistic. Given the sorted
list L of m genes of which l belong to the considered bio-
logical category C, we calculate a running sum statistic as
follows: whenever we find one of the l genes of the con-
sidered category C, we increase the running sum by m - l
leading to a total sum of l·(m - l) over all genes in C. Oth-
erwise, we decrease the running sum statistic by l leading
to a total sum of (m - l)·(-l) over all genes not in C. There-
fore, the running sum's final value will always be zero.
Moreover, the running sum's maximal possible value is
l(m - l), whereas its minimal possible value is -l(m - l).

As mentioned in the Introduction, the value of interest is
the running sum's maximal deviation from zero, denoted
as RSC. The p-value can be computed as the probability
that a random running sum reaches a maximal deviation
greater or equal as RSC. We compute this probability via
the complement of the event as:

where X is the number of running sum statistics with a
maximum deviation of at most RSC - 1 and Y is the

number of all possible different running sum statistics

which can be obviously computed as . To compute

X, we count all running sum statistics that have a maxi-
mum deviation of at most RSC - 1.

We use a matrix M of dimension (2l(m - l) + 1) × (m + 1),
where the different rows represent all possible values of
the running sum and the columns represent the indices of
the sorted list L from 1,..., m and an initialization column
with index 0. Let M(j, i) denote the number of running
sum statistics with value j in step i whose maximum devi-
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p-value as function of permutation test numberFigure 2
p-value as function of permutation test number. For 
each number of permutation tests we performed 100 runs. 
The figure shows the mean value of these runs together with 
the respective standard deviation. The dashed lines represent 
the maximum and minimum of the 100 computed p-values.
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ation of zero is less than RSC - 1. The entries of M are com-
puted using dynamic programming, starting with the first
column. M(0, 0) is set to 1 and all other values are set to 0.

We fill the matrix column by column, where the matrix
entry M(j, i) is recursively computed as:

where the constraint

(*) -|RSC| <j < |RSC|

ensures that only the running sum statistics with maximal
deviation of smaller than RSC are counted. The total
number of running sum statistics with maximum devia-
tion smaller than RSC can be found at matrix entry M(0,
m).

Implementation details
At first glance, the presented algorithm seems to be ineffi-
cient concerning both, space requirement and runtime,
which are of order O(m2l). For example, if m = 20000
genes and a functional category with l = 2000 genes is con-
sidered, M would have about 1.44·1012entries.

We have implemented the above described algorithm in
C++ using time and space efficient data structures which
will be discussed here.

As the recurrence equation implies, filling the ith column
of M only requires the values of the i - 1th column. Thus,
the dynamic programming approach requires only two
columns of the matrix reducing the memory requirements
to O(ml).

Obviously, the first column M(·, 0) contains only one
number unequal to zero, the second column two num-
bers, and the lth column l values unequal to zero (see Fig-
ure 1 and Figure 3). By using two standard STL hash maps
instead of the matrix M, the space requirements can be
reduced to O(l) and the expected runtime can be reduced
to O(ml).

Another important feature of the running sum statistics
implies that certain parts of the matrix M do not have to
be computed. The running time of the algorithm can be
further reduced by adding a second constraint

(**) -m2 + l·m + i·m - i·l ≤ j ≤ l·m - i·l

for each column i to the recurrence equation. The right
side of the constraint holds because, for column i, the
value j of the running sum can be computed as

j = a·(m - l) + (i - a)·(-l)

where a is the number of genes that belong to C up to
index i in the ordered list. Since a can be at most l, the fol-
lowing inequality holds

Equivalently, for the left side of constraint (**) and col-
umn i the following equation holds:

where b is the number of genes that do not belong to C up
to index i in the ordered list. Since b can be at most m - l,

Although the additional constraint does not lead to an
asymptotically improved runtime, an increased perform-
ance has been measured, especially for small p-values.

Additionally, the runtime of the presented algorithm can
be improved by computing only the first half of M. Due to
a certain "symmetry" of the running sum statistics it suf-
fices to compute either the column in the middle or the

M j i
M j m l i M j l i

( , )
( , ) ( , ) ( )

=
− + − + + − ∗




1 1

0

if 

else

j

j

j

l m l i l l

l m i l

l m i

⇔
⇔

≤
≤
≤

⋅ − + − ⋅ −
⋅ − ⋅
⋅ −

  

( ) ( ) ( )

( )

j

j

i b m i l

b m i m i l⇔
=
=

− ⋅ − ⋅
− ⋅ + ⋅ − ⋅

  
( )

j

j

m l m i m i l

m m l i m i l⇔
≥
≥

− − ⋅ + ⋅ − ⋅

− + ⋅ + ⋅ − ⋅
  

( )
2

Dynamic Programming MatrixFigure 3
Dynamic Programming Matrix. The figure shows the 
dynamic programming matrix for the example provided in 
Figure 1. Matrix entries that are unequal zero are shaded. 
The yellow matrix entries do not have to be computed due 
to the extended side constraints, the number of running sum 
statistics with a smaller deviation of zero (RSC value) than 12 
amounts to 54.
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two columns in the middle to derive the required number
of pathways.

Dependence of runtime on p-value
The recurrence equation of the dynamic programming
algorithm shows that in each step only computations for
running sum values in the interval of ] - |RSC|, |RSC|[ have
to be computed. However, the running sum's maximal
deviations from zero and the corresponding p-values are
mutually dependent on each other, i.e., the higher the
running sum's maximal deviation, the lower the p-value.
Thus, the running time of the presented algorithm
depends on the p-value (see Figure 4A and 4B). The lower
the p-values are the higher is the runtime of the presented
algorithm.

As described above, our algorithm is applied to evaluate
several thousands of biological categories/hypotheses
using the gene set analysis toolkit "GeneTrail". In general,
findings are considered to be significant, if the p-value is
smaller than 0.05. Most computation time is spend for
small p-values. However, only few of the considered cate-
gories are statistically significant, whereas the others will
lead to intermediate and larger p-values. Since our algo-
rithm is especially fast for intermediate and large p-values,
the complete GSEA analysis is highly efficient and most of

its running time is spent for the p-value calculation of the
most significant categories.

Comparison to other approaches
To get maximal performance, we implemented our algo-
rithm in C++. Other available GSEA tools have been
implemented in Java or are available as "R" scripts. For
this reason, a fair comparison of our tool to other nonpar-
ametric permutation tests is not possible. We imple-
mented a permutation test procedure in C++ with
expected running time of O(number of permutations·m).
We applied the algorithm to the example presented in Fig-
ure 4 using 1000 permutations. On average the presented
dynamic programming approach was more than ten times
faster compared to the permutation test procedure. Please
note that the two approaches are not directly comparable.
The runtime of both methods depends on the length of
the gene list l. In addition, the runtime of our algorithm
depends on the p-value whereas the running time of the
permutation test approach depends on the number of per-
formed permutations.

Evaluation of lung cancer expression profiles
We tested our algorithm by evaluating freely available
expression profiles of lung cancer tissue and autologous
control samples. In detail, we downloaded expression
profiles of 5 squamous cell lung cancer patients [22] from

Running time as function of the significance valueFigure 4
Running time as function of the significance value. A: For a sorted list of 1000 genes and a category containing 100 genes the 
runtime of our algorithm was computed for a set of discrete p-values (0, 0.003, 0.006,...,0.996, 1). The shown runtime is the 
median of 100 runs for each p-value on a standard 2 GHz PC. The maximal runtime was 0.05 seconds spent for computing the 
complete matrix. A naive permutation test procedure needed about 0.7 seconds for 1000 permutations. B: Running time as 
function of the significance value for small p-values.
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the "Gene Expression Omnibus" [23]. Together with the
cancer tissue, unaffected tissue of autologous patients was
extracted at surgery and 5 control expression profiles were
generated. The 10 expression profiles were measured
using the Affymetrix HG-U133A including more than
22000 transcripts and 13000 genes. In a pre-processing
step, the profiles were median normalized. Thereafter, for
each transcript a paired t-tests was performed in order to
detect differentially expressed genes. Paired t-test is appli-
cable here, since the control samples were taken from the
normal lung tissues of autologous patients. To generate a
sorted list, t-test statistic values were sorted in increasing
order such that the top of the resulting list contains the
most significantly up-regulated genes in lung-cancer and
the bottom of the list the most significantly down-regu-
lated genes.

Finally, the list was analyzed by GeneTrail. A detailed eval-
uation of all findings would be beyond the scope of this
paper. Therefor, we provide a summary of our findings in
Table 1 and the complete list of results in the supplemen-
tal material. Some significant findings pointing out the
advantages of the presented dynamic programming algo-
rithm are given below. Although the evaluation of the
data set revealed a variety of significant categories (see
Table 1), the complete analysis needed only about one
hour. Of 6428 categories, 1744 were statistically signifi-
cant at an α-level of 0.05 without adjustment, and 711
with Benjamini-Hochberg adjustment. About 300 catego-
ries would achieve a p-value of zero by application of
1000 permutation tests. However, these categories differ
extremely in their significance.

We detected many significantly down-regulated KEGG-
pathways. Among them the Cell Adhesion Molecules (p-
value of 0.00024). The Cell Cycle is the most significantly
up-regulated pathway (p-value of 0.0011). It is very likely
that both pathways would achieve a p-value of zero by

permutation tests, however, they are not equally signifi-
cant as demonstrated above. The up-regulated rRNA-bind-
ing achieved a p-value of 0.0488. This category represents
an example where permutation tests might define a path-
way as significant in one run and as not significant in
another run.

Conclusion
We presented a novel dynamic programming algorithm
that enables the efficient computation of exact signifi-
cance values of unweighted "Gene Set Enrichment Analy-
sis" and thus avoids typical problems of nonparametric
permutation tests. Additionally, we showed that the runt-
ime of the presented algorithm decreases as the p-values
increase, i.e. our algorithm spends most time for comput-
ing small p-values of significant categories.

We integrated our algorithm in the gene set analysis tool
"GeneTrail" that allows for performing a wide variety of
statistical analyses efficiently. Using GeneTrail, we evalu-
ated the differential expression of genes in squamous cell
lung cancer expression profiles, demonstrating the useful-
ness of the presented dynamic programming algorithm.

Methods
GMP library for arbitrary numbers

The number of possible running sum statistics increases

exponentially, i.e. . On the example given above, a

microarray containing m = 20000 genes and a category
with l = 2000 genes, the number of different running sums
adds up to approximately 4·102821. In the worst case, the
matrix entry M(0, m) amounts to 4·102821, if all genes of
C are either top or bottom ranked. This example shows
that the approach must be able to handle very large num-
bers. Hence, we use the "GNU Multiple Precision Arith-
metic Library" (GMP), a numerically stable and fast
library that can compute arbitrary large natural numbers
and is freely available.
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