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SUMMARY 
A new method is presented for calculating synthetic seismograms and their partial 
derivatives for laterally and vertically heterogeneous media with arbitrary natural 
boundary conditions. The formulation is derived by adding appropriate surface 
integrals to the weak form (Galerkin formulation) of the elastic equation of motion 
to enforce the natural boundary and continuity conditions, and inhomogeneous 
boundary conditions. Results applicable to media consisting of a combination of 
fluid and solid regions are presented. The method is called the Direct Solution 
Method (DSM) (Geller zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaf. 1990c) because the synthetic seismograms and partial 
derivatives are computed directly by solving a system of linear equations. In 
contrast, almost all previous applications of Galerkin methods in seismology have 
first computed the modes of free oscillation, and.only then computed the synthetic 
seismograms and partial derivatives by summing the modes. As an example of the 
application of our method, we calculate synthetic seismograms for heterogeneous 
media which are terminated at the bottom by a thin homogeneous layer with a 
radiation (energy-absorbing) boundary condition. 

This method is well suited to computing the quantities necessary to perform 
linearized inversion for earth structure with respect to a laterally heterogeneous 
earth model (Geller zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Hara 1993). It thus becomes possible to formulate iterative 
linearized waveform inversion for laterally heterogeneous earth structure on a local 
and regional scale following the same basic approach used by Hara, Tsuboi & 
Geller (1993) to invert waveform data for global laterally heterogeneous structure. 

Key words: Direct Solution Method, partial derivatives, synthetic seismograms. 

1 INTRODUCTION 

Inverting seismic-waveform data to determine earth 
structure is an important topic in seismology at all distance 
scales (global, regional, local and exploration). As the 
perturbation to the synthetic seismogram is a non-linear 
functional of the model perturbation, such inversion is 
inherently a non-linear problem; the most practical 
approach appears to be iterative linearized inversion, with 
the 3-D model determined by each iteration serving as the 
3-D starting model for the next iteration (Geller & Hara 
1993). To conduct iterative linearized inversion for 3-D 
earth structure it is necessary to be able to calculate 

*Now at: Geological Survey of Japan, Higashi 1-1-3. Tsukuba-shi, 
Ibaraki-ken 305, Japan. 

synthetic seismograms accurately for an arbitrary 3-D earth 
model. This paper presents methods which are well suited 
to making such calculations. 

Hara, Tsuboi & Geller (1993) conducted iterative 
linearized waveform inversion of long-period (200-400 s) 
surface-wave data to determine the 3-D S-wave velocity 
structure of the upper mantle on a global scale. (The basic 
approach used by Hara et al. can be applied to body-wave 
data as well as surface-wave data.) Hara ef al. (1993) used 
the Direct Solution Method (DSM) (Geller et al. 1990c) to 
calculate the synthetic seismograms and their partial 
derivatives. The DSM is based on solving the weak form 
(Galerkin formulation) of the elastic equation of motion. 
The DSM, which is explained in detail below, is so named 
because the solution is obtained by directly solving a system 
of linear equations, rather than by first introducing the 
unnecessary intermediate step of calculating modes of free 
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oscillation and then computing the synthetic seismograms 
by modal superposition. 

It is desirable to be able to apply the same basic approach 
as Hara et al. (1993) to the inversion of waveform data 
from strong-motion seismology, exploration geophysics and 
local and regional seismic networks. However, the DSM 
was originally formulated for global-scale studies, and only 
free surface boundary conditions were considered. In 
contrast with global studies, the numerical models for 
regional or local studies must be terminated by artificial 
boundaries at the edge of the computational domain; 
spurious reflections from these artificial boundaries must be 
suppressed. In many instances exact or approximate 
energy-absorbing boundary conditions at such artificial 
boundaries can be formulated as natural boundary 
conditions. (Note that a free surface boundary condition is a 
particular instance of a natural boundary condition.) This 
paper extends the DSM formulation to regions terminated 
by arbitrary natural boundary conditions. Thus the DSM 
can be used to calculate synthetic seismograms for media 
terminated by many previously proposed energy-absorbing 
boundary conditions, and for any energy-absorbing bound- 
ary conditions which might be proposed in the future if 
they are natural boundary conditions. 

1.1 Weak and strong forms of partial differential 
equations 

The DSM computes synthetic seismograms and their partial 
derivatives by solving the weak form of the elastic equation 
of motion. Discussions of the concept of weak and strong 
forms of partial-differential equations and demonstrations of 
their equivalence are relatively common in applied 
mathematics and engineering. Detailed discussions from the 
standpoint of numerical computation are given by Strang zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& 
Fix (1973) and Johnson (1987). A more rigorous 
mathematical discussion is given by Dautray & Lions (1988, 
Chapters 7, 12 and 18). 

The terms ‘strong form’ and ‘weak form’ are used because 
the former requires the solutions explicitly to satisfy 
stringent conditions (both continuity of displacement and 
continuity of traction in the case of the elastic equation of 
motion), whereas the latter requires less stringent 
conditions to be explicitly satisfied (continuity of 
displacement only in the case of the elastic equation of 
motion). Continuity of traction, as shown in the following, 
is a natural continuity condition which is automatically 
satisfied by the weak-form solutions despite its not being 
explicitly imposed. Natural boundary conditions are also, as 
shown below, automatically satisfied by the weak-form 
solutions without their having to be explicitly imposed. 

The overwhelming majority of published work on solving 
‘the’ elastic equation of motion has concentrated on solving 
the strong form of the elastic equation of motion (e.g. 
Kennett 1983; Chapman & Orcutt 1985). Also, almost all 
previous applications of the weak form of the elastic 
equation of motion have been limited to the calculation of 
modes of free oscillation and the computation of synthetic 
seismograms by modal superposition. The study of Olson, 
Orcutt & Frazier (1984), who presented direct solutions of 
the weak form of the elastic equation of motion for 
flat-layered laterally homogeneous media, is a notable 
exception. 

1.2 Contents of this paper 

Section 2 begins by defining the weak and strong forms of 
the elastic equation of motion for media with either fixed or 
free boundary conditions, and showing that they are 
equivalent. We then derive the weak form of the elastic 
equation of motion for media with arbitrary homogeneous 
natural boundary conditions. We next show how to include 
inhomogeneous traction and displacement boundary 
conditions (including a dislocation) as natural boundary 
conditions in the weak form. We also present the weak form 
of the equation of motion for the partial derivatives of the 
synthetic seismograms with respect to the model parameters 
(i.e. the first-order Born approximation). 

In Section 3 we derive the weak form of the equation of 
motion for a medium containing both fluid and solid 
regions, using (a quantity proportional to) the pressure 
change as the dependent variable in the fluid regions and the 
displacement as the dependent variable in the solid regions. 
Continuity of normal displacement and continuity of normal 
traction at  the fluid-solid boundaries are enforced by adding 
surface integrals to the weak-form operator, so that these 
conditions become natural continuity conditions. 

In Section 4 we present the systems of linear equations 
obtained from the results presented in Sections 2 and 3. W e  
present the Galerkin weak form of the equation of motion, 
which is obtained by using the same set of functions as both 
weight functions and trial functions. We also discuss the 
relation between the DSM and modal superposition 
methods. The computational requirements of the DSM are 
briefly discussed. 

In Section 5 ,  we give numerical results for four relatively 
simple test calculations of synthetic seismograms. In all four 
cases a radiation boundary condition is specified at the lower 
boundary of the medium. Two of the four test calculations 
are for a laterally homogeneous medium: a 2-D (line 
source) calculation in Cartesian coordinates and a 3-D 
(point source) calculation in cylindrical coordinates. The 
remaining two test calculations are for SH-wave propagation 
in a 2-D laterally heterogeneous medium (a sedimentary 
basin of variable thickness overlying a higher velocity 
layer). The first such calculation is for a line source within 
the medium, whereas the second is for a plane wave 
vertically incident from below. We compare the results for 
the first case to those computed using two other methods, 
and show that there is good agreement. We also present 
numerical tests of the degradation in accuracy caused by the 
truncation of coupling between more distant wavenumbers; 
these tests demonstrate the trade-off between accuracy and 
CPU time. Although the numerical examples are all for 
isotropic media, the methods in this paper are applicable to 
a general anisotropic medium. 

The choice of trial functions, the bookkeeping required to 
order the trial functions so that the bandwidth of the 
matrices is minimized, and an overview of the evaluation of 
the matrix elements are discussed in Appendix A. The 
details required to formulate radiation boundary conditions 
for certain media as natural boundary conditions are 
discussed in Appendix B. 

1.3 Previous work 

The computation of synthetic seismograms is one of the 
most fundamental problems in seismology. This important 
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topic has been discussed in literally thousands of previous 
publications; it is both impossible and unnecessary to 
summarize this work here. However, we present a brief 
discussion of previous work, with particular emphasis on its 
relation to the methods considered in this paper. 

In a laterally homogeneous isotropic medium, separation 
of variables can be applied, and the elastic equation of 
motion can be transformed to a coupled set of ordinary 
differential equations. Many different approaches have been 
used to solve the resulting set of coupled ordinary 
differential equations. This large body of work may be 
divided into two main families. The first consists of methods 
that use propagator-matrix techniques (i.e. Haskell 1953; 
Thomson 1950), of which the reflectivity method (Fuchs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& 
Miiller 1971) is perhaps the best known. The monograph by 
Kennett (1983) and the review by Chapman & Orcutt (1985) 
extensively discuss many methods based on propagator- 
matrix techniques. 

A second class of methods uses purely numerical 
techniques (finite element, finite difference, etc.) to solve 
the ordinary differential equations. These methods, 
generally described as ‘low-frequency methods’, have the 
advantage of being able to treat arbitrarily vertically 
heterogeneous media; they are not limited to a stack of 
homogeneous layers. These methods also have the 
disadvantage (as compared with propagator-matrix tech- 
niques) of requiring computational effort roughly propor- 
tional to the cube of the maximum frequency. However, the 
distinction between propagator-matrix methods and low- 
frequency methods is artificial. Although the computational 
effort for propagator-matrix methods is a function only of 
the number of layers and is essentially frequency 
independent, the number of layers must be increased with 
increasing frequency if realistic results are to be obtained. 

Among the most notable examples of low-frequency 
methods is that of Alekseev & Mikhailenko (1976; 1980) 
and Mikhailenko (1985), based on the finite-difference 
method (FDM). Olson, Orcutt & Frazier (1984) derive a set 
of discrete equations using finite-element method (FEM) 
rather than FDM. However, as Olson et al. (1984) use linear 
splines as the trial functions, their actual calculations are 
essentially equivalent to Alekseev & Mikhailenko’s FDM 
calculations. Both Alekseev & Mikhailenko (1976; 1980) 
and Olson et al. (1984) solved the problem in the t-k 
(time-wavenumber) domain. Other work on low-frequency 
methods includes that of Spudich & Ascher (1983), who use 
the collocation method, and Korn (1987), who developed a 
frequency-domain version of the Alekseev-Mikhailenko 
method. 

A number of methods have been developed for 
calculating synthetic seismograms in laterally heterogeneous 
media. Asymptotic ray theory and the Gaussian beam 
method (Cervenf 1983), which are computationally efficient 
but use many approximations, are well suited to modelling 
high-frequency waves. Wave theoretical approaches have 
been applied to media consisting of homogeneous layers 
with irregular interfaces (Aki & Larner 1970; Bouchon & 
Aki 1977a; 1977b; Kohketsu 1987a; 1987b). However, the 
real Earth has not only sharp discontinuities, but also 
gradual variations in seismic velocities. Purely numerical 
methods, such as FDM (e.g. Boore 1970; Kelly et al. 1976) 
or FEM (e.g Smith 1975; Marfurt 1984), can be applied to 
arbitrarily heterogeneous media, but require extensive 

computations. Kosloff & Baysal (1982), and many later 
papers by Kosloff and his colleagues, have presented 
applications of the pseudo-spectral method. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.4 Radiation boundary conditions 

One of the problems in calculating synthetic seismograms 
for local or regional-scale problems is contamination due to 
artificial reflections from the edge of the computational 
domain. It is clearly desirable to develop boundary 
conditions which eliminate artificial reflections generated by 
these numerical boundaries; many previous workers have 
considered this question. 

Lysmer & Kuhlemeyer (1969) use viscous damping, but 
their boundary condition cannot eliminate S waves 
perfectly. Smith (1974) uses the FEM and takes the average 
of two different solutions which satisfy fixed and free 
boundary conditions, respectively. The paraxial wave 
equation is widely used in finite-difference schemes as an 
approximate method for implementing non-reflecting 
boundaries (Clayton & Engquist 1977; Engquist & Majda 
1977; 1979; Reynolds 1978). Kausel (1992) discusses the 
stability of such paraxial approximations. 

Cerjan et al. (1985) adopt amplitude tapering (i.e. 
anelastic attenuation near the edge of the grid) and apply it 
to a pseudo-spectral method (Kosloff & Baysal 1982). 
Randall (1988) uses a reflectivity matrix to implement a 
radiation boundary condition for the scalar potential 
(Lindmann 1975) in an FDM scheme. Chang & McMechan 
(1989) apply Randall’s approach to 3-D acoustic and elastic 
problems and present numerical examples for simple 
models. Higdon (1990) discusses the stability of radiation 
boundary conditions for the elastic equation of motion. 

The Galerkin method has not previously been used by 
seismologists to solve the elastic equation of motion for 
media with radiation boundary conditions. Lysmer & Drake 
(1972) and Olson et al. (1984) imposed fixed, rather than 
radiation, boundary conditions at the base of the model. 
However, we show in the following that any natural 
boundary condition can easily be incorporated into the weak 
form of the elastic equation of motion by adding appropriate 
surface integrals to the basic formulation. In Appendix B we 
show that radiation boundary conditions for certain media 
can be formulated as natural boundary conditions which are 
rigorously satisfied by our numerical solutions. Our method 
for incorporating radiation boundary conditions in the 
elastic-wave equation is similar to that used by Fix & Marin 
(1978) and Goldstine (1982) for the scalar-wave equation 
(Helmholtz equation). 

2 WEAK A N D  STRONG FORMS OF 
ELASTIC EQUATION OF MOTION 

Except where otherwise stated, all of the results in this 
paper are derived in the frequency domain, for a Cartesian 
coordinate system. Summation over repeated dummy 
subscripts is implied throughout this paper when the 
subscripts refer to the physical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( x ,  y ,  or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt) coordinates, but 
not when the subscripts refer to abstract vector spaces (e.g. 
the vector space of trial functions). The effects of the 
Earth’s rotation and self-gravitation are not included in this 
paper. 
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2.1 Strong form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Essentially all of the various numerical methods for solving 
the elastic equation of motion can be classified as particular 
implementations of the method of weighted residuals 
(MWR) (Finlayson 1972; Fletcher 1984). We represent the 
displacement, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu(x), where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAui is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi component, and x is the 
spatial coordinate, as a linear combination of N linearly 
independent vector trial functions, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ $il)(x), . . . , $ I N ) ( x ) } ,  

where the expansion coefficients c, become the unknowns. 
Note that both ui(x) and c, are functions of the angular 
frequency, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw ,  but we do not write this dependence 
explicitly. For the moment we assume that the basis is a 
complete set, which may be infinite. The conditions that 
must be satisfied by the trial functions, $?), are discussed in 
the following. Unless the representation in eq. (1) 
fortuitously is an exact solution, the equation of motion and 
boundary conditions will not be satisfied exactly. The 
resulting errors are called the domain residuals and 
boundary residuals, respectively. 

Typically, the trial functions for strong form MWR 
implementations are chosen so that they satisfy either the 
boundary and continuity conditions, or the partial- 
differential equation, but not both (e.g. Fletcher 1984). In 
the former case the boundary residual is zero; such MWR 
implementations are called domain methods. In the latter 
case the domain residual is zero; such MWR methods are 
called boundary methods. Finally, if the trial functions 
satisfy neither the differential equation nor the boundary 
and continuity conditions, both the domain and boundary 
residuals will be non-zero; the resulting MWR methods, 
which are called mixed methods, will not be considered 
further here. The work of Aki & Larner (1970) is an 
example of an MWR boundary method, and that of Spudich 
& Ascher (1983) is an example of an MWR domain method. 

The word 'weighted' identifies the key concept in MWR. 
We choose a set of N linearly independent vector weight 
functions wi") (m = 1, . . . , N ) ,  which do not, in general, 
belong to the same function space as the trial functions, i.e. 
the continuity, differentiability and boundary conditions are 
in general different for the trial functions and the weight 
functions. 

We multiply the domain residual (if we are considering a 
domain method) or the boundary residual (if we are 
considering a boundary method) by the weight functions and 
integrate to compute the weighted residuals. We then set 
the N weighted residuals to zero to obtain a set of N 
simultaneous linear equations for the expansion coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C". 

For a domain method, the strong form of MWR for the 
elastic equation of motion in Cartesian coordinates in the 
frequency domain is 

Jvwim'[Pwzui + ( C i j k / U k , / ) , j  +f;I dV = 0 

(rn = 1 , .  . . , N ) ,  (2) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp is the density, and C,,= Cjik,= Cklij are the 21 
independent elastic constants. Note that the elastic moduli 

Ciikl are not restricted to being real or frequency 
independent; for example, the use of a superposition of 
standard linear solids to model anelastic attenuation (e.g. 
Liu, Anderson & Kanamori 1976) is entirely admissible. 
The subscript , j  denotes spatial differentiation with respect 
to the j coordinate, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf, is the i component of the applied 
force. In eq. (2) the displacement ui must be continuous, 
and the traction (Cijk,uk,,)n, must be continuous in the n, 
direction. As the displacement is an arbitrary superposition 
of the trial functions, each of the individual trial functions 
must satisfy these continuity conditions. Each individual 
trial function must also satisfy the boundary conditions, e.g. 
free or rigid boundary conditions. The weight functions, 
wlm), are not required to satisfy any differentiability, 
continuity, or boundary conditions; even 6 functions are 
acceptable. We use the same number of weight functions 
and trial functions, so that the system of linear equations, 
eq. (2), will have a unique solution. For the moment we 
consider only media with homogeneous boundary condi- 
tions. Inhomogeneous boundary conditions (prescribed 
tractions or displacements) are discussed later. 

2.2 Weak form 

We now define a new operator, the weak form of the elastic 
equation of motion: 

yj"%. dV. (rn = 1, . . . , N ) .  
= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-I, (3) 

To emphasize that we have not yet established any 
connection between the weak-form operator, eq. (3), and 
the strong-form operator, eq. (2), we designate the 
displacement by ui rather than ui, and the weight functions 
by yi") rather than wi(*). The number of trial functions is 
equal to the number of weight functions. 

The requirement for the existence of the integrals in eq. 
(3) is that both the solution ui and the weight functions y;") 
must be continuous, but no continuity requirements are 
placed on the derivatives of these functions. We expand ui 

in terms of N linearly independent vector trial functions, 
[ q j ' ) ( x ) ,  . . . , q i N ) ( x ) ] .  At this point in our discussion we 
assume that the trial functions and weight functions are 
both complete sets, which may be infinite. 

We represent the solution zli as a linear combination of 
the trial functions 

hi 

(4) 

where the expansion coefficients d, are the unknowns, and 
q?) is the i component of the nth trial function. 

Because, in general, the equivalence of the strong and 
weak solutions of partial-differential equations is a 
well-known result (e.g. Strang & Fix 1973, pp. 10-13; 
Johnson 1987, pp. 14-18; Dautray & Lions 1988, Ch. 7) the 
following discussion is a brief demonstration rather than a 
rigorous proof. To establish the relation between the 
weak-form operator defined in eq. (3) and the strong-form 
operator defined in eq. (2) we integrate eq. (3) by parts to 
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obtain 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~y~"~[(C,,,v,,,)n,] dS = 0 (m = 1, . . . , N ) ,  (5 )  

where ni is the outward unit normal vector. 
As the weight functions yj"' are a complete set, their 

coefficients in eq. (5)-the terms in the square 
brackets-must be zero everywhere to guarantee that the 
right-hand side of eq. ( 5 )  is zero. The coefficient of yj") in 
the volume integral must therefore be zero everywhere in 
the domain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As this coefficient is in fact the strong form of the elastic 
equation of motion, we thus see that the strong form of the 
equation of motion is satisfied everywhere in the domain. 

The preceding discussion assumed that the weak-form 
solutions were sufficiently differentiable to allow the 
integration by parts necessary to obtain eq. ( 5 )  from eq. (3). 
If, on the other hand, the trial functions do not satisfy the 
condition of continuity of traction, it might appear that the 
integration by parts cannot be performed. However, as was 
pointed out by Strang & Fix (1973, p. ll), trial functions 
whose tractions are not necessarily continuous (e.g. linear 
splines) can be obtained as the limit of a sequence of 
continuous functions whose tractions are continuous. Thus 
even when the integration by parts required to obtain eq. 
(5 )  cannot be rigorously performed, we can nevertheless 
regard this result as the limit of the result obtained for a 
sequence of admissible functions. This interpretation applies 
equally to other examples of integration by parts later in this 
section, but will not be repeated explicitly. 

2.3 Natural and essential homogeneous boundary 
conditions 

Using the same arguments applied in the preceding section 
to the volume integral in eq. ( 5 ) ,  we can see that as the 
weight functions yj"' and the trial functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv:") are 
complete sets, the integrand of the surface integral in eq. ( 5 )  
must be zero everywhere on the boundary. This means that 
a free surface boundary condition 

is satisfied automatically everywhere on the boundary, 
without its having to be imposed explicitly on the trial 
functions (Strang & Fix 1973, p. 12). 

The free boundary condition, eq. (7), is an example of a 
natural boundary condition, i.e. a boundary condition that 
will automatically be satisfied by the weak-form solution 
regardless of whether or  not it is explicitly satisfied by each 
of the individual trial functions. In contrast, a fixed 
boundary condition is an essential boundary condition, i.e. a 
boundary condition that will not be satisfied by the 
weak-form solution unless it is explicitly satisfied by all of 
the trial functions and all of the weight functions on the part 
of the boundary where the displacement is required to be 
equal to zero (e.g. Courant 1943). 

For the elastic equation of motion any homogeneous 

boundary condition of the form 

(Cijklvk,[)ni - Sijvj = 0, ( i  = 1, 2, 3) (8) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS, are constants that can vary with position along the 
boundary and with frequency, is a natural boundary 
condition. We give examples in Appendix B of how to 
obtain the coefficients Sij so that eq. (8) will correspond to a 
radiation boundary condition. We now add a surface 
integral to eq. (3) to define a weak-form operator for which 
the natural boundary condition is eq. (8), rather than eq. 

(7): 

= -JvYj""f, dV (rn = 1, . . . , N ) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(9)  

To demonstrate that the natural boundary condition for eq. 
(9) is eq. (8), we integrate by parts, obtaining 

As yj") is arbitrary, the natural boundary condition eq. (8) 
will automatically be satisfied by the weak-form solutions 
obtained from eq. (9) unless all of the trial functions satisfy 
a fixed boundary condition. 

It is surprising that weak-form operators of the form of 
eq. (9) have not previously been used to solve the elastic 
equation of motion for media with general natural boundary 
conditions of the form eq. (8), as such augmented weak- 
form operators have been widely used in other fields. For 
example, Fix & Marin (1978) and Goldstine (1982) defined 
similar augmented weak-form operators for the Helmholtz 
equation (i.e. acoustic wave equation). Also, adding 
surface integrals to the weak-form operator to impose 
inhomogeneous boundary conditions (e.g. prescribed 
tractions) is extensively discussed in engineering (e.g. Strang 
& Fix 1973, pp. 70-71; Johnson 1987, pp. 40-41). Finally, 
note that Courant's classic (1943) paper presented an 
example in which the natural boundary condition was 
varied by adding a boundary integral to a weak-form 
operator. 

2.4 Natural and essential continuity conditions 

Continuity of displacement is an essential continuity 
condition, i.e. a continuity condition that must be explicitly 
satisfied by the weak-form solutions. This condition must 
therefore be satisfied by each of the trial functions. In 
contrast, continuity of traction is a natural continuity 
condition, i.e. a continuity condition which is automatically 
satisfied by the weak-form solutions without its having to be 
explicitly satisfied by each of the trial functions (Strang & 
Fix 1973, p. 14). We verify this using, for simplicity, the 
weak-form operator defined in eq. (3) rather than the 
weak-form operator defined in eq. (9); however, the 
following argument applies equally to either case. 

As above, we integrate eq. (3) by parts. However, this 
time we divide the volume into two parts which are 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
1
6
/2

/4
2
1
/6

5
5
4
8
6
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



426 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ .  Geller and T. Ohminato zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
separated by an internal surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. We obtain conditions is 

JvY!"'[PO2ui + (Ci jk /Uk. / ) . j  +LI d v  

- ~ Y ~ m ~ [ ( C i ; k l u k . / ) n j l  dS 

- L,Y!m)[(c i jk luk, / )+ - (ci jk/uk./)- lnT dS = O, 

(m = 1, . . . , N ) ,  (11) 

where nj is the outward unit normal vector to the outer 
surface and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn; is the unit normal to the (arbitrarily chosen) 
'upper' surface of S,, and (Cijkluk,l)+ and (Ci jk l~k. l ) -  are 
evaluated on the 'upper' and 'lower' surfaces, respectively. 
Note that the sum of the separate two volume integrals is 
shown as I ,  in eq. (11). 

Considering only the integral on S,, we find that, as the 
weight functions y jm)  are arbitrary, the following natural 
continuity condition (i.e. continuity of traction) will 
automatically be satisfied by the weak-form solutions at 
every point on S, 

[ ( C i j k / V k , / ) +  - (cijk/uk./)-lnt = 0. (12) 

However, as the location of S, is arbitrary, continuity of 
traction will automatically be satisfied by the weak-form 
solutions everywhere in the medium. The fact that it is not 
necessary for the trial functions explicitly to satisfy 
continuity of traction is an important advantage of the weak 
form, particularly for laterally heterogeneous media. 

Some previous workers (e.g. Wiggins 1976; Buland & 
Gilbert 1984) used the weak form to compute the normal 
modes of laterally homogeneous media, but used cubic 
splines as trial and weight functions so that continuity of 
traction could be explicitly satisfied. Note, however, that 
the extra effort required to explicitly force the traction to be 
continuous was unnecessary. Also, this approach cannot be 
easily generalized to laterally heterogeneous media, for 
which the effort required to explicitly force the traction to 
be continuous would be much greater. 

2.5 Inhomogeneous boundary conditions 

We now consider cases in which the traction or displacement 
on all or part of the outer boundary is required to be equal 
to a prescribed value. We obtain the corresponding 
weak-form operator by adding appropriate boundary 
integrals to the weak-form operator eq. (9). We consider a 
medium with a homogeneous boundary condition of the 
form eq. (8) imposed on a portion of the outer boundary, 
So, an inhomogeneous traction boundary condition of the 
form 

imposed on a portion of the outer boundary, S,, and an 
inhomogeneous displacement boundary condition of the 
form 

vi - Di = 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i = 1, 2, 3) (14) 

imposed on the remaining portion of the outer surface S,. 
The weak-form operator that satisfies the above boundary 

( m = l , .  . . , N ) .  (15) 

Equation (15) is essentially the weak-form version of the 
representation theorem. 

To confirm that the solution of eq. (15) satisfies the 
boundary conditions on SO and S, we integrate by parts as 
follows 

As y:"') is arbitrary, the natural boundary condition eq. (8) 
will automatically be satisfied on S,, by the weak-form 
solutions obtained from eq. (15). Similarly, we can see that 
the inhomogeneous boundary condition eq. (13) will be 
automatically satisfied on S,, and that the equation of 
motion will be satisfied everywhere in V. To confirm that 
the solution of eq. (15) satisfies eq. (14) on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS , ,  we integrate 
eq. (15) by parts as follows: 

- L D Y i y )  ( C.- ilk1 n 1 (uk - Dk) dS = 0, 

(m = 1, . . . , N ) .  (17) 

As yi.y)Cijk/n/ is arbitrary, we see that (uk - Dk)  must be 
zero everywhere on S,. Thus we see that the in- 
homogeneous boundary conditions eqs (13) and (14) are 
natural boundary conditions of the augmented operator in 
eq. (15). 

We now consider a dislocation. Suppose SA is the upper 
surface of the fault, S, is the lower surface of the fault, and 
Ai = IJ; - u; is the prescribed dislocation. We assume, for 
simplicitly, that there is no surface with a prescribed 
traction, so that the surface integral over S, can be dropped 
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from eq. (15), which then becomes 

( r n = l , .  . . , N ) .  

The force, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA,  for which Jvyl""L dV = JsD+y~y'Ci jk lAkn,  dS 
for all y!") is defined to be the equivalent body force. h can 
be obtained from the right-hand side of eq. (18) essentially 
by inspection 

where we use 
The equivalent body force and the dislocation are 

equivalent in the following sense. We consider two separate 
solutions of eq. (18). In the first case, we drop the first term 
on the right-hand side of eq. (18) (i.e. the only 
inhomogeneous term is due to the dislocation), and in the 
second case we drop the second term on the right-hand side 
of eq. (18) and use the value of fi given by eq. (19) in the 
first term of eq. (18) (i.e. the only inhomogeneous term is 
due to the equivalent body force). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs the right-hand side of 
eq. (18) is equal for these two cases, the solutions of eq. 
(18) (and thus the synthetic seismograms everywhere in the 
medium) are equal for the two cases. Note that the classic 
paper by Burridge & Knopoff (1964) proved the equivalence 
of the body force defined by eq. (19) and the corresponding 
dislocation using the strong form of the elastic equation of 
motion. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs is well known, eq. (19) can be used to show the 
equivalence of a shear dislocation and a superposition of 
double couples for an isotropic medium. 

As inhomogeneous displacement or traction boundary 
conditions can always be replaced by the corresponding 
equivalent body forces, we will not include the last two 
terms on the right-hand side of eq. (15) in the results 
presented in the following sections. However, if desired, 
these additional inhomogeneous terms can be included in a 
straightforward manner. 

to denote the position on the surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS,+. 

2.6 Partial derivatives 

To invert waveform data for earth structure i t  is necessary 
to be able to compute the partial derivatives of the synthetic 
seismograms with respect to changes in the model 
parameters. To do this we use the first-order Born 
approximation (e.g. Geller er al. 1990a; 1990b; Hara, Tsuboi 
& Geller 1991). Note that we are not restricted to treating 
the laterally heterogeneous part of the model as an 
'infinitesimal' perturbation to a laterally homogeneous 
model, as the following results allow us to compute the 
parital derivatives for a laterally heterogeneous perturbation 
to a laterally heterogeneous initial model. 

We make a perturbation 6Cijkl to the elastic moduli and a 
perturbation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6p to the density. We assume that the 
coefficients prescribing the natural boundary condition, S,, 
remain unchanged. We expand the perturbation to the 

synthetic seismogram in terms of the trial functions 

6u j (x )  = 6dnqy ' (x ) .  
N 

n=l 

We obtain the weak form of the elastic equation of motion 
for the perturbed medium from eq. (9). [For simplicity we 
perturb eq. (9) rather than eq. (15), but the following 
derivation could equally well be applied to the latter.] 

+ yj"'Sjj(uj + 6uj)  dS J, 
= -1, yi(")f,dV (m = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1,. . . , N ) .  (21) 

Note that the unknowns in eq. (21) are the expansion 
coefficients adn in eq. (20). Using eq. (9) and retaining only 
first-order terms, eq. (A )  becomes 

(rn = 1 , .  . . , N ) .  (22) 

Eq. (22) is the weak form of the first-order Born 
approximation. 

2.7 Finite approximation 

The preceding discussion assumed that the trial and weight 
functions were complete sets, but all calculations will be 
limited to finite bases, which, in general, will not be 
complete sets. The accuracy and convergence of such finite 
approximations are discussed in detail by Strang & Fix 
(1973). Their most important result is Theorem 2.2 (p. 124), 
which states that in the limit as the basis becomes infinite, 
and thereby complete, if every element of the strong-form 
function space can be represented as a superposition of the 
weak-form trial functions, and if the system of linear 
equations (eq. 3, eq. 9, or eq. 15) is stably invertible, then 
the weak-form solution will converge to the strong-form 
solution. The factors controlling the rate of convergence are 
discussed by Strang & Fix (1973) and Johnson (1987). 

3 FLUID MEDIA 

Media containing both fluid and solid regions have posed 
problems for previous workers using weak-form methods. 
For example, Wiggins (1976) treated the fluid parts of the 
medium using the same formulation as for a solid, but 
setting the rigidity 1.1 = O .  This led to the existence of 
non-physical modes of vibration due to the extraneous 
degrees of freedom. Buland & Gilbert (1984, p. 111) used 
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the same basic approach as Wiggins, but set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 as an 
additional constraint on the displacement. This approach 
was apparently not completely successful in suppressing 
extraneous modes. 

In contrast to most previous work, we use (a quantity 
proportional to) the pressure change as the dependent 
variable in the fluid regions, and displacement as the 
dependent variable in the solid regions. Arbitrary numbers 
of both fluid and solid regions are allowed, and their 
geometry can also be arbitrary. The continuity conditions at 
the fluid-solid boundaries are enforced by adding 
appropriate surface integrals to the weak-form operators 
for the respective regions. Note that Wu & Rochester (1990) 
used a somewhat similar approach in their study of core 
oscillations. 

In the remainder of this paper we do not make an explicit 
distinction between the notation for the strong and weak 
forms. We use zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw to denote the weight functions, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu to denote 
the displacement, 4 to denote the trial functions, and c, to 
denote the expansion coefficients of the trial functions. The 
reader is asked to keep in mind, however, that the weak- 
and strong-form weight and trial functions belong to 
different function spaces. We will continue to prove the 
equivalence of the weak and strong forms through the by 
now familiar procedure of integrating the weak form by 
parts. 

We begin by considering the case of an isotropic fluid 
medium. For an isotropic fluid, in which the elastic moduli 
are equal to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACijkl= A6ij6k,, the strong form of the equation 
of motion, eq. (2) reduces to 

Jv 

As the weight function w!") is arbitrary, the term in square 
brackets in eq. (23) must be zero. We solve for ui: 

(24) 

We substitute eq. (24) into the definition of the isotropic 
component of the stress tensor (i.e. the negative of the 
pressure change) to obtain 

Note that displacement appears in eq. (25) only in the form 
Auk,k. We now define a new scalar variable 

We combine eqs (24) and (26) to obtain an expression for 
the displacement when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfi = 0 

We will use eq. (27) in the following when we consider the 
case of a fluid-solid boundary. 

We substitute eq. (26) into eq. (25) to obtain, after a 
certain amount of manipulation, 

We have now obtained a scalar equation of motion. We 
express eq. (28) in MWR form, as 

(m = 1,. . . , N ) ,  (29) 

where w("') is now a scalar weight function. Note that eq. 
(29) is equivalent to eq. (6) of Stephen (1988) when h = 0. 

We represent the solution of eq.  (29), Q ,  as a linear 
combination of N linearly independent scalar trial functions, 
[@( ' ) (X )> .  . . , 4 ( N ) ( x ) l ,  

Q(x )  = c cn4'" '(x), (30) 
N 

n=l 

where the expansion coefficients c, are the unknowns in eq. 
(29). At this point in our discussion we assume that the trial 
functions and weight functions are both complete sets, 
which may be infinite. 

The continuity conditions that must be satisfied by Q are 
continuity of Q itself, and, in a source-free region, 
continuity of Q,ini in the nj  direction. These conditions must 
be satisfied by each of the trial functions $'"'(x) used in eq. 

We now define a weak-form operator which is equivalent 
(30). 

to eq. (29) 

dV=O ( m = l ,  . . . ,  N ) .  
w2drn )Q - W ( ~ ) ( Q , ~  + J / w )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI,[ A P 

In the same way as we obtained eq. (11) from eq. (3), we 
can, by integrating eq. (31) by parts, show that the 
continuity of Q.,n, (which is equivalent to the continuity of 
the i component of displacement in the i direction) is a 
natural continuity condition which will be automatically 
satisfied by the weak-form solutions without its having to be 
explicitly satisfied by the trial functions. O n  the other hand, 
the continuity of Q (which is equivalent to the continuity of 
the pressure change) is an essential continuity condition, 
which must be satisfied by each of the trial functions in eq. 
(30). The essential and natural continuity conditions for a 
fluid medium are thus the opposite of those for a solid 
medium, for which continuity of displacement is an essential 
continuity condition and continuity of traction is a natural 
continuity condition. 

To demonstrate the equivalence of the strong and weak 
forms we integrate eq. (31) by parts to obtain 

- Idm)[ (Q~i+J"o'"i] dS = 0 (m = 1, . . . , N ) .  (32) 
S P 

The volume integral in eq. (32) is equivalent to the strong 
form, eq. (29). From the surface integral in eq. (32) we see 
that the natural boundary condition satisfied by eq. (31) at 
a force-free boundary is Q,ini = 0. Eq. (24) shows that this is 
equivalent to ujni = O  in a source-free region. However, 
when we consider geophysical problems in media with a 
fluid region at  the outer boundary we usually will want to 
have a traction-free surface, Q = 0. Note that this is an 
essential boundary condition for eq. (31). 
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3.1 Fluid-solid medium zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We now define a weak-form operator for which the 
continuity conditions at a fluid-solid boundary are natural 
continuity conditions. For simplicity, the following 
discussion assumes that there is no applied body force at the 
fluid-solid boundary (i.e. h = 0). The continuity of normal 
displacement requires 

(33) 

where Q and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp are evaluated on the fluid side, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAui is the 
displacement on the solid side, and n!F) and njs) are the 
outward unit normal vectors to the fluid and solid media, 
respectively. Note that n$") = - , i s ) .  Also note that there 
are no restrictions on the geometry of the fluid-solid 
boundary. 

The continuity of traction requires 

where C,,, are the elastic moduli at the outer boundary of 
the solid medium, and other quantities are the same as in 
eq. (33). Note that eq. (34) implies that the tangential 
tractions at the fluid-solid boundary are zero. 

We obtain a weak-form operator that satisfies the 
fluid-solid boundary conditions eqs (33) and (34) by adding 
appropriate surface integrals to the weak-form operators eqs 
(3) and (31) 

I?<\ 
(m = 1 , .  . . , N S )  

( J J I  
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw y  ( Q , ,  +m] dV 

P 

- I\ImIwdm)uinjF) dS = 0 

(m = N S +  1, .  . . , N S +  N F ) ,  

where V(') and VCF) are the solid and fluid volumes, 
respectively, S(SF) is the portion of the outer boundary of 
the solid medium at the solid-fluid interface, and ScFs)  is the 
portion of the outer boundary of the fluid medium at the 
solid-fluid interface. N S  and N F  are the number of trial and 
weight functions in the solid and fluid media, respectively. 
The limits of summation in the respective trial function 
expansions must be appropriately modified. Note that the 
coupling between the solid and fluid media is accounted for 
entirely by the two surface integrals in eq. (35). 

To demonstrate that eq. (35) satisfies the boundary 
conditions eqs (33) and (34), we integrate by parts to obtain 

(m = N S +  1, .  . . , N S  + N F ) .  

These results can be generalized to a medium with an 
arbitrary number of fluid-solid boundaries in a straightfor- 
ward manner. We do not give the explicit form of the 
weak-form operator for the partial derivatives, which is 
obtained following the same general approach as for the 
solid medium. 

The above discussion assumed that the trial and weight 
functions were complete sets, but all calculations will be 
limited to finite bases. The discussion of this point in 
Section 2.7 also applies to the case of fluid-solid media. 

4 DIRECT SOLUTION METHOD 

We henceforth use the same finite set of functions as both 
trial functions and weight functions: wjm) = ( @ I m ) ) *  for a 
solid, and dm) = (@("'))* for a fluid. Using the complex 
conjugates of the trial functions, rather than the trial 
functions themselves, as the weight functions enhances 
computational efficiency by minimizing the bandwidth of the 
linear equations (see Appendix A). The system of linear 
equations obtained using these weight and trial functions is 
called the Galerkin weak form of MWR. 

We substitute the trial function expansion, eq. (4), into 
eq. (9) to obtain the Galerkin weak form of the elastic 
equation of motion for a solid medium with arbitrary 
natural boundary conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(w2T - H + R)c = -g, (37) 

where T is the mass (kinetic energy) matrix, H is the stiffness 
(potential energy) matrix, g is the force vector, and R is the 
matrix operator corresponding to the natural boundary 
condition, eq. (8). 

The DSM (Geller et al. 1990c) obtains the solution of the 
weak form of the equation of motion by directly solving the 
Galerkin weak form of the equation of motion, eq. (37), for 
a medium with a free surface natural boundary condition 
(i.e. R = 0). In this paper we extend the DSM to media with 
arbitrary natural boundary conditions, for which, in general, 
RZO.  We obtain the solution of the weak form of the 
equation of motion by directly solving eq. (37). In contrast, 
almost all previous work using the weak form computed 
synthetic seismograms by modal superposition. We discuss 
the relation of the DSM to the modal approach in the 
following. 

The explicit form of the matrix elements and vector 
elements is as follows 

(38) 
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Note that the subscripts on the left-hand side and the 
superscripts on the right-hand side of eqs (38) to (41) refer 
to the abstract vector space of trial functions; the subscripts 
on the right-hand side of these equations refer to the 
physical space. 

Equation (37) will be singular whenever zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw is equal to an 
eigenfrequency. For a medium with a free surface boundary 
condition, for which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR =  0, two cases are of practical 
importance. If the elastic moduli are real (i.e. if the medium 
is perfectly elastic), all of the eigenfrequencies will be real, 
and an imaginary part must be added to w to ensure that eq. 
(37) will be non-singular (see Phinney 1965). On the other 
hand, if the elastic moduli include anelastic attenuation, all 
of the eigenfrequencies will be complex, and eq. (37) will be 
non-singular for all real values of w. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.1 Partial derivatives of synthetics 

The Galerkin form of the first-order Born approximation, 
eq. (22), is 

(w2T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- H + R ) ~ c  = -[w2(6T) - ( ~ H ) ] c ,  (42) 

where T, H and R are defined in eqs (38), (39) and (40), 
respectively. The elements of the matrices on the right-hand 
side of eq. (42) are 

(43) 

6Hm, = (@j,y))* 6Ciik,@t:] dV, (44) J" 
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6p is the perturbation to the density, and 6Cjik, is the 
perturbation to the elastic modulus. 

TG perform iterative linearized inversion for earth 
structure, it is not necessary to solve eq. (42) once for each 
earthquake and each model parameter. Rather we formally 
write the solution of eq. (42) as 

6c = -(wZT - H + R)-'[w2(6T) - (~H) ]c ,  (45) 

and then, as discussed by Geller & Hara (1993), incorporate 
eq. (45) into the expressions for the coefficients of the 
normal equations for the waveform inversion problem. 

4.2 Fluid-solid medium 

We now present the Galerkin formulation for the fluid-solid 
medium in eq. (35). For simplicity we assume that the 
external boundary condition for the solid is a free surface, 
so we set R = 0 .  We consider a medium with a single solid 
region and a single fluid region, each of which can be 
arbitrarily heterogeneous, but the results in the following 
can be extended to a medium with an arbitrary number of 
fluid and solid regions (e.g. an ocean over the crust and 
mantle over the fluid outer core over the solid inner core) 
in a straightforward way. The Galerkin matrix equation 
becomes 

(w2T- H + wR')c= -g, (46) 

where R' is the matrix operator corresponding to the natural 
continuity conditions (for displacement and normal traction) 
at the fluid-solid boundary. 

The matrix and vector elements for the solid part of the 
medium are given by eqs (38), (39) and (41). The matrix 
and vector elements for the fluid and for the fluid-solid 
boundary are as follows: 

(49) 

(51) 

RAn = 0 (m > NS, n > N S )  or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(rn N S ,  n N S ) .  (52) 

Note that in eq. (50) rn refers to the vector trial functions 
for the solid medium and n to the scalar trial functions for 
the fluid medium, whereas the reverse is true in eq. (51). In 
general the trial functions can be chosen so that the number 
of non-zero elements in R'  will be fairly small. Note also 
that we used .Is) = -njF) in eq. (51). 

4.3 Relation of DSM to variational method 

If the matrix R and the force vector g are both equal to zero, 
(i.e. if the natural boundary conditions are free surface 
boundary conditions, and if there is no external force) eq. 
(37) becomes 

(w2T - H)c = 0. (53) 

For a perfectly elastic medium eq. (53) is exactly the same 
equation obtained when the variational (Rayleigh-Ritz) 
method is used to formulate the normal-mode problem. The 
non-trivial solutions of eq. (53) are the expansion 
coefficients c(") for the eigenfunction of the nth mode, when 
w = w, is an eigenfrequency. The normal modes will satisfy 
a free surface boundary condition unless all of the trial 
functions satisfy a fixed boundary condition. 

If, having solved the normal-mode problem, eq. (53), we 
then wanted to solve the inhomogeneous problem 

(w'T- H)d= -g (54) 

we could expand d as a linear combination of the 
orthonormalized eigenfunctions d"), where p, is the 
excitation coefficient of the nth mode: 

(55) 

We thus can see (as has been pointed out by, for example, 
Finlayson 1972) that the variational method is merely a 
special case of the weak form of the equation of motion. 
However, the variational method can only be applied to 
media with free or  fixed boundary conditions, whereas the 
weak-form solution can be computed for media with 
arbitrary natural boundary conditions. Also, the DSM can 
be applied to anelastic media, although, strictly speaking, 
the variational method cannot be. 
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Computation of synthetic seismograms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith the DSM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA431 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
inversion for a single value of the frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw (for details 
see Geller zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Hara 1993). The repeated solution of eq. 
(37) for different right-hand side vectors is the key step in 
this process. One solution of eq. (37) is required for each 
earthquake to compute the synthetic seismograms. One 
solution of eq. (37) is required for each component ( Z ,  
east-west, or north-south) of each station to  compute the 
(back-propagated) wavefield generated by a delta-function 
point force at  the station. These wavefields are then used to 
compute-the coefficients and right-hand side of the normal 
equations for the waveform-inversion problem. Note that 
only one LU decomposition is required per frequency; all of 
the other calculations are forward- and back-substitutions 
which can be performed efficiently. 

The explicit forms of the trial functions and matrix 
elements for several particular examples are discussed in the 
next section and in the Appendices. We use trial functions 
whose vertical dependence is expressed by local functions 
(linear splines), and whose horizontal dependence is 
expressed by global functions (sines and cosines, Fourier- 
Bessel expansions, or spherical harmonics for Cartesian, 
cylindrical and spherical coordinates, respectively). How- 
ever, if desired, these results could also be used for purely 
local trial functions or purely global trial functions. 

4.4 When should modal superposition be used? 

Modal superposition is advantageous when just a few modes 
are sufficient to represent the physical quantity of interest, 
as the number of degrees of freedom is thereby greatly 
reduced. Modal superposition is thus well suited to surface- 
wave problems, as surface waves can be adequately 
represented by summing only the contribution of the 
fundamental and first several higher mode branches. In 
contrast, modal superposition is not advantageous for the 
computation of complete synthetic seismograms, as the 
superposition of all of the modes of the system is required. 
Modal superposition is also ill-suited to the computation of 
body-wave synthetics, as an extremely large number of 
modes must be summed even if the number of modes is 
reduced by phase-velocity windowing. 

There are many instances, such as media with radiation 
boundary conditions (e.g. Geller et al. 1985) for which 
modes of free oscillation either do  not exist, or are not a 
complete set. Modal superposition methods are inapplicable 
to such media but many previous workers have used ‘locked 
mode’ techniques (Harvey 1981) to compute and superpose 
the modes of closely related systems. Unfortunately, 
however, such techniques do not fully eliminate the 
reflections from the bottom of the medium; they are also 
unnecessarily computationally intensive. Finally, these 
techniques are basically limited to the case of a laterally 
homogeneous medium, although Nolet et al. (1989) 
proposed the use of locked-mode techniques to compute 
synthetic seismograms for a laterally heterogeneous 
medium by treating the laterally heterogeneous part of the 
structure as a small perturbation to the laterally 
homogeneous model. 

It should be noted that hybrid approaches are also 
possible. For example, Hara et al. (1991; 1993) compute 
synthetic seismograms and partial derivatives for surface 
waves in a laterally heterogeneous model using the DSM, 
but they use the eigenfunctions of the degenerate singlets of 
the fundamental and first few higher toroidal and 
spheroidal multiplets of the laterally homogeneous model as 
trial functions, thereby greatly reducing the dimension of 
the matrices. 

4.5 Computational considerations 

We now consider the computational requirements for 
solving eq. (37) (or eq. 46). The standard method for 
solving systems of simultaneous linear equations consists of 
two steps. The first step, L U  decomposition (with partial 
pivoting), which requires O(N3/3)  multiplications for a full 
matrix, is performed only once for each matrix of 
coefficients. The second step, forward- and back- 
substitution, which together require only O(N2)  multiplica- 
tions per solution for a full matrix, is performed once per 
right-hand side. Usually, however, the trial functions will be 
chosen so that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(w2T-H+R)  is a banded matrix rather 
than a full matrix. In this instance the operation counts for 
the LU factorization and the forward- and back- 
substitutions are O[1/2(NB2)] and 0 ( 4 N B ) ,  respectively, 
where B is the bandwidth (Golub & Van Loan 1989). 

We next consider the computational requirements to 
conduct one iteration of iterative linearized waveform 

5 NUMERICAL EXAMPLES 

5.1 LateraUy homogeneous case 

We first consider the laterally homogeneous 2-D Cartesian 
medium shown in Fig. 1, for which the source is a line 
source. We solve the equation of motion for a series of 
discrete frequencies and wavenumbers, on = 2 m / T  and 
(k,)n = 2nn/L,  where T is the duration of the seismograms 
and L is the length of the domain in the x-direction. We 
then compute the inverse Fourier transform from the 
( w ,  k,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz )  domain to the ( t ,  x ,  z )  domain using the Fast 
Fourier Transform (FFT). 

To compute the inverse Fourier transform with respect to 
the wavenumber k,, we have to ensure that there are no 
poles along the real k,-axis. The examples given in the 
following do  not include anelastic attenuation. We 
therefore, following Phinney (1965), introduce a small 
imaginary part into the frequency of the form w = w R  - iw,.  
The effect of this artificial damping is then removed from 
the final time history by multiplying by exp (w,t). Because 
both (0 and k, are sampled at  discrete points, aliasing in 
both time and space (in the horizontal direction) is a 
problem, but the aliasing is ameliorated by the artificial 
damping. 

Figure 2 shows the results of a simple test calculations. 
For simplicity, and because we verified our results by 
comparing them with analytical results, we show the results 
for a homogeneous medium. However, note that no 
additional computational effort would be required for an 
arbitrarily vertically heterogeneous medium. The snapshots 
in the right-hand column of Fig. 2 show that there are no  
reflections from the lower boundary when a radiation 
boundary is imposed. In contrast, the left-hand column of 
Fig. 2 shows that artificial reflections from the lower 
boundary heavily contaminate the wavefield when a free 
surface boundary condition is used. 
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432 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ .  Geller and T. Ohminato zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Free surface 

Arbitrarily vertically 
heterogeneous medium 

5.2 2-D basin models zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We consider SH wave propagation in the 2-D laterally and 
vertically heterogeneous medium shown in Fig. 4. We 
represent the ( S H )  tangential displacement using trial 
functions whose horizontal dependence is of the form 
exp (-iZnx/L), but whose vertical dependence is given by 
locally defined linear splines W,(z)  (Fig. 5 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u,,(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2 clpWp(z) exp (- i [nx/L). (56)  

l = - N ~ I 2 + 1  p= l  

Note that there are two subscripts on the expansion 
coefficients, as they depend on both I and p .  We introduce 
more general notation for the trial functions and expansion 
coefficients in Appendix A. 

We impose a radiation boundary condition at the bottom 
of the region (see Appendix B for details). For the side 

boundaries, we use a method proposed by Smith (1974). 
The initial artificial reflection is eliminated by adding 
together the solution of the Dirichlet (fixed) and Neumann 
(free) problems. We use sines (Dirichlet problem) and 
cosines (Neumann problem), rather than exponentials, as 
the horizontally dependent part of the trial functions. As  is 
well known, Smith’s method eliminates the initial artificial 
reflections from the side boundaries, but does not eliminate 
reflections which encounter the same face more than once. 
As we use a radiation boundary condition at the lower 
boundary, multiple reflections will occur only between the 
two side boundaries or near the upper corners. However, 
the distance between the two side boundaries or near the 
upper corners. However, the distance between the two side 
boundaries is sufficiently large that contamination by such 
higher order reflections does not pose a serious problem. 
Future work should consider various other possibilities for 
the artificial boundary condition at the side boundaries. 

To check the validity of our method, we compare our 
numerical results with those obtained using other tech- 
niques. We consider SH waves in the basin structure of Fig. 
6, which has already been studied by various methods. For 
example, Kohketsu (1987a,b) calculated synthetic seismo- 
grams for this model using the generalized reflectivity 
method, which is essentially the Aki & Larner (1970) 
technique extended to multilayered media. We use a Ricker 
wavelet (Fig. 7) as the source-time function. We compare 
our method (DSM), generalized reflectivity (RF) (Kohketsu 
1987a) and the FEM (Fig. 8). The FEM seismograms were 
computed by D. Suetsugu (private communication). Our  
results (DSM) and the RF synthetic seismograms are in good 
agreement. The later portion of the FEM synthetic 
seismograms are contaminated by artificial reflections, as an 
absorbing boundary condition was not used. However, 
except for these artificial reflections, the FEM synthetic 
seismograms agree well with the R F  and DSM results. 

We next consider the basin model shown in Fig. 9. Fig. 10 
shows synthetic seismograms computed for a plane-wave 
incident from below. Amplification due to focusing caused 
by the laterally heterogeneous structure can be clearly 
observed. Calculations of this type have the potential to 
contribute to an understanding of the strong ground motion 
in sedimentary basins (e.g. Sinchez-Sesma et al. 1988). 

5.3 Truncation of coupling matrix 

The trial functions in eq. (56) can be used for an arbitrarily 
laterally heterogeneous model, but they are particularly well 
suited to cases for which the laterally heterogeneous earth 
structure is relatively smooth. For such cases, the seismic 
wavefield can be approximated by considering only coupling 
between nearby wavenumbers, and truncating the full 
matrix of coupling coefficients to omit coupling between 
more distant wavenumbers. 

We now investigate the degradation in accuracy due to 
truncating the matrices (i.e. setting the matrix elements for 
coupling between distant wavenumbers to zero). Fig. 11 
shows the effect of such truncation on the waveforms. For 
each receiver. the top trace is the correct result, and the 
bottom trace is computed ignoring all coupling between 
wavenumbers. The middle three traces show the results for 
the partially truncated cases. We divide the group of N L  
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Computation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof synthetic seismograms with the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADSM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA433 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. Snapshots of P-SV-wave propagation for a line source. The medium is homogeneous and isotropic with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Y = 5.0 km s-' and 
/3 = 3.5 km s-'. The top boundary is a free surface. We impose a radiation boundary condition at the bottom boundary for the snapshots on the 
right, but a free lower boundary is used for the left-hand snapshots. Note that the left-hand snapshots are heavily contaminated by artificial 
reflections from the lower boundary for T 3 4 s. The calculation is for a 2-D (plane strain) case. The source is a downward force (line source) 
The x-component of displacement is shown in both sets of snapshots. 
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434 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. J.  Geller and T. Ohminato 

Figure 3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a) Snapshots of waves from a point source in a homogeneous half-space with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Y = 5.0 km s-' and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 3.5 km s-'. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA downward 
single force is applied at depth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz = 3.0 km at the left edge of the figure. In addition to P and SV waves, the Rayleigh wave can also be seen. 
The radiation boundary condition is fully effective in eliminating artificial reflections from the lower boundary. The horizontal component of 
displacement is shown. (b) Same as (a), but the vertical component of displacement is shown. 
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Computational 

domain V s2 

s1 
0 Free surface L X 

s4 

I I Homogeneous zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
.- I Radiation boundary 

s3 I I Homogeneous outer region 

Z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 
Figure 4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAComputational domain V for the 2-D, quasi-arbitrarily 
heterogeneous case. The upper boundary S, is a free surface; S,. S, 
and S, are artificial boundaries. We use Smith's method to eliminate 
the initial reflections from the side boundaries zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS, and S,. We impose 
a radiation condition on the lower boundary S3. The medium must 
be homogeneous and isotropic in an infinitesimally thin zone above 
the radiation boundary, but can otherwise be arbitrarily 
heterogeneous. 

Linear spline trial functions W,(z) 

H 
ep 

Figure 5. Locally defined linear spline functions, W,(z), . . . , 
W,,(z). The displacement field from z = 0 to z = R is represented 
as a linear combination of the N, spline functions. Only W,(z) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
W,+,(z) are non-zero in the pth element. Note that there are N, 

trial functions, but only N,, - 1 elements. 

0 

3 

7km 

X 
I I I I I I I 
0 20 40 60km 

Free surface 
P1=2.0km/sec Source 0.5km 

p2 =2.8g/cm3 _________-__________-------------------.-------.---..---.-----------.----.---------------- 
Artificial boundary 

D =3km 

Figure 6. Basin model for the 2-D laterally heterogeneous SH calculation. A line source is buried in the centre of the basin at a depth of 
0.5 km. The artificial lower boundary is located at a depth of 7 km. The elastic properties are as shown. The equation at the bottom gives the 
shape of the bottom of the basin. 
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436 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGeller and T. Ohrninato zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
wavenumbers into two groups of NL/2,  four groups of 
NL/4,  and eight groups of NL/8,  and truncate all intergroup 
coupling. The synthetic seismograms appear almost 
unchanged for the N J 2  case. For the N J 4  case, the trace at 
epicentral distance A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 km is slightly distorted, but the 
other traces are almost unchanged. For the NL/8 case there 
is more distortion, but the error is still not so large. Thus the 
N J 4  case seems to be an acceptable approximation to the 
exact solution, but the N J 8  results seem marginal. 
Determining the optimum trade-off between accuracy and 
CPU time is an important topic for future research. 

n: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&tP - 
-ts+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 6 DISCUSSION 

We have presented all of the basic results necessary to 
compute synthetic seismograms and their partial derivatives 
by using the DSM to solve the weak form of the elastic 
equation of motion. These results have the potential to be 
useful in future work on analysing seismic waveforms to 
determine earth structure and earthquake-source processes. 

Probably the reason weak-form methods have not 
previously been used more extensively is that strong-form 
methods have been able to handle satisfactorily almost all of 
the computations necessary for laterally homogeneous 
media in cylindrical or Cartesian coordinates. As these 
methods are well known and software is widely available, 
there has been no need to consider using weak-form 
methods. In contrast, future work in seismology will 
concentrate much more on laterally heterogeneous media, 
and laterally homogeneous media with spherical coordin- 
ates (i.e. whole-earth calculations that do not use earth 

7c 2 1  

V 
f(t)=V - ,)exp(-b2) 

Nt-ts)  

tP 
b= 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7. Ricker wavelet used as a source-time function throughout 
this paper. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Basin model, Line source /DSM 

2 0 k m m J \ \  
Artificial 

25km reflections 

Figure 8. Comparison of synthetic seismograms for three methods for the basin model in Fig. 6. The direct solution method (DSM), 
generalized reflectivity (RF) method and ordinary finite-element method (FEM) are used. The traces are the tangential component of 
displacement at distances of 5, 10, 15, 20 and 25 km from the centre of the basin, where a line source is buried at 0.5 km depth. For each 
epicentral distance, results from the three methods are compared (top, DSM; middle, RF; and bottom, FEM) All three methods agree 
excellently, except for the artificial reflections in the later part of the FEM results, which occur because a radiation boundary condition was not 
used. 
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X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I I I I I I 
0 20 40 60km 

D = l k m  
z ( x ) = D ~ ~ s i n ( ~ ( x - 3 0 ) ~ }  C =5km 

W 50km 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9. 2-D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbasin structure with a soft sediment layer. A plane SH wave is impinging vertically from the lower half-space. Note that this 
model differs from the model used in Fig. 6. 

0 -  Time 250sec 

E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
9 Basin reverberation 

Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
J 

Direct arrival 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10. Amplification of incident waves by the basin structure shown in Fig. 9. A plane S H  wave is vertically incident from below. 
Amplification due to constructive interference is clearly visible in the centre of the basin. 
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Basin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmodel 
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.............................. ........ ........._. _. .___ . ................................. \ r  Artificial boundary 

20km 
All element used (correct) 
Nd2 band only 

25km - .NL/~  band only 
N L / ~  band only 
Diagonal only 

20km *\&Y== A 

All element used (correct) 
Nd2 band only 
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N L / ~  band only 

-- -v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA017 -- 
I only 

Figure 11. Effect of truncating the coupling between wavenumbers for the model shown in Fig. 6. The blocks in the untruncated block 
tridiagonal matrix each have dimension NL X NL. At each epicentral distance, traces correspond to, from top to bottom: (1) the exact solution; 
(2) NL/2 band only; ( 3 )  NL/4 band only; (4) NL/8 band only; and (5) diagonal terms only. From top to bottom the accuracy decreases, but the 
computational efficiency increases. In the basin model, p ,  = 2.0 km s C '  and p ,  = 2.3 gcm-' in the upper layer; in the lower layer, 
Pz = 3.6 km s- '  and p r  = 2.8 g cm-3. 

flattening approximations). It seems likely that weak-form 
methods can make useful contributions to the solution of 
such problems. 
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APPENDIX A: TRIAL FUNCTIONS AND 
MATRIX ELEMENTS 

In this Appendix we consider only a solid medium, but the 
same general procedures apply to a fluid or a fluid-solid 
medium. The DSM obtains the expansion coefficients of the 
trial functions by solving eq. (37), the Galerkin weak form 
of the equation of motion 

( w'T - H + R)c = -g, (A l l  

where T is the mass matrix, H is the stiffness matrix, R is the 
matrix corresponding to the natural boundary condition, 
and g is the vector of excitation coefficients. To minimize 
the CPU time required to solve eq. (Al), we minimize the 
bandwidth of the matrices on the left-hand side of eq. (Al), 
and, to the extent possible, break up eq. (Al) into a series 
of smaller uncoupled systems of linear equations. Minimiz- 
ing the bandwidth of eq. (Al) and decomposing eq. (Al) 
into decoupled systems of linear equations depends on the 
matrix elements and excitation coefficients, which in turn 
depend on the choice of trial functions, the elastic properties 
of the medium, and the type and location of the source. 

A1 Trial functions 

We use trial functions which are the product of local 
functions of depth (linear splines) and global functions of 
the horizontal coordinates (Fourier, Fourier-Bessel, or 
spherical harmonic expansions for Cartesian, cylindrical or 
spherical coordinates, respectively). Such trial functions are 
well suited to media in which the vertical heterogeneity is 
more pronounced than the lateral heterogeneity. The use of 
purely global or purely local trial functions is also possible, 
but we do not consider such trial functions in this 
Appendix. 

Four indices are necessary to specify the trial function: p 
identifies the vertical dependence of the trial functions (see 
Fig. 5) ,  1 and m give the horizontal dependence of the trial 
functions (e.g. the angular order and azimuthal order of 
spherical harmonics), and n identifies the polarization of the 
trial functions (e.g. which of the three vector spherical 
harmonics is specified). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(a= 1, . . . , am,,.) rather than @I"'. cr can be viewed as a 
pointer to a mapping table, in which the four indices 
{ p m ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZe, m,, n,} that characterize the LtZh trial function are 
listed. The order of the entries { p a ,  I,, m,, n,} is chosen so 
that the bandwidth of each of the uncoupled systems of 
linear equations is minimized. 

The linear splines W,(z)(p = 1, . . . , Np)  specify the 

In this Appendix we denote the trial functions by 

vertical dependence of the trial functions 

(elsewhere) 

The first line of eq. (A2) is ignored for p = 1 and the second 
line is ignored for p = Np. 

In Cartesian zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( x ,  y, z )  coordinates, the vector trial 
functions are 

S"X, y, z )  = W,(Z)(O, 0, Y,) (n  = 1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S2(X ,  y ,  2 )  = W,(Z)(Y,, 0, 0) (n  = 2) 

s"(x, y, z )  = Wp(z)(O, Fmj 0) (n = 3)  

where 

q m ( x ,  y) = Nlm exp (-ilAkxx) exp (-imAk,y), 

('43) 

( I ,  rn = 0, +l, f 2 ,  . . .) 

2n 2n 
Ak.r = - , Ak,, = - , 

L, L, 

L, and L,, are the length of the computational domain 
(where O s x c L ,  and OCYSL,,),  and NIm is a 
normalization constant. 

For a cylindrical ( r ,  @, z )  coordinate system, the vector 
trial functions are 

S-l(rj G, Z )  = Wp(z)(O, 0, Ym) (n = 1) 

S3(r, @, 2 ) =  Wp(z)(--, 
rk, d @  k, 3r 

where 

Ym(r> $1 = N/mJm(k/r) ~ X P  (im@), 

(Z=O, 1, 2, . . . , and rn =0,  *l, f 2 ,  . . .), 

where J ,  is an mth order Bessel function, k, is the lth 
wavenumber, and Nlm is a normalization constant. The 
values of k, depend on the choice of discretization. If we use 
the algorithm of Bouchon (1981), k,=2nl/L, where L is 
the radial distance between the evenly spaced concentric 
sources. 

For a spherical (0, @, r )  coordinate system, the trial 
functions are 

sV, @, r )  = Wp(r>(O, 0, Ym) (n = 1) 

where 

Y,,(0, G) = (-l)mN;2P;2(cos 0) exp (im@), 

1 = 0, 1,2, . . . and O c m  < I  

Ym(O,@)=YT-m(O,@) l = 1 , 2  , . . .  a n d - l ~ r n < O ,  
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P;"(cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0) is an associated Legendre function, and N;" is the 
normalization factor. Note that for cylindrical and spherical 
coordinates n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 and n = 2 correspond to the spheroidal 
displacement, and n = 3 corresponds to toroidal displace- 
ment. This is true for the Cartesian case only when the 
wavenumber vector lies in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx-z plane. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A2 Matrix elements and selection rules 

The matrix elements are given by eqs (38), (39) and (40), 
and the vector of excitation coefficients is given by eq. (41). 
We repeat these equations below, but we use a' and a in 
place of rn and n as the indices for the trial functions. a' is 
a pointer to the indices { p , . ,  la, ,  me,, n,,} that characterize 
the a'th trial function and a is a pointer to the indices 
{ p , ,  la, rn,, n,} that characterize the cyth trial function. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

JV 

For cylindrical or spherical coordinates the derivatives with 
respect to the [-coordinate, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@i:), in eq. (A7) are the locally 
Cartesian derivatives for the respective curvilinear coordin- 
ate system. 

Using { p , ,  I,, rn,, n,} to denote the indices pointed to 
by a allows { p , ,  l,, rn,, n,} to be unambiguously identified 
as belonging to the cuth trial function, but this notation is 
cumbersome. In the remainder of this Appendix we simplify 
the notation by dropping the subscripts; we use { p ,  I ,  rn, n }  
to denote the indices for the a-th trial function, and 
{ p ' ,  l ' ,  rn', n ' }  to denote the indices for the a'th trial 
function. 1 is used both as one of the four indices 
{ p ,  1, rn, n }  that characterize the ath trial function, and as 
one of the dummy subscripts of the elastic modulus C,, in 
eq. (A7), but it should be clear from the context which 
usage of 1 is intended. 

Integrals of the type in eqs (A6) and (A7) were first 
considered extensively in quantum mechanics, but such 
integrals have also been considered widely in seismology 
(e.g. Phinney & Burridge 1973), fluid dynamics and other 
branches of classical physics (e.g. Jones 1985), and there is 
a well-developed set of techniques for their evaluation. The 
same basic techniques used to evaluate the volume integrals 
in eqs (A6) and (A7) can also be used to evaluate the 
surface integral in eq. (A8). The evaluation of the excitation 
coefficients given by eq. (A9) is discussed in the next 
section. 

To evaluate the integrals in eqs (A6) and (A7) we 
transform them to the general form 

where we use z here as a generic variable that represents the 
vertical coordinate in Cartesian, cylindrical, or spherical 

coordinates. (Note that in Cartesian or cylindrical 
coordinates z is positive in the downward direction, but the 
opposite is true for spherical coordinates.) Similarly we use 
dS here as a generic variable that represents the area of an 
infinitesimal horizontal element in Cartesian, cylindrical, or 
spherical coordinates. The discussion for the remainder of 
this Appendix is restricted to the case of spherical 
coordinates, except where otherwise noted. However, the 
following discussion can be modified to apply to cylindrical 
or Cartesian coordinates with relatively minor changes, such 
as replacing 'generalized spherical harmonics' by the 
corresponding functions for cylindrical or Cartesian 
coordinates, and 'angular order' and 'azimuthal order' by 
the corresponding indices for cylindrical or Cartesian 
coordinates. 

The summation in eq. (A10) arises from expanding the 
elastic moduli and density in terms of generalized spherical 
harmonics, and then summing over all the harmonics for 
which the integrals are non-zero (see, for example, Jones 
1985). The integrals in the summation in eq. (A10) will be 
zero unless certain selection rules are satisfied. The 
selection rules depend on the indices characterizing the trial 
functions, a'-+ { p ' ,  l ' ,  rn', n ' }  and a-+ {p, I ,  rn, n} .  For 
example, each of the Idz[. .] terms will contain products of 
functionals of the p'th and pth splines. We can see from eq. 
(A2) that these products, and, therefore, . . I ,  will be 
zero unless Ip' - p I 1. The selection rules governing 
I d s [ .  . .] depend on the earth model and on the horizontal 
dependence and polarization of the a'th and a th  trial 
functions, which are indicated by { l ' ,  rn', n ' }  and (1, rn, n } ,  
respectively. The evaluation of such surface integrals for the 
case of a general laterally heterogeneous, anisotropic 
medium in spherical coordinates is discussed by, for 
example, Jones (1985, Chapter 9); similar results can be 
derived for cylindrical or Cartesian coordinates. 

The evaluation of the integrals that the selection rules 
show to be non-zero can be performed in a straightforward 
fashion. The [. . .] term in J d z [ .  . .] is a low-order 
polynomial that can be integrated analytically. The I d s [ .  * .] 
can be evaluated either through the use of the 
Clebsch-Gordan series for generalized spherical harmonics 
(or the equivalent for cylindrical or Cartesian coordinates) 
or numerical quadrature. We do not give explicit results 
here. 

A2.1 Selection rules: laterally homogeneous case 

We now consider the case of a laterally homogeneous 
isotropic (or transversely isotropic) medium. This paragraph 
considers only cylindrical or spherical coordinates, except 
where the Cartesian case is mentioned parenthetically. It is 
well known (e.g. Phinney & Burridge 1973, Jones 1985) that 
each of the I d s [ -  . .] in eq. (A10) will be zero unless 1 = 1' 
and rn = rn'. We therefore can break up eq. (A l )  into 
separate equations for each angular order 1 and azimuthal 
order rn (i.e. we can perform separation of variables). 
Furthermore, it is well known that the value of I d s [ .  . .] in 
eq. (A10) depends only on the angular order, 1 ,  and not on 
the azimuthal order, rn. Therefore the coefficients in the 
decoupled systems of linear equations that we obtain from 
eq. (Al) need be computed only once per angular order, 
regardless of the number of azimuthal orders that we 
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consider for that angular order. (Because of the way ym zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis 
defined earlier for Cartesian coordinates. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ d S [ .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa ]  depends 
only on 12+rn2, but not on the individual values of I and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m.)  Finally, it is well known that J d S [ .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. .] is zero if n = 3 
and n ’  = (1 or 2), or if n = (1 or 2) and n’ = 3. Thus, after 
decomposing eq. (Al) into separate linear systems for each 
I and rn, we can further decompose these systems into two 
separate systems of linear equations, one for the toroidal 
case ( n  = n’ = 3) and one for the spheroidal case (n = 1 or 2 
and n ‘ =  1 or 2). Because of the selection rules for the 
splines, Ip’ -p i  s 1, each of these systems of linear 
equations will be block tridiagonal. The dimension of the 
blocks is 1 X 1 for the toroidal system (n  = 3 only) and 2 X 2 
for the spheroidal system (n = 1 and n = 2). 

A2.2 Selection rules: laterally heterogeneous case 

Trial functions of different angular orders ( I # / ’ )  and 
different azimuthal orders (m # m ’ )  are coupled (have 
non-zero matrix elements) for a laterally heterogeneous 
medium. By expanding the 3-D structure in generalized 
spherical harmonics (or the corresponding functions for 
cylindrical or Cartesian coordinates), the matrix elements 
can be calculated in a straightforward fashion (see Phinney 
& Burridge 1973, or Jones 1985). However, as there is a 
limit to the size of the systems of linear equations that can 
be solved by any given computer, truncation (setting to 
zero the matrix elements for coupling between trial 
functions whose angular orders-wavenumbers, if we are 
considering cylindrical or Cartesian coordinates-differ by 
more than a certain amount) of the matrices in eq. (Al) is 
unavoidable for 3-D laterally heterogeneous problems, in 
view of the maximum memory capacity of present 
supercomputers. In contrast, 2-D laterally heterogeneous 
problems, such as those considered in Sections 5.2 and 5.3, 
can sometimes be solved without truncating the matrices. 
We obtain a series of uncoupled block-tridiagonal systems of 
linear equations as a result of the truncation (see the 
example in Section 5.3). Each of the systems of uncoupled 
linear equations obtained from eq. (Al) by truncating the 
coupling is block tridiagonal, because of the selection rule 
Ip’ -pI s 1. The dimension of each block is equal to the 
number of coupled trial functions. 

A3 Excitation coefficients 

For both laterally homogeneous media and laterally 
heterogeneous media the excitation coefficients, given by 
eq. (AY), will in general be non-zero for all values of the 
indices 1 and rn. However, for spherical or cylindrical 
coordinates the number of non-zero excitation coefficients 
can be drastically reduced by placing the source on the 
z-axis. For a point force on the z-axis only the Irnl S 1 
excitation coefficients are non-zero, and for a point moment 
tensor on the z axis only the Iml s 2 excitation coefficients 
are non-zero (e.g. Takeuchi & Saito 1972). It is thus highly 
advantageous to place the source on the z-axis for a laterally 
homogeneous medium, because only the decoupled matrices 
for l m 1 ~ 2  (for a point moment tensor) or I m l s  1 (for a 
point force) need be considered. 

On the other hand, there is no special advantage to 
placing the source on the z axis in a laterally heterogeneous 

medium, as all of the different angular orders and azimuthal 
orders are coupled by the matrix on the left-hand side of eq. 
(Al). Thus, even if only a small number of the excitation 
coefficients are non-zero (as is the case for a point source on 
the z axis), the expansion coefficients of the trial functions 
for the solution of eq. (Al) will in general be non-zero for 
all azimuthal orders for a laterally heterogeneous medium. 

A4 Mapping tables 

We now present some examples of the mapping tables that 
relate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa to the indices p ,  I ,  rn and n that characterize the 
a th  vector trial function. We begin by presenting an 
example of the mapping tables for toroidal ( S H )  
displacement for an isotropic laterally homogeneous 
medium with spherical coordinates (Table Al). We assume 
we are considering a case with a point source on the z axis, 
so that only the case of - 2 s m  $ 2  need be considered, 
except that -1 -S m < 1 for I = 1. Note that I = 0 need not be 
considered, as there is no toroidal displacement. All of the 
mapping tables for laterally homogeneous media that are 
presented in the following could, if desired, be easily be 
extended to run from -l<rn<l rather than from 
-2 s rn < 2 for sources not on the z axis. 

The horizontal double lines in Table A1 separate the 
various decoupled problems, i.e. the various systems of 
linear equations that can each be solved separately. As 
discussed earlier the decoupling is the result of the selection 
rules for the matrix elements. The large braces on the 
right-hand side indicate that the matrix elements are the 
same for each of the decoupled systems of linear equations 
enclosed by the braces, because the matrix elements depend 
only on I and not on m. Thus only the vector of excitation 
coefficients, g, will be different for each of the systems 
enclosed by the braces. Note that for a point moment tensor 
on the z axis the excitation coefficients for toroidal 
displacement will be zero for m = 0, so this case could be 
omitted from the mapping table if desired. 

Table A1 shows that each trial function corresponds to a 
unique value of a. However, for simplicity, it is convenient 
to number the trial functions for each decoupled problem 
(separated by the double horizontal lines in Table Al)  
starting from a =  1. We therefore renumber the trial 
functions as shown in Table A2. Strictly speaking we should 
introduce one more index to identify the decoupled 
problem, so that we could unambiguously discuss (Y = 1 for 
the first decoupled problem, the second decoupled problem, 
etc. However, the problem under discussion will usually be 
clear from the context, so we do  not explicitly introduce a 
fifth index (see Table A2). Note that Tables A1 and A2 are 
identical as far as their content and meaning; only the 
numbering scheme for a is different. 

The mapping table for spheroidal displacement in a 
laterally homogeneous isotropic (or transversely isotropic) 
medium with spherical coordinates is given in Table A3. 
Note that the displacement for I = 0 is purely radial (n = 1), 
but that the displacement for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 2  1 includes both vertical 
(n = 1) and horizontal (n =2)  components. As shown in 
Table A3, we arrange the trial functions so that the vertical 
and horizontal trial functions for the same value of p ,  the 
index for the spline functions that specify the vertical 
dependence, are grouped together. Choosing any other 
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which numerical results are given in Fig. 11. In both Tables 
A4 and AS a single horizontal line is used to separate trial 
functions with different values of the index p .  The braces 
on the right of the tables indicate each system of linear 
equations; note that this convention is different from the 
meaning of the braces in Tables Al-A3. 

By comparing Tables A4 and A5 it can be seen that in 
both cases we arrange the ordering so that all of the trial 
functions with the same value of p (i.e. the same linear 
spline function) are grouped together. In this way we 
ensure that the matrices in both the original and truncated 
versions of eq. (Al) will be block tridiagonal. Each of the 
two truncated matrices in Table AS fortuitously has the 

order would lead to a larger bandwidth for the decoupled 
systems of linear equations (although the number of 
non-zero elements would not change), and thus would 
increase the CPU time needed to solve the decoupled 
systems of linear equations. 

Tables A4 and A5 show the mapping tables for the 2-D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
SH case (Cartesian coordinates) discussed in Sections 5.2 
and 5.3. Note that the index rn is omitted in both of these 
tables, because the problem is 2-D. Table A4 shows the 
mapping table for the complete problem, and Table A5 
shows the mapping table for the truncated problem for 

Table Al.  Mapping table for the laterally homogeneous 
isotropic toroidal (SH) case in spherical coordinates. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

CY 

1 
2 
3 

NP 

N p  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1 

N p  + 2 

N p  + 3 

2 4  

2 N p + 1  

2 N p  + 2 

2 N p  + 3 

3NP 

3hrp + 1 

3 N p  + 2 

3 N p  + 3 

4NP 

7 N p  + 1 

7 N p  + 2 

7 N p  + 3 

8NP 

P I  m n  

1 1 - 1 3  
2 1 - 1 3  
3 1 - 1 3  

N p  1 -1 3 

1 1 0 3  

2 1 0 3  

3 1 0 3  

N p l  0 3 

1 1 1 3  

2 1 1 3  

3 1 1 3  

N p l  1 3  

1 2 - 2 3  

2 2 - 2 3  

3 2 - 2 3  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y? 2 -2 3 

1 2 2 3  

2 2 2 3  

3 2 2 3  

N p 2  2 3 

1 = 1  

1 = 2  

Table A2. Mapping table for the laterally 
homogeneous isotropic toroidal (SH) case in 
spherical coordinates. Same as Table Al ,  but 
the trial functions for each decoupled problem 
are numbered starting from LY = 1. 

p l  m n  

1 1  - 1 3  

2 1 - 1 3  

3 1 - 1 3  

N p  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 -1 3 

1 1 0 3  

2 1 0 3  

3 1 0 3  

N p l  0 3 

1 1 1 3  

2 1 1 3  

3 1 1 3  

N p l  1 3  

1 2 - 2 3  

2 2 - 2 3  

3 2 - 2 3  

N p  2 -2 3 

1 2 2 3  

2 2 2 3  

3 2 2 3  

N p 2  2 3 

1 = 1  

1 = 2  

I =  .. 
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1 
2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 
4 

2 N p  -1 

2NP 

Table A3. Mapping table for the laterally homogeneous 
isotropic spheroidal (P-SV) case in spherical coordin- 
ates. Numbering scheme for a follows Table A2. 

1 1 - 1 1  
1 1 - 1 2  

2 1 - 1 1  
2 1 - 1 2  

N ,  1 -1 1 

N p  1 - I  2 

1 

2 
1 1 1 1  
1 1 1 2  

I 

2NP 

1 
2 

N p l  1 2  

1 2 - 2 1  
1 2 - 2 2  

1 
1 2 2 2  

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI : : : :  
1 2 2 1  

l = O  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 = 1  

1 = 2  

dimension NpNL/2,  but there is no general requirement that 
truncation must lead to decoupled matrices of equal 
dimensions. For example, Hara et al. (1991; 1993) used the 
eigenfunctions of degenerate multiplets of the modes of free 
oscillation of a laterally homogeneous model as their trial 
functions; their decoupled systems of linear equations were 
not all of equal dimension. 

APPENDIX B: RADIATION BOUNDARY 
CONDITION 

In this Appendix we present examples of media for which a 
radiation boundary condition at the lower boundary can be 

Table A4. Mapping table for the 2-D laterally heterogeneous ( S H )  
case in Cartesian coordinates. 

P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 11 

1 - N ~ / 2 + 1  3 

I - N ~ / 2 + 2  3 

I - N r , / 2 + 3  3 

. .  . .  . .  
1 N L / ~  3 

2 - N ~ / 2 + 1  3 

2 - N ~ / 2 + 2  3 

2 - N ~ / 2 + 3  3 

. .  . .  . .  
2 NLI2 3 

. .  . .  . .  
N p  - N ~ / 2 + 1  3 

N p  - N ~ / 2 $ 2  3 

N p  - N ~ / 2 + 3  3 

. .  . .  . .  
N p  N L / ~  3 

Table A5. Mapping table for 2-D laterally heterogeneous ( S H )  case 
in Cartesian coordinates when the coupling is truncated to obtain 
two decoupled problems. 

CI P 1 n 

1 - N ~ / 2 + 1  3 

1 - N ~ / 2 + 2  3 

. .  . .  . .  
1 - N b / 4  3 

1 N ~ / 4 + 1  3 
. .  . .  . .  
1 N L J ~  3 

2 - N ~ / 2 + 1  3 
. .  . .  . .  
2 - " J L / ~  3 

2 N L / ~ +  1 3 
. .  . .  . .  
2 N L / ~  3 

. .  . .  . .  
N p  - N ~ / 2 + 1  3 

. .  . .  . .  
N p  - N L / ~  3 

N p  N ~ / 4 + 1  3 
. .  . .  . .  
N p  N L / ~  3 

1 - N ~ / 4 + 1  3 

1 - N ~ / 4 + 2  3 
. .  . .  . .  
1 N L / ~  3 

2 - N ~ / 4 + 1  3 
. .  . .  . .  
2 N L I ~  3 

. .  . .  . .  
N p  - N L / ~ +  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 3 

. .  . .  . .  
Np N L / ~  3 
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specified in the form of natural boundary conditions (e.g. 
eq. 8). The solution obtained from the augmented 
weak-form operator (e.g. eq. 9) will therefore automatically 
satisfy the radiation boundary condition, as it is a natural 
boundary condition. The media considered in this Appendix 
can be arbitrarily heterogeneous in general, but a thin strip 
just above the lower boundary must be homogeneous and 
isotropic (Fig. 4). 

We present results in this Appendix for three cases of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2-D media with Cartesian coordinates: (1) SH waves in a 
laterally homogeneous medium; (2) P-SV waves in a 
laterally homogeneous medium; and (3) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASH waves in a 
laterally heterogeneous medium. The following derivations, 
with only minor changes, can also be applied to media with 
cylindrical coordinates, but explicit results are not given 
here. Radiation boundary conditions are usually unneces- 
sary for media with spherical coordinates, as the exponential 
decay of amplitude below the turning depth serves much the 
same purpose; however, radiation boundary conditions can 
be formulated if desired. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B1 Laterally homogeneous media 

Because separation of variables applies to the laterally 
homogeneous case, we obtain a separate decoupled system 
of linear equations for each wavenumber k,. All of the 
physical quantities associated with a given wavenumber will 
have exp (-ik,x) horizontal dependence. For an isotropic 
medium the tractions, a,,, on a boundary with a normal 
vector in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz direction are given by 

a,, = p - - ikxuz (2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
du 

d z  
u,, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 p )  2 - ik,Au,. 

Eqs (Bl) apply to a medium with the geometry shown in 
Fig. 1, for which uy is the SH displacement and (u,, u,) is 
the P-SV displacement, but are not true in general. Note 
that uYz is the SH traction, and (u,,, uZz) is the P-SV 
traction. 

For the medium in Fig. 1, eq. (8) becomes 

uyz - sy2uy = 0 

u,, - sxxu, - s,,u, = 0 

Uzz-SzxUx-SzzUz =o. 
(B2) 

Combining eqs (Bl) and (B2) we see that for the case 
shown in Fig. 1 the natural boundary condition, eq. (8), 
can be written 

du 

d z  y z  
p--y-s u = o  

- Sxxu, - S x p ,  = 0 033) 

du 

d z  
( A  + 2 p )  - ikxAu, - S,,u, - S,,U, = 0. 

B1.1 SHproblern 

The general solution of the equation of motion for SH 
waves in an isotropic homogeneous region is 

u,(x, z )  = [ A  exp ( i k Z p z )  + B exp ( - i k Z p z ) ]  exp ( - ikxx) ,  

where A and B are constants, and kT, = (w2/p2 - k:)'" is 
the vertical wavenumber. As z is positive in the downward 
direction, the first term of eq. (B4) corresponds to upgoing 
(incoming) waves and the second term corresponds to 
downgoing (outgoing) waves. A radiation boundary 
condition must forbid the existence of upgoing waves. We 
thus require 

(B4) 

Note that eq. (B5) is satisfied if and only if A = 0 in eq. 
(B4). Multiplying both sides of eq. (B5) by p,  we express 
the radiation boundary condition in the form of eq. (B3) 

du du 

dz  d z  
p -' + ik,,puy = p - Svzuy = 0. 

We can see by inspection that S,,, = - ipkzp.  

B1.2 P-SVproblem 

In a homogeneous region the P-SV displacement can be 
derived from the potentials zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 and 'ly, 

which obey the following wave equations 

(V'+ w2/a2 )@ = 0 and (V2 + w2/P2)q  = 0, 038) 

where IY and p are, respectively, the compressional and the 
shear-wave velocities infinitesimally above the lower 
boundary at z = R. The radiation boundary conditions for 
the P and SV displacement potentials are, respectively, 

d v  
- -ik,,+ and -= - i k z p v  at z = R. d@ _- 

dz dz  

k,, and k,, are the vertical wavenumbers for compressional 
waves and shear waves, respectively 

We use eq. (B9) to derive expressions for du,ldz and 
du,/dz  in terms of u, and u,. We use the radiation 
condition, eq. (B9), to replace d @ / d z  and d q / d z  in eq. 
(B7). We obtain 

u, = -ikx@ + i k z p q  

u, = -ik,,@ - ik,w. 
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We solve for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@ and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI/J to obtain where we used the identity 

Next, we re-state the radiation boundary conditions, eq. 
(B9), as constraints on du,/dz and du,/dz rather than 
d@Jdz and dI/JJdz. We obtain the following: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

w2p = p(k :  + k;,) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A + 2p) (k :  + k:,) (B17) 

to simplify the off-diagonal coefficients in eq. (B16), and 
where 

d 

dz dz 
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdux - - - (-ik,@ + ikzaI/J) 

d@ dI/J 
= -ik, - + ik,, - 

dz dz 

where we differentiated both sides of eq. (B11) with respect 
to 2, eliminated d@Jdz and dI/JJdz using eq. (B9), and 
finally used eq. (B12). We follow the same basic procedure 
to obtain an expression for duzJdz 

(B14)  _- duz - Cu, + Du,. 
dz 

The explicit values of the coefficients in eqs (B13)  and (B14)  

are 

Note that Spudich & Ascher (1983, eqs 21 and 22) derived 
similar results for cylindrical coordinates. 

We use eqs (B15) and (B3) to derive the explicit form of 
the coefficients Sij 

4 
(C(A + 2p)  - ik,A) D(A + 2 y )  

B2 Laterally heterogeneous media 

We consider SH-wave propagation in the laterally 
heterogeneous domain shown in Fig. 4 ,  where the strip just 
above the radiating lower boundary is homogeneous. W e  
expand the wavefield at the lower boundary z = R in terms 
of plane waves 

u(x,  R )  = A ,  exp ( - ik , [x)  (B19) 
I 

where k , , = l n / L  and A,  is the amplitude of each 
plane-wave component. 

The radiation boundary condition is, following eq. (B5) 

d U  
- = [ - ik , [A,  exp ( - i k r p ) J .  

I 

Since, as discussed in Appendix A, the horizontal 
dependence of our trial functions is already given by plane 
waves, we implement eq. (B20) by using S, = -i,ukzl in eq. 
(40), where k,[ is the vertical wavenumber for the j th  trial 
function. This makes eq. (B20)  a natural boundary 
condition for eq. (37). This procedure can be extended to 
the case of trial functions which do  not have their horizontal 
dependence given by plane waves, but details are not given 
here. 
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