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Summary 
By using a cubic spline interpolation method a representation of seismo- 
logical travel-time tables is achieved which is highly continuous. Diver- 
gence coefficients for seismic phases computed from this representation 
are free from non-essential discontinuities and are thus more meaningful 
than those obtained using other methods of interpolation. Results are 
compared with those obtained by others. For six phases results are 
given in graphs and tables. 

Recently the use of amplitudes in seismic studies has increased. Theoretical 
amplitudes can be obtained from travel times or from the structure of the Earth. 
If we had an ‘ exact ’ structure we could derive the amplitude distance relationship 
directly from it, but nothing would really be lost if we first computed a travel-time 
table and used it to obtain the amplitudes. In reality no exact structure is known, 
so if we have a good travel-time table it may serve as the source for an amplitude 
table. The present work deals with one aspect of obtaining theoretical amplitude 
tables for the various body-wave phases. 

The amplitude is the result of various factors, among them geometric spreading, 
inelastic attenuation, the radiation pattern, etc. In addition, for phases which are 
reflected at boundaries (e.g., PcP, PS), the reflection factor is also to be considered. 
We are dealing with all these factors in a more general work; here we only want to 
report on a technique we use for obtaining the divergence coefficient caused by 
geometric spreading. 

The divergence coefficient f can be obtained from the travel times (Singh t 
Ben-Menahem 1969) by 

where the angles are as shown in Fig. 1. The suffix h always describes the focus 
and the suffix 0 indicates the level of the recording station (with or without stripping 
of the crust). v is the velocity of propagation of the wave and p is the density. We 
can recast this function into a more useful form in which Darameters 
directly on the travel times appear as: 

depending 

(2) 
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0 

FIG. 1. Definitions for Formulae 1 and 2. 

where r is the distance from the centre, p = dt/dO is the ray parameter, q = r/v,  and 
t is the travel time. 

This last form off underlines the difficulty of obtaining f from travel-time tables, 
as it depends not only on the first derivative of t with respect to 8, but on the second 
derivative as well. Thus using travel-time data as our input necessitates two numerical 
differentiations with all the problems that ensue. 

One of the more recent works which include the computation of amplitudes is 
that of Julian & Anderson (1968). There, the starting point is from a known point 
structure of the Earth and Julian & Anderson derive the amplitudes resulting from 
this structure. If the Earth had full spherical symmetry, and if all its parameters 
were exactly known, amplitude factors of any desired accuracy could be obtained. 
In reality, as there is no such symmetry, and the parameters are only known up to 
certain error (in the best case), we deal only with an approximation, and we have to 
realize that our results are only approximately correct. 

As an example we take the results of Julian & Anderson for Jeffreys’s model. 
Jeffreys (1959) gives his velocities as a function of the relative radius r /R  ( R  being 
the radius of the Earth up to the Moho 6338 km) for 1-00 (0.01) 0.90 and 0.90 (0.02) 
0.56 and also for 0-55, after which the core, which is of no interest in our present 
work, is reached. Julian & Anderson computed the velocities for the region 
r /R  = 0.94 to r /R  = 0-84 using four-point Lagrangian interpolation, at steps of 
0.005. For the actual computation of the amplitude factor and the other derived 
quantities a MohoroviW velocity dependence of v = arb between the points of 
distance r/R = 0.005 is taken. This form of exponential interpolation is really very 
close to a linear one. By this procedure we get discontinuous variations of o not 
only at every tabulated point of Jeffreys, where the cubic interpolation function 
changes, but also to some degree at every derived point, as the almost linear interpola- 
tion function changes there. These discontinuous variations are important in the 
computation of amplitude factors, which are dependent on the first two derivatives 
of t ,  and these derivatives become discontinuous. In Fig. 2 we show Julian & 
Anderson’s result, and attention is drawn to the region beyond the 20” discontinuity. 
It seems clear that the ‘ hooks ’ seen in the amplitude curves are a result of the method 
of interpolation, and one cannot claim that they are an intrinsic property of Jeffreys’s 
structure. If the cubic interpolation formula had been used to obtain more inter- 
mediate points: we would have a greater number of very small hooks, and only be 
left with bigger ones at points corresponding to Jeffreys’s original tabulated velocities. 
As we cannot assume that the real Earth puts its discontinuities just at the points in 
Jeffreys’s table, we are justified in saying that the hooks are a result of the computa- 
tional method. We do not claim that there are no discontinuities; all we state is 
that we cannot find them from the data. 
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FIG. 2. Results of Julian and Anderson for ‘ dt/dA and amplitude, considering geo- 
metric spreading only, for P waves in Jeffreys Earth Model Surface Focus’. 

Our method uses as data the Jeffreys-Bullen travel times (1967) for surface foci, 
and we thus have a discrete set of information. As we need the first two derivatives 
of the times we have to use some form of interpolation (explicit or implicit). Lagran- 
gian interpolation, or divided differences (which is another name for the same method), 
fits polynomials between two neighbouring points, causing discontinuities in the 
derivatives at every tabulated point. As an alternative we suggest the use of cubic 
splines as a method of interpolation. Curtis & Shimshoni (1970) have previously 
used cubic splines successfully in the somewhat related problem of smoothing obser- 
va tional seismic travel times. 

Cubic splines get their name from a tool used by draftsmen to draw a con- 
tinuous curve between points, using a flexible thin strip of wood (the spline). With 
this tool the draftsmen have a flexible French curve. The strip is anchored in 
place by weights, and made to pass through or near specified points. The resulting 
line has continuous curvature, with jumps in the rate of change of the curvature at 
the points of the weights (the joints or the knots). Mathematically the line is con- 
tinuous and also has continuous first and second derivatives. At the joints, jumps 
of the third derivative are permitted, but between them the line is described by a 
cubic polynomial. Because of the continuity requirements, a curve with n joints is 
determined by just n + 2 parameters. 

The computational program finds the required number and location of the 
joints. Then we minimize the squares of the deviations at the original tabulated 
points, while attempting to minimize the jumps of the third derivatives at the joints. 
We try to use the smallest possible number of joints while still keeping the deviations 
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within the uncertainties of the table. We also pay attention to the sign of the devia- 
tions; if we see that between two joints all the deviations or almost all of them have 
the same sign, we add another joint in the middle. 

We used cubic splines on the surface foci table of Jeffreys & Bullen for P, and 
then computed the amplitude factor from the resulting travel-time function. Fig. 3 
shows our amplitude :factor which is also drawn on a logarithmic scale. Fig. 4 
shows our result superimposed on that of Julian & Anderson. As the travel 
time of P is made up of two branches, one up to about 19 O and the other from there 
onwards, we have a discontinuous first derivative near 19 O. We thus fitted the table 
up to 19" by one cubic spline and the table from there to the end by another cubic 
spline. Formulae (1) and (2) are invalid at the discontinuity. We claim that our 
result is as good an approximation to the amplitude factor as can be obtained from 
the data. 

In general, for phases with discontinuous derivatives, one can still use cubic 
splines as long as one remains on a single branch, and treats the other branches 
separately. 

At the final stage, while computing the cubic spline values for the times of the 
P and S phases (surface foci), we thus split the range of interest into the two branches 
caused by the 20 O discontinuity of the Jeffreys-Bullen times. We found that the two 
branches meet at a distance of about 19.6' for P and at a distance of about 20.3 O 

I I 1 I I I I 
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Table 1 

Divergence factors for P and S waves for deep focus (h = 0.06R) 
events; the recording station is on the top of the mantle. 

A 

15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

45 
46 
47 
48 
49 
50 
51 
52 
53 
54 

Divergence coefficients 
P 

65.23 
60.18 
55.63 
51.53 
47.73 
44.18 
40-91 
38.00 
34.69 
31.40 

28.14 
25.28 
22.78 
20.26 
18.87 
19.87 
20.68 
20.97 
19.07 
17.13 

15-12 
14-46 
13.84 
13-25 
14.35 
15.50 
16.45 
16.43 
16.08 
15.75 

15-44 
15.13 
14.84 
14.69 
14.72 
14.74 
14.75 
14.75 
14.74 
14-70 

S 

91.74 
82.06 
73.12 
64.86 
57.08 
49.50 
41.69 
36.69 
33-08 
29.45 

25.75 
21.84 
19.75 
17.74 
15.67 
13.47 
13-20 
14.67 
15-86 
16-84 

17.58 
17-29 
17.01 
16.74 
16-48 
16.08 
15-59 
15.12 
14.67 
14.24 

13.86 
13-49 
13.14 
12.80 
12.56 
12.38 
12.20 
12.03 
11.95 
12-09 

A 

55 
56 
57 
58 
59 
60 
61 
62 
63 
64 

65 
66 
67 
68 
69 
70 
71 
72 
73 
74 

75 
76 
77 
78 
79 
80 
81 
82 
83 
84 

85 
86 
87 
88 
89 
90 
91 
92 
93 
94 

95 
96 
97 

Divergence coefficients 
P 

14.29 
13.91 
13-53 
13.17 
12-82 
12-48 
12.26 
12-07 
11.88 
11.71 

11 a53 
11.36 
11.21 
11-08 
10.95 
10.82 
10.69 
10.57 
10.44 
10.30 

10.16 
10.03 
9.90 
9-77 
9.64 
9.50 
9.37 
9.23 
9.10 
8.97 

8.85 
8.38 
7.76 
7-12 
6-44 
5.70 
4.86 
4.27 
3.93 
3.57 

3.16 
2-70 
2.15 

5 

12.21 
12.32 
12.41 
12.24 
12-03 
11.82 
11.63 
11.46 
11.34 
11 *23 

11.11 
11a0 
1 1.05 
11-10 
11.13 
11.17 
11.00 
10.67 
10-36 
10.04 

9.78 
9.85 
9.90 
9.95 

10.00 
10.04 
10.08 
10.1 1 
10.13 
10.12 

10.04 
9.95 
9.86 
9.78 
9.23 
8.56 
7.86 
7.12 
6.40 
5.71 

4.94 
4-03 
2.95 
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Table 2 
Divergence factors for PcP and ScS waves for deep focus 
(h = 0-06R) events; the recording station is on the top of the mantle. 

A 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

Divereence coefficients 
PCP 
10.13 
10.18 
10-24 
10.29 
10.35 
10.41 
10.47 
10.53 
10.60 
10.55 
10.48 
10-41 
10.32 
10.24 
10.15 
10.06 
9.97 
9.75 
9.48 
9.21 
8.92 
8.92 
9.05 
9.17 
9.31 
9.30 
9.23 
9.15 
9.07 
8.98 
8.88 
8.78 
8.69 
8.57 
8.44 
8.30 
8.16 
8.02 
7.88 
7.73 
7.58 
7.43 
7.29 
7.14 
7.00 
6.85 
6.70 
6.54 
6.38 
6.23 

scs 
10.48 
10.55 
10-61 
10.67 
10.77 
10-87 
10.98 
10.87 
10.72 
10.55 
10.38 
10-19 
10.00 
9.95 
9.93 
9.92 
9.91 
9.91 
9.91 
9.86 
9.78 
9-70 
9.61 
9.53 
9.45 
9.38 
9.31 
9.25 
9.18 
9.12 
9.06 
8-91 
8.71 
8.49 
8.27 
8.05 
7.81 
7.66 
7.62 
7-58 
7.54 
7.50 
7.46 
7.40 
7.29 
7.18 
7.06 
6.95 
6-83 
6.71 

A 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 

Divergence coefficients 
PCP 
6.17 
6.1 1 
6.05 
5.99 
5.93 
5.87 
5.81 
5.75 
5-65 
5.54 
5.42 
5.31 
5.19 
5.07 
4.95 
4.82 
4.64 
4.42 
4.19 
3.95 
3.70 
3.42 
3.13 
2.80 
2-57 
2.61 
2.65 
2.70 
2.74 
2.78 

2.82 
2-86 
2.90 
2.88 
2-86 
2.85 
2.83 
2.81 
2.79 
2.77 
2.76 
2.66 
2.54 
2.40 
2.26 
2.10 
1.93 
1-75 

scs 
6-61 
6.51 
6.41 
6.31 
6.20 
6-10 
5.99 
5.88 
5.78 
5.66 
5.55 
5-44 
5.34 
5.24 
5.15 
5.05 
4.95 
4.85 
4.75 
4.64 
4.53 
4.43 
4.31 
4.20 
4.08 
3-94 
3.79 
3.64 
3.48 
3.32 
3.15 
2-96 
2.77 
2-56 
2.34 
2-09 
1.80 
1 a77 
1.76 
1 *74 
1.73 
1.71 
1 *70 
1 4 8  
1.67 
1-65 
1.64 
1.63 
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for S. At these points the travel times are still continuous, but the first derivatives 
are discontinuous. Because of this discontinuity, special care has to be taken when 
dealing with P and S times. 

For P and S we also computed the splines for each depth given in the J-B Tables, 
starting with the distance 0" (where d?/dA = 0) and reaching up to the distance 
where the ray leaves the focus horizontally; at the final distance dt/dA reaches its 
maximal value which equals q = r/v for that depth. 

We also computed splines for surface times of many other phases, and obtained 
their times and derivatives for deep focus events by the use of the P or S depth 
splines. 

As an example, let us consider the phase PcS, the surface times of which equal 
those of ScP. After obtaining the surface times splines of PcS, we can match dt/dA 
of PcS algebraically with dt/dA of P times for a depth of, say, h = 0.06R (using the 

Table 3 
Divergence factors for PcS and ScP waves for deep focus 
(h = 0.06R) events; the recording station is on the top of the mantle. 

A 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

Divergence coefficients 
PCS 
17-82 
17.95 
18-08 
18.22 
18.35 
18.49 
18-47 
18.42 
18.36 
18.29 

18.22 
17-93 
17.60 
17.26 
16.89 
16.52 
16.41 
16-36 
16.32 
16-29 

16.27 
16.14 
15.96 
15.77 
15.59 
15-41 
15.14 
14-83 
14.51 
14.18 

SCP 
5.39 
5.43 
5.47 
5.51 
5.55 
5.59 
5.59 
5-57 
5.55 
5.53 

5.51 
5.44 
5.35 
5-25 
5.14 
5.03 
4.97 
4-96 
4.94 
4.93 

4-93 
4.90 
4.85 
4.79 
4.74 
4.68 
4.62 
4.53 
4-43 
4.34 

A 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

60 
61 

Divergence coefficients 
PCS 
13.85 
13.50 
13.15 
12.79 
12.43 
12.05 
11.75 
11.58 
11.41 
11.24 

11 -08 
10.88 
10.54 
10.19 
9.72 
9.16 
8.56 
7.69 
6.71 
5.96 

5.62 
5.27 
5.42 
5-66 
5-84 
5.80 
5.77 
5.57 
5.24 
4.90 

4.41 
3.85 

SCP 
4.24 
4.14 
4.03 
3.92 
3.82 
3.70 
3.59 
3.53 
3-48 
3.43 

3.38 
3.33 
3.25 
3.14 
3.04 
2.87 
2.70 
2-49 
2.22 
1.91 

1.77 
1 *67 
1.60 
1.67 
1 *74 
1 *77 
1 *76 
1.75 
1.65 
1.55 

1.44 
1 a28 
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1 

FIG. 5. Divergence factors for P and S waves for deep focus (h = 0.06R) events; 
the recording station is on the top of the mantle. 

notation of the J-B Tables). Let dt/dA of PcS (surface) at a distance A, equal 
dt/dA of P (h = 0.06R) at A,, and let t ,  be the time of PcS (surface) at A,, and t, 
the time of P (h = 0.06R) at A,. From this it follows that at a distance A = A, - A2 
the time of PcS (h = 0.06R) equals t ,  - t2 .  Moreover, at a distance A = A1 -t A, 
the time of pPcS (h = 006R)  equals t ,+ t2 .  Since in each range the times are 
expressed as cubic polynomials, the problem of finding A, and A, for a given A 
reduces to the solution of a quadratic equation. With equal ease dt/dA and dZ t/dA2 
at A are obtained for PcS (h = 0.06R). 

Thus we have all we need for using equation (2) and obtaining the divergence 
coefficients for various phases. 

FIG. 6. Divergence factors for PcP and ScS waves for deep focus (h = 0.06R) 
events; the recording station is on the top of the mantle. 
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FIG. 7. Divergence factors for PcS and ScP waves for deep focus (/I = 0.06R) 
events; the recording station is on the top of the mantle. 

As examples of our results we tabulate and plot the divergence factors of six 
phases for a depth of focus of h = 0.06R (about 400 km), and for a receiving station 
situated on the top of the Mantle (stripping away the crust). 

In Tables 1-3 we give results for the phases P, S, PcP, ScS, PcS and ScP. In 
Figs 5-7 we display these coefficients graphically. The units of the divergence 
coefficients are not given, as only their relative values are of interest. 

We left out distances near the end of the range if values of dt/dA and d2 t/dA2 
were unreliable, because they were tied to the tables from one side only. 

As stated earlier, no high claim for accuracy is made; an uncertainty of about 
5 per cent can be expected. But it is claimed that our results give a clear idea of the 
values of the divergence coefficient which follow from the Jeffreys-Bullen times. 
Coefficients with smaller uncertainties are unobtainable, not only because of our 
limited knowledge of the structure of the Earth, but also because the deviations in 
this structure from spherical symmetry make higher accuracy meaningless. 
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