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Summary 

The reflectivity method for the computation of synthetic seismograms, as 
devised by Fuchs, is extended to include the elastic transmission losses and 
time shifts due to a stack of layers on top of the reflecting medium. 
Numerical details of this method are described, and a comparison with 
the ray-theoretical method, as devised by Miiller, is given. The results of 
both methods agree well if the models are not too complicated. The field of 
application of these methods is the comparison with observed seismograms 
obtained from refraction studies of the Earth's crust and upper mantle. 
The reflectivity method is applied to the interpretation of observations 
along a profile in Central Europe. The compressional velocity of the lower 
crust beneath this profile increases gradually without showing a pro- 
nounced structure. At the MohoroviW discontinuity whose depth is 
about 27km the velocity increases from 6-8 to 8*Okms-'. The zone 
immediately below the Moho is homogeneous, followed by an increase 
in velocity to 8.15 km s-' at a depth of about 35 km. 

1. Introduction 
During the past few years, it has been emphasized by many seismologists that 

there is an urgent need to explain not only the kinematic but also the dynamic 
characteristics of seismic waves. However, as far as explosion seismological in- 
vestigations of the Earth's crust or upper mantle are concerned, most interpretations 
are still performed with the aid of travel times or apparent velocities alone, and the 
amplitudes of amvals are only tentatively taken into account, if at all. This is caused 
by the computational difficulties in dealing with the propagation of elastic body waves 
in currently discussed models of the Earth's crust or upper mantle. If an approxi- 
mation of such models by homogeneous layers is used, the corresponding computa- 
tional methods must permit sufficiently fast calculations even in the case of a model 
with many layers. Only then, the computation of synthetic seismograms can help 
effectively in the quantitative interpretation of observed seismograms. 

Recently, two such methods have been published, the ray-theoretical method and 
the reflectivity method, as we want to call them in this paper. The ray-theoretical 
method (Helmberger 1968; Helmberger & Moms 1969, 1970; Miiller 1968a, b, 1970, 
1971) sums the elementary seismograms corresponding to the primary and multiple 
rays from the source to the point of observation. In the reflectivity method (Fuchs 
1968c, 1970), the numerical integration of the reflectivity (or plane wave reflection 
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418 K. Fuchs and G. MUller 

coefficient) of a layered medium is carried out in the horizontal wavenumber or 
angle of incidence domain. Multiplication with the source spectrum and inverse 
Fourier transformation yield the seismograms for the displacement components. 

In this paper, the reflectivity method as described by Fuchs (1968~) is extended to 
include the elastic transmission losses and time shifts in a stack of layers on top of 
the reflecting medium. This is necessary for practical applications of the method, 
since often only the reflections from the deeper parts of a layered medium, for instance 
from the crust-mantle boundary are of interest whereas the reflections from the 
upper parts can be neglected or calculated separately. These deep reflections suffer 
transmission losses and time shifts in the upper layers which must be taken into 
account. Furthermore, a comparison of the reflectivity method and the ray-theoretical 
method is performed for simple layered models, and the advantages and shortcomings 
of both methods are discussed. Finally, a re-interpretation of a refraction profile in 
Central Europe will be given. Starting with an earlier travel time interpretation, we 
could achieve considerable improvements by modelling some of the most prominent 
amplitude characteristics of the record section of this profile. 
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2. The reflectivity method 
The model for which we want to develop the reflectivity method is shown in 

Fig. 1. It consists of n- 1 plane, homogeneous and isotropic layers on top of a 
half-space which will be termed layer n. The i-th layer is characterized by the P 
velocity ai, the S velocity pi, the density pi and the thickness hi. We assume an 
explosive point source in the free surface z = 0 without taking into account an 
interaction, i.e. the compressional wave in layer 1 is spherically symmetric, and no 
shear and surface waves are excited. We are interested in the compressional reflection 
from the reflecting zone which comprises the layers m+ 1 through n. The layers 1 
through m are assumed to produce only transmission losses and time shifts, both for 
the P wave propagating downwards from the source to the reflecting zone and for 
the reflected P wave travelling upwards to the surface. That means that we have to 
use the exact or generalized ray theory from the depth of the source to the reflecting 
zone and upwards, and the reflectivity method in its original form (Fuchs 1968c) for 
the reflection process. 
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Computation of synthetic seismograms 419 

The compressional potential of the wave from the explosive point source is 

where R 2  = r2+z2.  Its Fourier transform can be written in integral form 

0 

where F ( o )  is the Fourier transform of the excitation function F(t) ,  Jo(kr) the 
Bessel function of the first kind and order zero, j the imaginary unit, k the horizontal 
wave number, and 

V I  = (ku12-k2)* 

the vertical wave number (kul = o/al). 
The next step is to transmit the compressional wave across the interface 2 (see 

Fig. 1). The resulting Fourier transformed potential of the downgoing P wave in 
layer 2 has the same form as (2). The integrand includes additionally a transmission 
coefficient and a second term in the exponential function. This process is continued 
until layer m is reached. The compressional potential of the P wave in layer m, 
incident upon the reflecting zone, is 

where Pd(u,k) is the product of the transmission coefficients of the interfaces 
2,3, ..., m for a downgoing wave, and 

V *  = (ku,Z-k2)*, v*' = (kp,2-k2)* (4) 

are the vertical wave numbers of compressional waves and shear waves, respectively, 
in layer i (ku, = o/q, k,, = o/p,). Both types of wave numbers occur in Pd(a, k).  
This function and related ones will be given explicitly after the h a 1  results have been 
derived. 

The reflection of the incident P wave (3) gives rise to a reflected P wave whose 
potential in layer m is 

- j  C hiv ,+  C hi-z  v,,, dk. (5 )  [ (t:l (i11 ) )] 
The complex reflectivity (or plane wave reflection coefficient) Rpp(o ,k)  of the 
reflecting zone and its computation have been discussed extensively by Fuchs (1968a, 
1971). 
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420 K. Fuchs and G. MUUer 

The reflected P wave is now transmitted upwards across the interfaces 
m, m- 1, ..., 2. Its potential in layer 1 is 

CQ 

k 
4 3 ( r , z ,  0) = F(@) 1 - jO(kr) pd(O, k, app(O, k,  pu(O, k,  

i v l  
0 

where P,(o ,k)  is the product of the transmission coefficients of the interfaces 
2,3 ,  ..., m for an upgoing wave. 

Our aim is to find the vertical and the horizontal displacement in the free surface 
z = 0. Therefore, the Ikal  step is the reflection of the P wave at the free surface. 
The potential of the reflected P wave is 

exp [ - j (2 hi v i  +mi ’  dk. (8) 11 
In (7) and (S), rpp(w, k )  and rps(o, k )  are the P- P and the P - S  reflection coefficient, 
respectively, of the free surface. 

The horizontal and the vertical displacement component in layer 1 are: 

For z = 0. we get the final result: 

exp ( - 2 j  i = 1  5 h i v l )  dk (9) 

exp ( -2 j  5 hi vi  
i =1  
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Computation of syntheric seismograms 42 1 

The next step is a change of the variable of integration. We choose as new variable 
the angle y, related to k by 

k = (o/a,,,) sin y = k,, sin y. (11) 

As long as y is real, it can be interpreted as the angle of incidence at the top of the 
reflecting zone. 

Introducing the new variable, the functions Pa, P,, rpp and rps depend only on y, 
and the integrals (9) and (10) are: 

The functions G(y) and H(y)  are: 

h(y) = 2 (z)2$ 

q i  = [ (:)'-sin2y]* 
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422 K. Fuchs and G. MUller 

The displacements at z = 0 without the influence of the free surface, i.e. in an infinite 
half-space instead of layer 1, are found from (12) and (13) by setting 

j s h y  

?l 
g(Y) = - and h(y) = 1. 

The limits of integration in (12) and (13) are y1 = 0 and yz = n/2+im, the path of 
integration making a right angle at y = n/2. Integrals of the type (12) and (13) can 
be computed approximately with the aid of steepest descent or stationary phase 
methods (Fuchs 1968b, 1971) or by numerical integration (Phinney 1965; Fuchs 
1968~). It turns out that it is sufficient for body wave studies to restrict the integration 
to real angles y and to choose yl > 0 and y z  d n/2. Clarification of this choice and 
some further details of the numerical methods are discussed in the following. 

3. Numerical methods 
The most time consuming step in the evaluation of (12) and (13) is the matrix- 

computation of the reflectivity R,(o, y). This step needs to be done only once, since 
the reflectivity is the same for all distances r. The circular frequencies w and the 
angles y for which Rpp(o, y) must be known are found as follows. 

In Fig. 2, a reduced travel time diagram for the reflecting zone of an arbitrary 
model is given. The rectangle drawn in this diagram is, say, the time-distance range 
for which the synthetic seismograms are to be computed. The length T of the seismo- 
grams must be chosen large enough to include all significant arrivals, i.e. the arrivals 
corresponding to the travel time curve itself and multiply reflected phases from 
inside the reflecting zone, if their amplitudes are not negligible. Fourier and inverse 
Fourier transforms are performed with the aid of the fast Fourier transform algorithm 
(Cooley & Tukey 1965). The frequency interval is I /  T. and the frequency range extends 
from 0 to the Nyquist frequency 1/(2At), where At is the time sampling interval. 

FIG. 2. Reduced travel time diagram for the reflecting zone of an arbitrary model. 
It is assumed that theoretical seismograms are to be computed inside the rectangle. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/23/4/417/583994 by guest on 21 August 2022



Computation of synthetic seismograms 423 

However, in most cases this range can be reduced to a more narrow frequency band 
in which the excitation spectrum F ( o )  is essentially different from zero. 

The range of angles y is estimated from the apparent velocities in the time-distance 
range of interest (Fig. 2). The horizontal wave number k can be related to the apparent 
velocity c of arrivals at the surface by 

0 .  0 

am C 
k = - S ~ Y  = - . 

Given the maximum and the minimum value of c, namely c1 at point A and c2 at 
point By we get the corresponding angles yl, from 

yl, = arc sin - . (14) 
am 

c1, 2 

With this choice of y2, c2 cannot be less than the maximum P velocity in the layers 
overlying the reflecting zone. As a consequence, all radicals qi and q,', occurring in 
the exponential functions of (1 2) and (1 3), are real throughout the range of integration. 
In the usual interpretation of (12) and (13) in terms of superposed plane waves, this 
means that inhomogeneous plane waves are suppressed. 

Since we are mainly interested in applications of the synthetic seismograms to 
explosion seismological (or refraction) studies, we have replaced the Bessel functions 
in (12) and (13) by their asymptotic approximations for large arguments: 

h ( x )  z j ( & )  sin(x-+) = -(exp[j(x-G)] -exp[ - j ( x - + ) ] )  (16) 

The second exponential term in (15) and (16) corresponds to waves propagating in 
the positive r-direction (away from the source), whereas the first term describes 
waves travelling in the negative r-direction (towards the source). At large distances, 
only the outgoing waves are of physical significance. Stationary phases exist only 
for the integrals corresponding to these waves (Fuchs 1968b, 1971). The integrals 
for the incoming waves are negligible, as was shown by numerical evaluation. 

The numerical integration is performed either by Simpson's rule or by the 
trapezoidal rule (Bakun & Eisenberg 1970). We can confirm the statement of these 
authors that the trapezoidal rule produces much less numerical noise than Simpson's 
rule. The angle increment in the computations which we have performed up to now 
varied from 0.1" to 0.5". 

For the time dependence of the explosive point source, we use the derivative of 
the excitation function F ( t )  in (l), since the far field displacement of the compressional 
wave from the source is proportional to this derivative. In our programs, the follow- 
ing analytical form can be chosen: 

1 
sin&- - sinmat 0 < t < z m 

t < O a n d t > z  
F'(t) = 

, N = 1,  2, 3, ... Nn N + 2  a = -  , m = -  
z N 
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The input parameters are N and the duration 7. This function has N extrema. 
Therefore, a variety of pulses can be modelled. 

4. Comparison with the ray-theoretical method 

In this section, both the reflectivity method and the ray-theoretical method 
(Muller 1970) are applied to a number of models. Such a comparison is desirable 
since both methods contain approximations. The approximations in the reflectivity 
method are the restriction to real angles and the use of the asymptotic form of the 
Bessel functions. The approximations in the ray-theoretical method are the neglection 
of conversions of the type compressional to shear to compressional and the restriction 
to certain multiply reflected compressional rays. 

For simple liquid models, the ray-theoretical computations are exact since all 
important multiples can be included. Thus, the approximations of the reflectivity 
method can be checked. An example is given in the left part of Fig. 3 for a model 
consisting of an intermediate layer between two thick layers. The solid version of this 
model has been investigated by Siskind & Howell (1967) with the aid of model 
techniques. The unusual density variation follows from correctly modelling this 
analogue model which consisted of plates of different material and different thick- 
ness. The source pulse for the computations followed from (17) for N = 2 and 

I(. Fuchs and G. MUller 
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FIG. 3. Comparison of synthetic seismograms, computed with the reflectivity 
method and the ray-theoretical method. The seismograms on the right side are 
for a three-dimensional model which was investigated by Siskind & Howell (1967) 
with the aid of two-dimensional model techniques (al = 3-98 mm/psec, 
81 = 2.30 mm/psec, p1 = 8.92 g/cm3, hl = 150 mm, a2 = 4.51, 82 = 2.55, 
pz = 12-85, hs = 50, a3 = 5-45, P1 = 3.20, p3 = 3-93, h3 = 03). The seismo- 
grams on the left side are for the corresponding liquid model. All seismograms 

represent the vertical displacement at the free surface. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/23/4/417/583994 by guest on 21 August 2022



Comprtatlon of synthetic seLpmosrams 425 

z = 10 ps. Comparing the seismograms for the liquid model, as computed with the 
reflectivity method and the ray-theoretical method, we find very good agreement in 
all parts of the traces. This result is confirmed by computations for other liquid 
models. Therefore, the approximations of the reflectivity method are justified for 
investigations of the reflection response from a layered medium. 

Applying now both methods to solid models, we can check the approximations 
of the ray-theoretical method, since now the computations with the reflectivity 
method can be assumed to be exact. The seismograms for the solid Siskind-Howell 
model (right side of Fig. 3) differ strongly in those parts corresponding to the 
composite refracted arrival from the intermediate layer. This is due to the neglection 
of converted waves of the type compressional to shear to compressional in the ray- 
theoretical computations. The comparatively large amplitudes of these conversions 
seem to come from the extreme density variations at the boundaries of the inter- 
mediate layer. In models with intermediate layers, having constant density throughout, 
these conversions play only an unimportant role, as can be seen in the example given 
in Fig. 4. 

The only major difference between the seismograms on the left and the right side 
of Fig. 4 is found near the critical point of the reflection from the upper boundary 
of the intermediate layer (r/D = 2.67). The increase in amplitude towards the 
maximum is more abrupt in the seismogram sections computed with the ray- 
theoretical method. This is not fully correct. It is due to the fact that in our ray- 
theoretical programs the elementary seismogram of an arbitrary ray is computed for 
line source excitation in order to save computing time, the reduction to point source 
excitation being made by multiplication with a constant which is found from a 
comparison of the wave front approximations for a line source and a point source 
(Miiller 1970). The abrupt increase in the reflection amplitude towards the maximum 
near the critical point is characteristic of line source excitation (Miiller 1971). 

In the light of our present experience, we can say the following about the general 
comparison of the reflectivity method and the ray-theoretical method. The advantage 
of the reflectivity method lies in the inclusion of multiple reflections and converted 
waves in the reflecting zone. Therefore the accuracy of the synthetic seismograms is 
high. Its disadvantage are long computing times, if the reflection response has a long 
duration. If multiple reflections are disregarded for the moment, this duration is the 
interval from the first arrival to the reflection from the top of the reflecting zone. It 
increases with increasing source-receiver distance. 

This dependence of the computing time on the length of the seismogram does not 
exist, if the ray-theoretical method is used. However, in order to avoid prohibitively 
long computing times in this case it is necessary for more complicated models to omit 
multiple reflections and conversions. For crustal and upper mantle models, as they are 
discussed at present, this neglection is often permitted, but for models with stronger 
velocity and density contrasts it introduces serious errors. 

Therefore, we propose to use the ray-theoretical method in order to get an overall 
picture of the complete refraction prome under investigation, and to use the reflectivity 
method for detailed studies of special features as, for instance, the amplitude variations 
along travel time cusps or shadow zones. For upper mantle studies where the Earth’s 
curvature must be taken into account, an Earth-flattening approximation allows the 
use of both methods in their present form for horizontally layered media (Miiller 
1971). 

5. Application to observations 
In this section, some results are presented which were computed in the course of 

a reinterpretation of the refraction proae Hilders-South in Central Europe. The 
first travel time interpretation of this profile was made by Fuchs & Landisman (1966). 
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FIG. 4. Comparison of synthetic seismograms, computed with the reflectivity 
method and the ray-theoretical method. The model is solid and consists of an 
intermediate layer between two thick layers of the same material. The seismograms 
arc for the vertical displacement in the free surface. h is the dominant wavelength 
in the intermediate layer. The seismograms computed with the ray-theoretical 

method include only compressional multiples. 
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Fig. 5 shows the observed record section. Although we did not know the magni- 
fications of some of the traces, the instrumental characteristics and the shape of the 
pulse radiated by the source, we could improve a more recent travel time inter- 
pretation of this profile (Kaminski, Fuchs & Menzel 1967) by modelling some of the 
most prominent amplitude characteristics of the record section. These are firstly due 
to the Moho reflection P,, extending from about 60km to about 190km, and 
secondly due to the P, wave from below the Moho which is visible only beyond 
140 km. For the interpretation of the P, amplitude, we used the amplitude ratio of 
P, to the Moho reflection. 

We started with the travel time interpretation of Kaminski et al. (Fig. 6). The S 
velocities of this and all other models which we have investigated follow from the P 
velocities under the assumption that Poisson's ratio is 0.25 throughout the crust. 
The Nafe-Drake relationship (Talwani, Sutton & Worzel 1959) was used to derive 
densities from P velocities. Furthermore, the explosive point source is assumed to 
radiate the pulse which follows from (17) with N = 2 and 7 = 0.2 seconds. Com- 
paring the synthetic with the observed record section, we state the following dis- 
crepancies: 

(1) There are no clear observed arrivals that could correspond to the strong 
reflection from the discontinuity at a depth of about 21 km, having a reduced arrival 
time of about 1 s at the distance 180 km. 

(2) The theoretical P, wave has much too large amplitudes. Especially between 
120 and 140 km, where practically no arrivals should occur, the most prominent P, 
amplitudes are found in the theoretical section. 

Since we were mainly interested in the lower crust and the crust-mantle transition, 
we improved only those parts of the velocity-depth function below the low velocity 
zone. When doing this, we tried to keep the model as simple as possible. After some 
intermediate steps, we found model M3, shown in Fig. 7. It has a constant gradient 
layer between the low velocity channel and the Moho which lies at a depth of 27 km. 
There, the jump in velocity is from 6.84 to 8-03 km s-'. Below the Moho, a homo- 
geneous layer of thickness 7km follows. Finally, there is a transition zone, 2km 
thick, with a velocity increase from 8.03 to 8.15 km s-'. This model firstly produces 
the disappearance of the Moho reflection slightly beyond 180 km. Secondly, the 
amplitude ratio of P, to the Moho reflection is very small for distances around 130 km 
and reaches a value of 1 at a distance between 170 and 180 km. We conclude therefore, 
that model M3 is able to explain the most prominent features of the observed record 
section. The most important properties of M3 are the absence of large velocity 
gradients below the Moho and the simple structure of the lower crust. 

There are some arrivals both in Fig. 6 and Fig. 7 which do not line up along travel 
time branches. They are multiple reflections from inside the reflecting zone. We have 
not tried to identify all of them. The strongest one, arriving at the reduced time 1 s 
at the distances from 150 to 180 km in Fig. 7, is a multiple of the refracted wave in 
the lower crust, reflected at the bottom of the low velocity channel and travelling a 
second time through the lower crust. 

The synthetic seismograms in Figs 6 and 7 were computed with the reflectivity 
method. Fig. 8 shows a comparison with the results of the ray-theoretical method. 
The computing time for the seismograms with (without) transmission losses was 
about 25 per cent (5  per cent) of the computing time with the reflectivity method. The 
greater speed of the ray-theoretical computation is connected with less accuracy. 
However, it must be taken into account that the amplitude errors of observed data 
are often comparable with the discrepancies between the results of the two com- 
putational methods. 
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FIG. 6. P velocity depth function, synthetic seismogram section (vertical displaca 
ment) and travel time curve according to the travel time interpretation of Kaminski, 
Fucbs 8c Menzel(1967), compared with the observed record section. The synthetic 
seismograms and the travel time curve include only the reflection response from 
the lower boundary of the low velocity channel and the layers below the channel. 
The numbers near the segments of the velocity-depth function with nonzero 
velocity gradient are the numbers of homogeneous layers used for the approximation 

of the corresponding depth range. 
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F I ~ .  7. The same as Fig. 6 for the h a 1  model Hilders-S M3. 
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Ray method 
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r(krn) Hilders-S M 3  

FIG. 8. Synthetic seismograms for model Hilders-S M3, computed with the 
reflectivity method and the ray-theoretical method. The ray-theoretical seismo- 
grams contain only the primary re-flections, including those from the upper crust. 

6. Conclusions 

We arrive at the following conclusions: 
(1) The reflectivity method can effectively be used in the quantitative inter- 

pretation of explosion seismological observations. The same is true for the ray- 
theoretical method. In some cases, a combined use will be the optimum interpretational 
procedure. 

(2) The degree to which these new inversion tools can be applied depends strongly 
on the amplitude information which can be extracted from the observed seismograms. 
In our present study, for instance, we could not compare directly the amplitudes of 
neighbouring traces, but only the amplitudes of different arrivals in the same trace. 
This is a severe restriction of the amplitude information. Therefore, it is an urgent 
need that instrumental characteristics and actual magnification values be known in 
future measurements. 

(3) Low frequency sltering or low frequency instrumentation is favourable for an 
interpretation of the records with the aid of synthetic seismograms. In this case, the 
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noise produced by small scale inhomogeneities will be reduced, and a comparison 
with synthetic seismograms will be facilitated. 
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