Computation of Tangent, Euler, and Bernoulli Numbers*

By Donald E. Knuth and Thomas J. Buckholtz

Abstract. Some elementary methods are described which may be used to calculate tangent numbers, Euler numbers, and Bernoulli numbers much more easily and rapidly on electronic computers than the traditional recurrence relations which have been used for over a century. These methods have been used to prepare an accompanying table which extends the existing tables of these numbers. Some theorems about the periodicity of the tangent numbers, which were suggested by the tables, are also proved.

1. Introduction. The tangent numbers T_{n}, Euler numbers E_{n}, and Bernoulli numbers B_{n}, are defined to be the coefficients in the following power series:

$$
\begin{align*}
& \tan z=T_{0} / 0!+T_{1} z / 1!+T_{2} z^{2} / 2!+\cdots=\sum_{n \geqq 0} T_{n} z^{n} / n!, \tag{1}\\
& \sec z=E_{0} / 0!+E_{1} z / 1!+E_{2} z^{2} / 2!+\cdots=\sum_{n \geqq 0} E_{n} z^{n} / n!, \tag{2}\\
& z /\left(e^{z}-1\right)=B_{0} / 0!+B_{1} z / 1!+B_{2} z^{2} / 2!+\cdots=\sum_{n \geqq 0} B_{n} z^{n} / n!. \tag{3}
\end{align*}
$$

Much of the older mathematical literature uses a slightly different notation for these numbers, to take account of the zero coefficients. Thus we find many papers where $\tan z$ is written $T_{1} z+T_{2} z^{3} / 3!+T_{3} z^{5} / 5!+\cdots$, sec z is written $E_{0}+E_{1} z^{2} / 2!+E_{2} z^{4} / 4!+\cdots$, and $z /\left(e^{z}-1\right)$ is written $1-z / 2+B_{1} z^{2} / 2!-B_{2} z^{4} / 4$! $+B_{3} z^{6} / 6$! ... Some other authors have used essentially the notation defined above but with different signs; in particular our $E_{2 n}$ is often accompanied by the $\operatorname{sign}(-1)^{n}$.

In Section 2 we present simple methods for computing T_{n}, E_{n}, and B_{n} which are readily adapted to electronic computers, and in Section 3 more details of the computer program are explained. A table of T_{n} and E_{n} for $n \leqq 120$, and B_{n} for $n \leqq 250$, is appended to this paper, thereby extending the hitherto published values of T_{n} for $n \leqq 60[6], E_{n}$ for $n \leqq 100[2,3]$, and B_{n} for $n \leqq 220[7,4]$.

Using the methods of this paper it is not difficult to extend the tables much further, and the authors have submitted a copy of the values of T_{n} ($n \leqq 835$), $E_{n}(n \leqq 808), B_{n}(n \leqq 836)$ to the Unpublished Mathematical Tables repository of this journal.

Section 4 shows how the formulas of Section 2 lead to some simple proofs of arithmetical properties of these numbers.
2. Formulas for Computation. The traditional method of calculating T_{n} and E_{n} is to use recurrence relations, such as the following: Let $\cos z=\sum_{n} \geqq 0 C_{n} z^{n} / n$;

[^0]then the coefficient of $z^{n} / n!$ in $(\tan z)(\cos z)$ is
$$
\sum_{k}\binom{n}{k} T_{k} C_{n-k}
$$
and in $(\sec z)(\cos z)$ it is
$$
\sum_{k}\binom{n}{k} E_{k} C_{n-k}
$$

Hence, making use of the fact that $T_{2 n}=E_{2 n+1}=0$, we have the recurrence relations

$$
\begin{align*}
\binom{2 n+1}{1} T_{1}- & \binom{2 n+1}{3} T_{3}+\cdots+(-1)^{n}\binom{2 n+1}{2 n+1} T_{2 n+1}=1, \tag{4}\\
& \binom{2 n}{0} E_{0}-\binom{2 n}{2} E_{2}+\cdots+(-1)^{n}\binom{2 n}{2 n} E_{2 n}=0, \tag{5}
\end{align*}
$$

The disadvantage of these formulas is that the binomial coefficients as well as the numbers T_{n}, E_{n} become very large when n is large, so a time-consuming multiplication of multiple-precision numbers is implied. As Lehmer [4] has observed, we may simplify the calculations if we remember the values of

$$
\binom{2 n+1}{k} T_{k}, \quad\binom{2 n}{k} E_{k}
$$

so that when n increases by 1 we need only multiply

$$
\binom{2 n+1}{k} T_{k}
$$

by

$$
\frac{(2 n+2)(2 n+3)}{(2 n+2-k)(2 n+3-k)}
$$

to get the next value; but the method to be described here is even simpler and has other advantages.

The tangent numbers may be evaluated by noting that $D\left(\tan ^{n} z\right)$ is $n \tan ^{n-1} z\left(1+\tan ^{2} z\right)$; hence the nth derivative of $\tan z$ is a polynomial in $\tan z$. We have $D^{n}(\tan z)=P_{n}(\tan z)$, where the polynomials $P_{n}(x)$ are defined by

$$
\begin{equation*}
P_{1}(x)=x, \quad P_{n+1}(x)=\left(1+x^{2}\right) P_{n}^{\prime}(x) \tag{6}
\end{equation*}
$$

Thus if we write

$$
D^{n}(\tan z)=T_{n 0}+T_{n 1} \tan z+T_{n 2} \tan ^{2} z+\cdots
$$

the coefficients $T_{n k}$ satisfy the recurrence equation

$$
\begin{equation*}
T_{0 k}=\delta_{1 k} ; \quad T_{n+1, k}=(k-1) T_{n, k-1}+(k+1) T_{n, k+1} \tag{7}
\end{equation*}
$$

Since $T_{n}=\left.D^{n}(\tan z)\right|_{z=0}=T_{n 0}$, and since $T_{n k}$ is zero except for at most $(n+3) / 2$ values of k, formula (7) shows that the calculation of all $T_{n+1, k}$ from the values of $T_{n, k}$ essentially requires only $(n+2) / 2$ multiplications of a small number k by a
iarge number $T_{n, k}$ and $n / 2$ additions of large numbers. Since we are interested only $\ln T_{n 0}$ for odd values of n, we might try to use the relation

$$
T_{n+2, k}=(k-2)(k-1) T_{n, k-2}+2 k^{2} T_{n, k}+(k+1)(k+2) T_{n, k+2}
$$

but a count of the operations involved shows this provides little if any improvement over (7), and so the simpler form (7) is preferable.

Similarly, we have $D\left(\sec z \tan ^{n} z\right)=\sec z\left(n \tan ^{n-1} z+(n+1) \tan ^{n+1} z\right)$, hence if we write

$$
\begin{equation*}
D^{n}(\sec z)=(\sec z)\left(E_{n 0}+E_{n 1} \tan z+E_{n 2} \tan ^{2} z+\cdots\right) \tag{8}
\end{equation*}
$$

we have the recurrence

$$
\begin{equation*}
E_{0 k}=\delta_{0 k} ; \quad E_{n+1, k}=k E_{n, k-1}+(k+1) E_{n, k+1} \tag{9}
\end{equation*}
$$

Since $E_{n}=E_{n 0}$, this relation yields an efficient method for calculating the Euler numbers. A somewhat similar recurrence relation was used by Joffe [3] to calculate Euler numbers; his method requires essentially the same amount of computation, but as explained in the next section there is a way to modify (9) to obtain a considerable advantage.

The identities $\tan (\pi / 4+z / 2)=\tan z+\sec z$ and $D^{n}(\tan (\pi / 4+z / 2))=$ $2^{-n} P_{n}(\tan (\pi / 4+z / 2))$ imply that the sums of the numbers $T_{n k}$ have a very simple form:

$$
2^{-n} P_{n}(1)=2^{-n} \sum_{k \geqq 0} T_{n k}=\left\{\begin{array}{l}
E_{n}, n \text { even } \tag{10}\\
T_{n}, n \text { odd }
\end{array}\right.
$$

This relation can be used to advantage when both E_{n} and T_{n} are being calculated.
The definition of $\tan z$ implies

$$
\begin{aligned}
\tan z & =\frac{\sin z}{\cos z}=\frac{\left(e^{i z}-e^{-i z}\right)}{i\left(e^{i z}+e^{-i z}\right)}=\frac{1}{z}\left(\frac{2 i z}{e^{2 i z}+1}-i z\right)=\frac{1}{z}\left(\frac{2 i z}{e^{2 i z}-1}-\frac{4 i z}{e^{4 i z}-1}-i z\right) \\
& =\frac{1}{z}\left(-i z+\sum_{n \geqq 0}\left((2 i z)^{n}-(4 i z)^{n}\right) B_{n} / n!\right) ;
\end{aligned}
$$

and by equating coefficients we obtain the well-known identity

$$
\begin{equation*}
B_{n}=-i^{-n} n T_{n-1} / 2^{n}\left(2^{n}-1\right), \quad n>1 \tag{11}
\end{equation*}
$$

Hence, the Bernoulli numbers may be obtained from the tangent numbers by a calculation which (on a binary computer) is especially simple.

The celebrated von Staudt-Clausen theorem [8, 1] states that

$$
\begin{equation*}
B_{2 n}=C_{2 n}-\sum_{p \text { prime } ;(p-1) \backslash 2 n} \frac{1}{p} \tag{12}
\end{equation*}
$$

where $C_{2 n}$ is an integer. The table appended to this paper expresses B_{n} in this form, and, as shown below, the calculation of (11) may be carried out without any multiple-precision division.
3. Details of the Computation. By the recurrence (7) we may discard the value of $T_{n, k}$ once $T_{n+1, k+1}$ has been calculated, so only about n of the values $T_{n, k}$ need
to be retained in the computer memory at any one time. A further technique can be employed when the memory size has been exceeded; for example, suppose we start with the computation of $T_{n k}$ for $n \leqq 4$:

	$k=0$	$k=1$	$k=2$	$k=3$	$k=4$	$k=5$
$n=0$	0	1				
$n=1$	1	0	1			
$n=2$	0	2	0	2		
$n=3$	2	0	8	0	6	
$n=4$	0	16	0	40	0	24

and suppose that very little memory space is available, so that we cannot completely evaluate all of the entries for $n=5$; we might obtain
$n=5 \quad 16$
0136
$0 \quad 240$
0 *
where "*" denotes an unknown value. The calculation may still proceed, keeping track of unknown values:

$n=6$	0	272	0	1232	0	$*$	
$n=7$	272	0	3968	0	$*$		
$n=8$	0	7936	0	$*$			
$n=9$	7936	0	$*$				etc.

In this way we may compute the values of about twice as many tangent numbers as were produced before overflow occurred, avoiding much of the calculation of the $T_{n, k}$.

Since the numbers T_{n} become very large (T_{835} has 1866 digits, and T_{n} is asymptotically $2^{n+2} n!/ \pi^{n+1}$ when n is odd), care needs to be taken for storage allocation of the numbers $T_{n, k}$ if we are to make efficient use of memory space. The program we prepared makes use of two rather small areas of memory (say A and B) each of which is capable of holding any one of the numbers $T_{n, k}$, plus a large number of consecutive locations used for all the remaining values. By sweeping cyclically through this large memory area, it is possible to store and retrieve the values in a simple manner.

For the sake of illustration let us suppose the word size of our computer is very small, so that only one decimal digit may be stored per word; and suppose there are just 14 words of memory used for the table of $T_{n, k}$. After the calculation of the values for $n=4$, the memory might have the following configuration:

Here P and Q represent variables in the program that point to the current places of interest in the memory; P points to the number that will be accessed next, and Q points to the place where the next value is to be written. Only locations from P to Q contain information that will be used subsequently by the program. The symbols "." and "," represent special negative codes in the table which delimit the numbers in an obvious fashion. As we begin the calculation for $n=5$, we set area A to zero and a variable k to 1 . The basic cycle is then:
(a) Set area B to k times the next value indicated by P, and move P to the right.
(b) Store the value of $A+B$ into the locations indicated by Q, and move Q to the right.
(c) Transfer the contents of B to area A.
(d) Increase k by 2.

In the case of (13) we would change the memory configuration to

Notice that the value 16 has been stored, the pointer Q has moved to the right and (treating the memory as a circular store) then to the far left. The next two iterations of steps (a)-(d) give

$$
\begin{equation*}
k=7 \quad A=120 \quad B=120 \tag{15}
\end{equation*}
$$

Now since the terminating "." was sensed, the program attempts to store the value from area A; but since this would make pointer Q pass P, the "memory overflow" condition is sensed, and the memory configuration becomes

where "*" is another internal code symbol. The computation for $n=6$ is similar but it uses a different initialization since n is even; after $n=6$ has been processed we would have

and so on.
The above discussion has been slightly simplified for purposes of exposition. In the actual program, it is preferable to keep the numbers stored with least significant digit first, so that for example (16) would really be

in order to simplify the multiple-precision operations. A few other changes in the sequence of operations were made in order to use memory a little more efficiently (for example the value $T_{n 0}$ need never be retained).

A similar method may be used for E_{n}. This arrangement of the computation gives a substantial advantage over Joffe's method [3] because of the "*"", and it
also has advantages over (10) for the same reason.
It remains to consider the calculation of the Bernoulli number $B_{2 n}$ from $T_{2 n-1}$. Consider formula (12); if p is an odd prime, $2^{p-1} \equiv 1(\operatorname{modulo} p)$, hence if $(p-1) \backslash 2 n$, then $2^{2 n}-1$ is divisible by p. So we first compute the integer

$$
\begin{equation*}
N=(-1)^{n-1} 2 n T_{2 n-1}+\sum_{p \text { prime } ;(p-1) \backslash 2 n} \frac{(2 n)\left(2^{2 n}\right)\left(2^{2 n}-1\right)}{p} \tag{19}
\end{equation*}
$$

by referring to an auxiliary table of primes that may be calculated at the beginning of the program. Then it is merely a question of computing

$$
\begin{equation*}
C_{2 n}=N / 2^{2 n}\left(2^{2 n}-1\right)=N / 2^{4 n}+N / 2^{6 n}+N / 2^{8 n}+\cdots \tag{20}
\end{equation*}
$$

The calculation of $N / 2^{k}$ is of course merely a "shift right" operation in a binary computer, so all the terms of the infinite series on the right side of (20) are readily computed. This series converges very rapidly, and we know $C_{2 n}$ is an integer, so we need only carry out the calculation indicated in (20) until it converges one wordsize (35 bits) to the right of the decimal point. It is simple to check at the same time that $C_{2 n}$ is indeed very close to an integer, in order to verify the computations.
4. Periodicity of the Sequences. Examination of the tables produced by the computer program shows that the unit's digits of the nonzero tangent numbers repeat endlessly in the pattern $2,6,2,6,2,6$, starting with T_{3}; furthermore the two least significant digits ultimately form a repeating period of length $10: 16,72,36,92$, $56,12,76,32,96,52,16,72, \ldots$ The three least significant digits have a period of length 50 , and for four digits the period-length is 250 . These empirical observations suggest that theoretical investigation of period-length might prove fruitful.

Theorem 1. Let p be an odd prime, and let λ be the period-length of the sequence $\left\langle T_{n} \bmod p\right\rangle$. Then

$$
\lambda= \begin{cases}p-1, & p \equiv 1(\bmod 4) \tag{21}\\ 2(p-1), & p \equiv 3(\bmod 4)\end{cases}
$$

and

$$
\begin{equation*}
T_{n+\lambda} \equiv T_{n}(\bmod p) \quad \text { for all } \quad n \geqq 0 \tag{22}
\end{equation*}
$$

Proof. It is clear from the recurrence relation (7) that the sequence $\left\langle T_{n} \bmod p\right\rangle$ is determined by the recurrence equation

$$
\begin{equation*}
y_{n+1}=A y_{n} \tag{23}
\end{equation*}
$$

where the vector y_{n} and the matrix A are defined by

$$
A=\left[\begin{array}{ccccccc}
0 & 2 & & & & & \tag{24}\\
1 & 0 & 3 & & & & \\
\\
& 2 & 0 & 4 & & & \\
\\
& & 3 & \cdot & & & \\
\\
& & & & \cdot & & \\
& & & & & & 0 \\
& & & & & & 0-2
\end{array}\right], \quad y_{n}=\left[\begin{array}{c}
\\
0
\end{array}\right]
$$

For $T_{n, k}$ can contribute nothing to any subsequent value of T_{n} when $k \geqq p$.
We will show below that the minimum polynomial equation satisfied by A is

$$
\begin{equation*}
A^{p-1}-(-1)^{(p-1) / 2} I \equiv 0 \text { (modulo } p \text {) ; } \tag{25}
\end{equation*}
$$

hence (22) is valid for the value of λ given by (21). It remains to show that λ is the true period-length of the sequence, not merely a multiple of the period.

Accordingly, suppose $T_{n+\lambda^{\prime}} \equiv T_{n}(\bmod p)$ for some positive $\lambda^{\prime} \leqq \lambda$ and all large n. In view of (22) this congruence must hold for all $n \geqq 0$. Let $y=y_{\lambda^{\prime}}-y_{0}$; then $p\left(A^{n} y\right) \equiv 0$ for all $n \geqq 0$ where p denotes the projection onto the first component of the vector $A^{n} y$. But this implies $n!\alpha_{n} \equiv 0(\bmod p)$ for all components α_{n} of y, hence $y \equiv 0$, i.e., $y_{0} \equiv y_{\lambda^{\prime}}=A^{\lambda^{\prime}} y_{0}$. It follows that $y_{n} \equiv A^{\lambda^{\prime}} y_{n}$ for all $n \geqq 0$, and since the vectors y_{0}, \cdots, y_{p-2} are obviously linearly independent we must have $A^{\lambda^{\prime}} \equiv I$ (modulo p). Therefore, λ^{\prime} is $\geqq \lambda$, and the proof is complete.

It remains to verify (25), which seems to be a nontrivial identity. Clearly, the minimum polynomial of A must be of degree $p-1$, since y_{0}, \cdots, y_{p-2} are linearly independent; therefore, it suffices to calculate the characteristic polynomial of A. Let

$$
D_{n}=\operatorname{det}\left[\begin{array}{cccccc}
x & -(n-1) & & & & \tag{26}\\
-n & x & -(n-2) & & & \\
& -(n-1) & \cdot & & & \\
\\
& & & & . & \\
& & & & & x
\end{array}\right]-10 \text { - }
$$

then $D_{n}=x D_{n-1}-(n-1) n D_{n-2}$ so we have

$$
\begin{aligned}
& D_{1}=x \\
& D_{2}=x^{2}-1 \cdot 2, \\
& D_{3}=x^{3}-(1 \cdot 2+2 \cdot 3) x, \\
& D_{4}=x^{4}-(1 \cdot 2+2 \cdot 3+3 \cdot 4) x^{2}+1 \cdot 2 \cdot 3 \cdot 4, \\
& D_{5}=x^{5}-(1 \cdot 2+2 \cdot 3+3 \cdot 4+4 \cdot 5) x^{3}+(1 \cdot 2 \cdot 3 \cdot 4+1 \cdot 2 \cdot 4 \cdot 5+2 \cdot 3 \cdot 4 \cdot 5) x,
\end{aligned}
$$

and in general

$$
\begin{equation*}
D_{n}=x^{n}-s_{n 1} x^{n-2}+s_{n 2} x^{n-4}-s_{n 3} x^{n-6}+\cdots, \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
s_{n k}=\sum a_{1}\left(a_{1}+1\right) a_{2}\left(a_{2}+1\right) \cdots a_{k}\left(a_{k}+1\right) \tag{28}
\end{equation*}
$$

is summed over all values $1 \leqq a_{1} \ll a_{2} \ll \cdots \ll a_{k}<n$. (Here $u \ll v$, for integers u, v, denotes $v \geqq u+2$.) Thus, $s_{n k}$ is the sum of all products of k of the pairs $1 \cdot 2,2 \cdot 3, \cdots,(n-1) \cdot n$ with no "overlapping" pairs allowed in the same term.

To evaluate $s_{(p-1) k} \bmod p$, it is convenient to allow also the pairs $(p-1) \cdot p$ and $p \cdot 1$, since these contribute nothing to the sum. Thus for example,

$$
\begin{aligned}
s_{62} \equiv & 1 \cdot 2 \cdot 3 \cdot 4+1 \cdot 2 \cdot 4 \cdot 5+1 \cdot 2 \cdot 5 \cdot 6+1 \cdot 2 \cdot 6 \cdot 7+2 \cdot 3 \cdot 4 \cdot 5+2 \cdot 3 \cdot 5 \cdot 6 \\
& +2 \cdot 3 \cdot 6 \cdot 7+2 \cdot 3 \cdot 7 \cdot 1+3 \cdot 4 \cdot 5 \cdot 6+3 \cdot 4 \cdot 6 \cdot 7+3 \cdot 4 \cdot 7 \cdot 1 \\
& +4 \cdot 5 \cdot 6 \cdot 7+4 \cdot 5 \cdot 7 \cdot 1+5 \cdot 6 \cdot 7 \cdot 1
\end{aligned}
$$

(modulo 7). Let us say two terms $a_{1}\left(a_{1}+1\right) \cdots a_{k}\left(a_{k}+1\right)$ and $a_{1}{ }^{\prime}\left(a_{1}{ }^{\prime}+1\right) \cdots$ $a_{k}{ }^{\prime}\left(a_{k}{ }^{\prime}+1\right)$ are "equivalent" if, for some r and t and for all $j, a_{j} \equiv a_{(j+r) \bmod p}^{\prime}+t$; thus, in the above example the terms $1 \cdot 2 \cdot 4 \cdot 5,2 \cdot 3 \cdot 5 \cdot 6,3 \cdot 4 \cdot 6 \cdot 7,4 \cdot 5 \cdot 7 \cdot 1$, $5 \cdot 6 \cdot 1 \cdot 2,6 \cdot 7 \cdot 2 \cdot 3,7 \cdot 1 \cdot 3 \cdot 4$ are mutually equivalent. It is impossible for a term to be equivalent to itself when $0<t<p$, since this would imply $a_{1}+\cdots+a_{k}$ $\equiv a_{1}+\cdots+a_{k}+k t$, and $t \equiv 0$. Therefore, each equivalence class has precisely p terms in it. When $k<(p-1) / 2$ the sum over an equivalence class has the form

$$
\sum_{0 \leqq t<p}\left(a_{1}+t\right)\left(a_{1}+t+1\right) \cdots\left(a_{k}+t\right)\left(a_{k}+t+1\right)
$$

where the summand is a polynomial of degree $\leqq p-2$ in t. Any such summation may be expressed modulo p as a sum of terms of the form

$$
c \sum_{0 \leqq t<p}\binom{t}{j}=c\binom{p}{j+1} \equiv 0, \text { since } 0 \leqq j<p-1,
$$

so $s_{k p} \equiv 0$. It follows that

$$
\begin{equation*}
D_{p-1} \equiv x^{p-1}+(-1)^{(p-1) / 2}(p-1)!(\operatorname{modulo} p) \tag{29}
\end{equation*}
$$

and an application of Wilson's theorem completes the proof of (25).
Theorem 2. Let p be an odd prime, and let λ be the period-length of the sequence $\left\langle E_{n} \bmod p\right\rangle$. Then

$$
\lambda= \begin{cases}p-1, & p \equiv 1(\bmod 4) \tag{30}\\ 2(p-1), & p \equiv 3(\bmod 4)\end{cases}
$$

and

$$
\begin{equation*}
E_{n+\lambda} \equiv E_{n}(\bmod p) \quad \text { for all } \quad n \geqq 1 \tag{31}
\end{equation*}
$$

Proof. Make the following changes in the proof of Theorem 1:

$$
A=\left[\begin{array}{ccccccc}
0 & 1 & & & & & \tag{32}\\
1 & 0 & 2 & & & & \\
& 2 & 0 & 3 & & & \\
& & 3 & & . & & \\
& & & & & . & p-1 \\
& & & & & p-1 & 0
\end{array}\right], \quad y_{n}=\left[\begin{array}{c}
E_{n, 0} \\
\\
E_{n, 1} \\
\vdots \\
E_{n, p-1}
\end{array}\right]
$$

Then the minimum polynomial equation satisfied by A is

$$
\begin{equation*}
\left.A^{p}-(-1)^{(p-1) / 2} A \equiv 0 \text { (modulo } p\right) \tag{33}
\end{equation*}
$$

The proof is a straightforward modification of the proof of Theorem 1.
The congruences (22) and (31) were obtained long ago by Kummer (see for example [5, p. 270]), but it was not shown that the true period-length could not be a proper divisor of the number λ given by (21), (30). More general congruences given
by Kummer make it possible to establish further results about the period-length:
Theorem 3. Let p be an odd prime, and let λ be given by (30). Then

$$
\begin{array}{ll}
T_{n+\lambda p^{k-1}} \equiv T_{n}\left(\operatorname{modulo} p^{k}\right), & n \geqq k, \\
E_{n+\lambda p^{k-1}} \equiv E_{n}\left(\operatorname{modulo} p^{k}\right), & n \geqq k \tag{35}
\end{array}
$$

Proof. Assume $n \geqq k$ and define the sequence $\left\langle u_{m}\right\rangle$ by the rule

$$
\begin{equation*}
u_{m}=(-1)^{(p-1) m / 2} T_{n+(p-1) m}, \quad m \geqq 0 . \tag{36}
\end{equation*}
$$

Kummer's congruence for the tangent numbers may be written

$$
\begin{equation*}
\Delta^{k} u_{m} \equiv 0\left(\text { modulo } p^{k}\right), \quad m \geqq 0, \quad k \geqq 1, \tag{37}
\end{equation*}
$$

where $\Delta^{k} u_{m}$ denotes

$$
u_{m+k}-\binom{k}{1} u_{m+k-1}+\binom{k}{2} u_{m+k-2}-\cdots+(-1)^{k} u_{m} .
$$

We will prove that (37) implies

$$
\begin{equation*}
u_{m+p r-1} \equiv u_{m}\left(\operatorname{modulo} p^{r}\right), \quad m \geqq 0, \quad r \geqq 1 \tag{38}
\end{equation*}
$$

and this will establish (34). Eq. (35) follows in the same way if we let

$$
u_{m}=(-1)^{(p-1) m / 2} E_{n+(p-1) m} .
$$

Assume Eq. (37) is valid for some sequence of real numbers (not necessarily integers) u_{0}, u_{1}, \cdots; thus, $\Delta^{k} u_{m}$ is an integer multiple of p^{k} when $k \geqq 1$, but not necessarily when $k=0$. We will prove that the sequence $u_{m} / p, u_{m+p} / p, u_{m+2 p} / p, \cdots$, for fixed m also satisfies Eq. (37), and this suffices to prove (38) by induction on r.

Let E be the operator $E u_{m}=u_{m+1}$. Eq. (37) may be written $(E-1)^{k} u_{m} \equiv 0$ (modulo p^{k}), and our goal as stated in the preceding paragraph is to show that $\left(E^{p}-1\right)^{k}\left(u_{m} / p\right) \equiv 0\left(\operatorname{modulo} p^{k}\right)$, i.e. $\left(E^{p}-1\right)^{k} u_{m} \equiv 0$ (modulo p^{k+1}). Let $f(E)=E^{p-2}+2 E^{p-3}+\cdots+(p-2) E+(p-1)$; then $E^{p}-1=$ $(E-1)(p+f(E)(E-1))$, hence

$$
\left(E^{p}-1\right)^{k} u_{m}=\sum_{0 \leqq j \leqq k}\binom{k}{j} p^{j}(E-1)^{2 k-j} f(E)^{k-j} u_{m}
$$

and each term in the sum on the right is an integer multiple of $p^{2 k}$. Hence, we have proved in fact that ($\left.E^{p}-1\right)^{k} u_{m} \equiv 0$ (modulo $p^{2 k}$), which is more than enough to complete the proof of the theorem.

Note that Eqs. (34), (35) do not necessarily give the true period-length of the sequence mod p^{k} when $k>1$; although (34) is "best possible" when $p=5$ and $k=2,3,4$, the tangent numbers have the same period-length modulo 9 as they do modulo 3.

The tangent number $T_{2 n+1}$ is divisible by 2^{n}, so the period length of $T_{n} \bmod 2^{r}$ is 1 for all r. Eq. (35) is valid for $\lambda=2$ when $p=2$, since Kummer's congruence (37) holds for $u_{m}=E_{n+2 m}$. In particular, we may combine the results proved above to show that for any modulus m the sequences $T_{n} \bmod m, E_{n} \bmod m$ are periodic, and the period-length divides $2 \phi(m)$.

Table 1. The first 60 nonzero tangent numbers

1804708828

$0 \& I \& L Z 9888$
$962 \& 788866$
8668 ITEIIE

$6008780 \& I T$
\＆69もLLZL80
LIFZILI 6 Gも
L8IZ9880I
8LZL78L8IE
9968799069

0
6
20
0
1
0
0
10

LLZZ060828

80
10
0
0
0
0
0
0 2662250632

4508016361

∞
7
0
$=1$
-1
8
8
8
:---
1
10
10
10
0

8210438295 4255826189 6377818583 2252421375
4705763027
 20
0
7
0
10
0
0
0
0
0
 30
80
$4+1$
40
0.
0. -0
0
4
7
10
10
0
15
10 ∞
∞
1
10
0
10
$\frac{1}{3}$
$\frac{3}{6}$ 399106L L8も 87\＆0667\＆20 I897もLOLEL 9
9
10
10
N
0
0
0

 N
N
0
0
0
0
8

8 \begin{tabular}{l}
01

\multirow{2}{-1}{}

ㄱ

6

8

∞

\hline

100

10

08

0

0

10

0

0

\hline 18

∞

0

0

N

N

0

4

8

8

\hline

 829LOTELLL

0

0

0

8

0

0

0

0

\hline
\end{tabular}

0
0
0
0
0
10
0
0
0
0
:---
N
N
N
N
00

0
0
10
4
4
0
0
0

 5098301378

99もリンスもで0
 モ999076628 90896909も G99919iti9
 － 2011865968 IGGモもZZ991 08962I66IT Z6666もも88I
$68877 G 9999$ T968z9LTL\＆
 1278606958

6534977615 3871837828 5127146296 7296825215 4140134793 1135561434 $09927 \angle G 96 Z$ 92Z68LI06L 20790t9189 5215971711 1972782143
 9490537680 3312556087 ∞
10
10
10
10

10 \begin{tabular}{l}
20

0

0

0

0

0

0

\hline∞

0

0

0

1

1

1

\hline 0
\end{tabular} GLGI899009 04LL99IELT 8ZL0L9880Z I606Z7649I

280688I688
 1459533577 7004078003 2466184489 1483758302 3711110813
 4828218413
7947000832 ．

7042772066 9937408986 | 8 |
| :--- |
| 8 |
| |
| N |
| N |
| 0 |
| 0 |
| 0 | 2879473499 §్ م高

 0277448013 | ∞ |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |

 1
8
8
8
8
1 420 7128707035 No 88608\＆1z82

 플
 N
No
N
N
ल⿵ 오
8
8
0
0

0 | 4 |
| :--- |
| 0 |
| 8 |
| 8 |
| 8 |
| 8 | GLZ0989ZLT

 9116874639 | -1 |
| :---: |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 | 2020990976.

 モ99198L098 \＆660760898

	∞		0	θ
	∞	8		
\%	\cdots	O	0	0
		-	O	N
,		N	∞	H
	N	∞		
10 10)	-	+	N	

Table 2. The first 61 nonzero Euler numbers

3090736003
7489775212 8162972003
26666186081
0425524177
3301618182

7540761705
1850937881.
6929223693
0288452845.
2342880492
9395592341.
6011920010
3229383700
0083336722
5318908480
2167040547
9771259876
9181896262
6080538087
5675761398
6771997435
5931029338
5634078984
8585798821
8857854461
4824356715
2164140484
9892539001
7857968115

9695760705 969576705. 0072074223 7945376961 ． 6315007150 6806459548 8732198729 $\begin{array}{r}3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline 1 \\ \hline 1\end{array}$ 5135032296
 6417049760
 998TL0\＆60G
 8
12
0
0
0
0
0
0 29
7
0
8
8
0
0
 0
0
0
0
0
0
0

 9166979982 99モ2897897 98LZ6Z8067
8LGZZ8LLIも耳N
0
0
0
0
N
N

N 3990906470 | N |
| :--- |
| 0 |
| 1 |
| 0 |
| 0 |
| 0 |
| 0 |
| | 6923579721 ．

 8
8
8
8
8
8

8 7907250365 | 4 |
| :--- |
| 0 |
| 10 |
| 10 |
| 10 |
| 10 |
| 0 | 2108762470合

 16L888ゅ889 6617894181 5749485710 1844380139 9864476977 8322369771 3532111069 7754436545 9721536598 9736641878 6411370597
 99も\＆887I88 0168641438
 2915758412

8
8
8
of
of
8

 10
$\stackrel{1}{8}$
$\stackrel{1}{4}$
8
8 융 N

 \begin{tabular}{l}
9

0

0

\multirow{1}{4}{}

H_{1}

0

0

 0957582424

20

0

0

0

0

1

\hline 1
\end{tabular} $-\quad$

B
O
N
N
No
No H
0
0
0
0
0
0
0
0
 19
4
10
8
$=$

4
0
N
N
N

 9698678882

F

）

1456

$$
2850517
$$

5905747207
1292
8769867
7270601714
1862

13021595
$+$

98	72365
100	290352834
102	121
104	526306
106	2374073071
108	1111
110	5403078
112	2
114	14213
116	76842618
118	42
120	248839

Table 3. The first 250 Bernoulli numbers
$B_{0}=1, B_{1}=-1 / 2, B_{2 n+1}=0$ for $n \geqq 1$, and the values of $B_{2 n}$ for $1 \leqq n \leqq 125$ appear below in the form $C_{2 n}-\left\{p_{1}, p_{2}, \cdots, p_{k}\right\}$.
This notation stands for $C_{2 n}-1 / p_{1}-\cdots-1 / p_{k}$; thus $B_{4}=1-\{2,3,5\}=1-1 / 2-1 / 3-1 / 5=-1 / 30$. The Bernoulli numbers have been expressed in this form here, since the numbers $C_{2 n}$ have not been tabulated before.

B_{n}
6

	N	N	N
	N	N	

-5250
2230181
-976845219
$\underset{7}{4}$
∞
$\substack{8 \\ 0 \\ 1 \\ 1 \\ 1}$
9821443
-4841260079
웅
\approx

126
128
130
132
136
138

 :
 웅 R 5805824257
Table 3-Continued 0015332666 2452526426管
 0025726591 4599845957 0718881721 1808148735 4804543981 18024302926
 9883872814 2245962893 9802393011
4759158434 6690267498
4882999447
1691918757
7997886065 6690267498
4882999447
1691918757
7997886065 4864565966
6918602388 1491857990
7855114057 0549942324
3721687111 9039967369 9499436486 $-\{2,3\}$ 1228952384 9521852558 0112735747 ${ }_{3027736635}^{83445}$ 41, $98,61\}$
884221062
847202350 8447202350 ${ }_{3111814531}$ 8779298231 6798669571
1938478819
5446919894
0640452814
3738272150
1773876814
 E
 Z9289IZLEE 116051999 0071684324 2776912707 5056655269 \{2 3,5,7,11,13,31, \qquad 5042431195 $-\{2,3,5\},{ }^{750082233}$ ${ }_{5958141510}^{3295160585}$
 6078013452 7075399446
 9055078103 8286208932 3095520443 1706618959
 앙
 앙 N N N
N
os
os
Fo
 6203851158
4312353272 4312353272
6438279520
4167780767
1489529605
2445573185
0252803139

LS6998629 9179638977
1283226347
0377552432
1149421273 8758785424
5763813725 5678971000
8018574251 5426552811
2087390581 9040083595
7468948154 7241070558
4147212665 3721687111
 N
)
 1 7727583015
302208918

$H 6$
H
10
0.
©
0

$\underset{1}{\sim} \quad \frac{\pi}{\sim}$

0

3902826948	9128853371	3429355657	1403660905
4757739143	3417411584	1178927312	4036225303
0009611241	4727926748	9281199287	3335083984
4333801645	3321797763	8224372602	4150845715
9949979112	$-\{2,3,5,7,13,103\}$		
8200465711	7111149489	8242731374	8983148899
5262230714	1130489366	8334448739	3615611074
3986637022	4655275319	4679418664	6682265708
7933278680	1228521411	1840875841	2535715340
7664139458	$-\{2,3\}$		
5598029405	7332559105	9370917366	3618746795
3799606865	5970041175	9308402125	9096461499
8802899119	2186757099	43849988570	4423384432
7170675162	8536213237	9360250776	4120246691
2193925929	$-\{2,3,5,17,53\}$		
6295759279	1981851064	9676853975	9962892161
8959297983	4925158772	7204489612	7090496935
2201695440	4553092124	5210024031	0159699351
5827189886	2459182485	1689483118	7470399162
7938441124	0725752244	$-\{2,3,7,11,31,43,71,211\}$	
9554015377	2712429171	4251219952	0385256050
1720376565	1689837517	8826924331	4587153964
0123632318	8057368512	1550902842	4409830023
4213714925	3445893517	1858879998	4318266834
2760829621	9105036976	$-\{2,3,5,107\}$	
0322637794	4128093634	5107953790	8103711340
3304042329	5091056631	6499243600	5693167818
1809297698	3100932819	7867121979	7119475720
3084385157	3109320947	9856004904	0741960957
1367729728	8448950602	$-\{2,3\}$	
5916259639	3124444282	2957000240	1395817760
2128994899	8561746180	2936510368	0530514353
4002045806	3281621851	7344439893	1506681060
2584232544	7916932745	4283324504	8399788068
2690855641	2817155661	$-\{2,3,5,7,13,19,37,73,109\}$	
8725524544	3288258762	4852939477	9681195006
5610846395	2039233284	5981956117	8018896163
9040581129	6983885871	3098394359	2743108529
105			

4356010999
$-\{2,3\}$
4714139788
7367883712
0695460686
3855375811
$-\{2,3,5,11,23\}$
6452873285
8912755517
6559804985
4443377036
$-\{2,3,7,223\}$
9480952331
4617400054
9313949607
7147855342
7153769200

 3107545216
8180151498
9552136116
0490781228
4210865512

 3270373100
2253504769
3066072567
2309724077
1427313172 7318633684
1020735696
1961740985
2820977951
6084050515
 7772745635第 4835379696 9974452549 1307012711 3152138601 5355305441 7991300396 ∞
0
0
0
0
0
10 nien
N
0
0
0
0 H
H
H.
0
0

0 \begin{tabular}{l}
3

70

\multirow{2}{0}{}

N

10

10

2

\multirow{2}{*}{}

0

0.0

0.0

0
\end{tabular} 8

.8
8.
8.8
8.8

 N
0
0
0
6
6
6 1212412493
2980369933
3240064474
6948409495
9965846795 8545665041 6769177869 2068055925 8399738934 2921608803 7089908426 6401867092 1224998971 2850318091 0382549614 8205790276 4842136656 5728117654 8082620122 ¢G7L069808 7362681132 L899787809
010%
0
0
0
0
0
0
0
0 1542593785
3074615208
6392836448
3402243744
7565109793

4409318639
3706834819
8186765908
5616716658
3974606583

5216129798
8452631715
2671578428
4723944327
7437321421

 $-\{2,3,5,7,13,229\}$ $\stackrel{\sim}{=}$ 1753289288 3873465183 4210113949 9461290535 2596755565 7119153292 2848785677 1045408568 5693032632 0819895653 7136781907 5955958690
 6901247289 0714040934 7099813261
$-\{2,3,5,17,29$ 3530766080

 -
 8194281926
3758251258
4109365080
0677907520
5436614108 $-\{2,3,11,47\}$
6162523200
3188681185 3188681185 6313289429
 8248612456
 5138058297
4604199461
1807840321 -304957517

O

1427295874 $\stackrel{8}{1}$

232615

N
230

0
6
6

$\begin{aligned} & 99 \triangleright \& z 8 \varepsilon g c 9 \\ & 98099069 z 6 \end{aligned}$	
867LLT8LEG	
\＆\＆LEE98988	

6L107GGLI6 $-\{2,3,5,7,11,13,17,31,41,61,241\}$ 0
1
1
1
10
10
0
0
0
0
0
0
0
0
0
0
0
1
0
1

 2
0
1
1
1
1
1
1
1
1
0
0
4
10

 9
20
4
0
0
10
1
0

0
8
8
0
0
1
0
0
1

 22
20
0
10
1 780【モモZ82Z 7390596305

1568094572 1568094572 | 91 |
| :--- |
| 4 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 | $-\{2,3,5,59,233\}$

 +
$+\infty$
10
0
0
0
0
∞ $\{2,3,5,59,233$
8699496902

Mathematics Department
California Institute of Technology
Pasadena, California 91109

1. Thomas Clausen, "Theorem," Astr. Nachrichten, v. 17, 1840, cols. 351-352.
2. S. A. Joffe, "Calculation of the first thirty-two Eulerian numbers from central differences of zero," Quart.J. Math., v. 47, 1916, pp. 103-126.
3. S. A. Joffe, "Calculation of eighteen more, fifty in all, Eulerian numbers from central differences of zero," Quart. J. Math., v. 48, 1917-1920, pp. 193-271.
4. D. H. Lehmer, "An extension of the table of Bernoulli numbers," Duke Math. J., v. 2, 1936, pp. 460-464.
5. Niels Nielsen, Traité Élémentaire des Nombres de Bernoulli, Paris, 1923.
6. J. Peters \& J. Stein, Zehnstellige Logarithmentafel, Berlin, 1922.
7. S. Z. Serebrennikoff, "Tables des premiers quatre vingt dix nombres de Bernoulli," Mém. Acad. St. Petersbourg 8, v. 16, 1905, no. 10, pp. 1-8.
8. K. G. C. von Staudt, "Beweis eines Lehrsatzes die Bernoullischen Zahlen betreffend," J. für Math., v. 21, 1840, pp. 372-374.

[^0]: Received February 6, 1967.

 * Supported in part by NSF Grant GP 3909.

