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ABSTRACT

The computation of absorption spectra in a model planetary atmosphere is shown to be feasible using the
Neumann series (successive orders of scattering) solution to the equation of radiative transfer for semi-
infinite atmospheres. The method may be applied for arbitrary single scattering albedo and phase function.
For orders of scattering #>>1, the terms of the Neumann series assume an asymptotic form. With the aid of
this asymptotic form, simple expressions are given for the reflection function of the layer and the mean
number of scatterings in the atmosphere. Computations illustrating the approach to the asymptotic form,
the shape of a Lorentz-broadened absorption line, the mean number of scatterings in an atmosphere, and the
equivalent width of a Lorentz line are presented graphically for both isotropic scattering and phase functions

typical of clouds and hazes.

i. The problem

The traditional approach to the analvsis of planetary
absorption spectra in the visible and near infrared has
been through use of a model atmosphere consisting of a
molecular layer overlying a plane parallel cloud deck.
The latter is assumed to reflect solar radiation spec-
ularly, while the absorption features are assumed to
arise in the superposed molecular layer.

Chamberlain and Kuiper (1956), Chamberlain (1965)
and Belton (1968) have emphasized the necessity for
considering a more realistic model in which scattering
particles and absorbing gas are mixed in the atmosphere.
Besides being physically more satisfactory, such a model
provides better agreement with the observational data
in the case of Venus and Jupiter.

The difficulty with the multiple scattering model
arises in the necessity for solving the equation of radia-
tive transfer at as many distinct frequencies as is nec-
essary for defining the shape of the absorption line or
band being investigated. If we let 7,(r,,Q) be the spe-
cific intensity at frequency » and optical depth 7, in
direction = (arccos u,$), @, the single scattering albedo,
2(2,2) the phase function (scattering indicatrix), and
Qo= (arccos uo,¢0) the angle of incidence of solar radia-
tion, this equation takes the form
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! Contribution No. 47 from the Four College Observatories.
K’On leave from the Institute of Astrophysics, University of
yoto.

for a plane parallel, homogeneous atmosphere. Although
methods for solving this problem are now available (for
example, van de Hulst, 1963; van de Hulst and Gross-
man, 1968 ; Hansen, 1969a; Twomey et al., 1966), solu-
tion at a large number of frequency points is still a
difficult and time consuming problem. This difficulty
could be avoided if it were possible to separate the mul-
tiple scattering problem [solution of Eq. (1) in the con-
tinuum’] from the computation of absorption line shape.
One method of effecting such a separation has been
suggested by Irvine (1964); an alternative approach is
described below, making use of the Neumann series
solution to (1).

2. The Neumann series and its asymptotic form

It is well known that the solution to Eq. (1) may be
expanded in successive orders of scattering [the Neu-
mann series; see, for example, van de Hulst and Irvine

(1962)7:

LOD=R©Q2) =Y & R*n0), (2

n=1

where we have denoted the total reflected intensity by
R, and the reflection function for nth order scattering
by R*(n). It is important to note that the R* are com-
puted for the conservative case (@,=1). In general, the
R* will be functions of the total optical thickness of the
atmosphere; this dependence obviously drops out in
the present model, where we confine attention to semi-
infinite atmospheres.

Eq. (2) provides the desired separation between
effects of multiple scattering and effects of true absorp-
tion. The equation of transfer may be solved for the
conservative case to obtain the R*(n); the desired
reflection function is then obtained by the simple sum-
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mation in (2). Such a summation may be rapidly per-
formed for as many frequency points as is necessary.
The difficulty with this approach lies in the slow con-
vergence of (2) for a thick atmosphere and near con-
servative scattering [ (1—a)<<1].

The purpose of the present paper is to point out that
the following asymptotic expression holds for R*:

R*(n)~A4 Q) 1—d(@0)/n+0m2)], (3)

where 4 and d are determined by the phase function.
Clearly, once the R*(#) have been computed for =
sufficiently large that (3) holds, 4 and d may be ob-
tained from the numerical computations, Eq. (3) sub-
stituted into (2), and the problem is solved.

A means for deriving (3) has been suggested by van
de Hulst®. When (1—&,)<<1 we may write (cf. van de
Hulst, 1949; Rozenberg, 1962; Sobolev, 1968):

R, (2,Q0) =[ él R* (n,Q,Qo):l[l —5(Q9Q0)(1—a,)¥], &)

where 5(Q,Q) is determined by the phase function.
Setting

Z R*(71’>Q7QO) =R0(Q;QO); (5)
n=1
and
R, R*(n) ©
—=Y, =Yns 0
Ry Ry

we may equate Eqs. (2) and (4) to obtain

Ms
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where we drop for convenience the explicit dependence
upon angle and frequency. Expanding the right side of
(7) and equating the coefficients of like powers of &7,
we obtain

———— 32>2, (8)

s 2tl(n—2)!

Use of Stirling’s formula then yields

%~ ity ©
N

which is equivalent to the leading term of Eq. (3).
Two problems still remain. First, it is necessary to
obtain the R*(n) for small #. The traditional approach
involving repeated iteration with the A operator (i.e.,
repeated integration over both angle and optical depth)
is cumbersome for a semi-infinite atmosphere. Uesugi
and Trvine (1969) have been shown that the R*(») may
be obtained from the R*(»’), for #'< %, by integrations

3 Private communication.
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over the angular variables only. The resulting equa-
tions are

(#+”())R*(139)QO) = P (97“90)) (10)
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Finally, assuming that (3) holds for n> n*, substitu-
tion of (3) into (2) still results in a summation which,
for near conservative scattering, may require many
thousand terms. Sufficient accuracy will ordinarily be
attained (see below) by approximating this sum by an
integral of the form

L

> e i(1—d/n)

n=n*41

&/ dxx’%e‘”—d/ dax—teer . (13)
n* . n*

where we have set
(14)

a=—Ina.

3. Sample results

Computations have been made for both isotropic
scattering and two phase functions of the form

p(cosa) =bpra(gi; cosa)+ (1—b)pna(g2; cosa), (15)
where (Henyey and Greenstein, 1941)
1—g°

puc(g; cosa)= (16)

(14g>—2g cosa)?

and b<1 is a constant. The phase function labeled
HG-A in Figs. 1-4 corresponds to the parameters
g1=0.824, go=—0.55 and 5=0.9724 and is similar to
the phase function of maritime haze at 0.7 u (see Irvine,
1965 and Dermendijian, 1964). The function labeled
HG-B corresponds to g1=0.9, go=—0.75 and 4=0.95
and is similar to the phase function of a cumulus cloud
at 0.7 u, although the forward peak is not quite as sharp
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F16. 1. Verification of the asymptotic relation [Eq. (3)] for
three choices of phase function: isotropic, a.; HG-A, b.; HG-B, c.
The following pairs of angles of incidence # and reflection 6,
were used: 1, (0°,0°); 2, (0°,45°); 3, (45°,45°); 4, (45°,89°); 5,
(0°,89°); 6, (89°,89°). See text for definitions of phase functions
HG-A and HG-B.
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F1c. 2. Absorption profiles for a Lorentz-broadened line with »=NS[ra(k.+e)]1=1
formed in reflection from a semi-infinite atmosphere with continuum single scattering albedo
&.=0.95 for normal incidence and reflection. Three choices of phase function are illustrated.

as that for such a cloud. These phase functions have
also been used in numerical computations by Irvine
(1968a, b). The computations of R*(x) described below
were made from Egs. (10)-(12) using a Guassian-
type integration formula with the interval =arccos
p=(0—m/2) divided into 14 points for isotropic scatter-
ing and 28 points for the phase function (15); azimuthal
symmetry was assumed. From computations utilizing
different numbers of integration points and by compari-
son with the results of Irvine (1968a), we find that our

0.0

=210
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———HG-B
---------- ISOTROPIC
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0 %o — ol — "o 100

Fc. 3. Equivalent width of a Lorentz-broadened line as a
function of n [see Egs. (21) and (22)]. Tangents to the linear
part of the curves of growth are shown,

results are correct to at least 0.19 for isotropic scatter-
ing and about 19, for the anisotropic phase functions.

In Fig. 1 we plot In[[R* (n)n¥] vs »~1. We see from (3)
that in the asymptotic regime this relation should give
us a straight line. The asymptotic regime is evidently
reached for isotropic scattering for #~~20, and for
slightly higher orders of scattering (depending on 6
and 6¢) for the more asymmetric phase functions HG-A
and HG-B.

To obtain the total reflected intensity at a given fre-
quency we substitute (3) and (13) into (2) for n>#*>>1.
After an integration by parts we find that

n¥*

RQQ) = Y & "R*(n)+24%n* e

n=1
— (ran®)terfe (an®) | —24*dn* [ (1 —2an*)e "
427 (an®)terfcy (an®)], (17)
where we evaluate 4*(Q,Q2) from

R*(n* Q,Q0) = A*(Q,Qo)n* "t

d and a being defined by Eqs. (3) and (14), respectively,
and erfcx is the complementary error function. Fig. 2
shows the corresponding profile of a Lorentz-broadened
line, for which R, is the continuum intensity and

g .
&, =— (18)
U+K(V)+Kc
where «. is the continuum absorption coefficient and

NSa

—_— 19)
7 (1*4a?)

k(v)=
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As might be expected, the forward scattering peak in
phase function HG-A makes the line both deeper and
broader. Note, however, that the line profile for phase
function HG-B, which is more peaked in the forward
direction than HG-A but also has a more pronounced
back scattering peak, closely mimics the behavior of
the profile for isotropic scattering for the particular
value of continuum albedo chosen. This points out the
danger of using an oversimplified phase function in com-
putations of synthetic spectra.

Curves of growth corresponding to the three phase
functions considered are illustrated in Fig. 3. The equi-
valent width

o (—Rc_Ry)
W= / " (20)
0 Rc
is expressed as a function of 5, where
NS
n=—" Q= tao), (21)
T

for the multiple scattering models considered here and

where
NS
)
TQ

in the case of pure absorption (as for a specularly re-
flecting cloud layer model). In (22) ¢ is the geometric
path traveled. As Belton (1968) and Hansen (1969b)
have pointed out, the transition region between the
linear and square root regimes is much larger in the mul-
tiple scattering case than for the case of pure absorption.
We note also, as in Fig. 2, that the results for the phase
function with both a pronounced forward and backward
peak (HG-B) closely mimic those for isotropic scattering
when the continuum albedo &,=0.95.

Fig. 4 illustrates computations for the mean number
of scatterings

(22)

(ny= ¥ noR*(n) | S o"R*(n),

n=1 n=1

(23)

for the three phase functions. Although for nearly con-
servative scattering (n) is greater for the asymmetric
than for the isotropic phase function, because of the
deeper penetration into the cloud for such phase func-
tions, this is not necessarily true for smaller values of &,
if the cloud phase function has a large backward peak.
It is interesting to note that when &,~~0.95, the mean
number of scatterings for the HG-B phase function is
practically equal to () for the isotropic phase function.
This leads to the near equality of the absorption line
profiles and curves of growth for these phase functions
shown in Figs. 2 and 3.
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Fi16. 4. Mean number of scatterings () undergone by radiation
reflected from a semi-infinite atmosphere for normal incidence
and reflection and three choices of phase function.
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