
Computation of the N Best Parse Trees
for Weighted and Stochastic
Context-Free Grammars?

Vı́ctor M. Jiménez and Andrés Marzal

Dept. de Informática, Universitat Jaume I, 12071 Castellón, Spain
{vjimenez,amarzal}@inf.uji.es

Abstract. Context-Free Grammars are the object of increasing interest
in the pattern recognition research community in an attempt to overcome
the limited modeling capabilities of the simpler regular grammars, and
have application in a variety of fields such as language modeling, speech
recognition, optical character recognition, computational biology, etc.
This paper proposes an efficient algorithm to solve one of the problems
associated to the use of weighted and stochastic Context-Free Gram-
mars: the problem of computing the N best parse trees of a given string.
After the best parse tree has been computed using the CYK algorithm, a
large number of alternative parse trees are obtained, in order by weight
(or probability), in a small fraction of the time required by the CYK
algorithm to find the best parse tree. This is confirmed by experimen-
tal results using grammars from two different domains: a chromosome
grammar, and a grammar modeling natural language sentences from the
Wall Street Journal corpus.

Keywords: Weighted Context-Free Grammars, Stochastic Context-Free
Grammars, CYK Algorithm, N Best Parse Trees.

1 Introduction

Syntactic pattern recognition makes use of formal languages theory to describe
the underlying structure of pattern classes, in applications where the relations-
hips between primitive elements are important [3,4]. Stochastic grammars are
used to model the fact that some structures and patterns are more frequent
than others. In this framework, the stochastic Context-Free Grammars (CFGs)
are the object of increasing interest in the research community in an attempt to
overcome the limited modeling capabilities of the simpler regular grammars, even
though this implies using more costly training and parsing algorithms. This is the
case for instance of language modeling in speech recognition/understanding [1,
2,6,8,9,11] or RNA modeling in computational biology [12].

? This work has been supported in part by the SpanishGeneralitat Valenciana under
contract GV98-14-134.

F.J. Ferri et al. (Eds.): SSPR&SPR 2000, LNCS 1876, pp. 183–192, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

184 V.M. Jiménez and A. Marzal

This paper proposes an efficient algorithm to solve one of the problems as-
sociated to the use of weighted CFGs, formally stated in §2: the problem of
computing the N best parse trees of a given string, sorted by weight. A parti-
cular case of this problem is the computation of the N most likely parse trees
when G is a stochastic CFG, that has proved useful for improved training of
stochastic CFGs [13,14] and could have as many applications as the use of the
N best decodings in current speech recognition systems (re-scoring using more
accurate models, improved acoustic training, etc.).

The proposed algorithm works for weighted CFGs in Chomsky Normal Form
(CNF), but this does not imply any loss of generality because any weighted
CFG can be automatically converted into this form [3]. The best parse tree is
computed by means of a well-known version [6,9] of the Cocke-Younger-Kasami
(CYK) algorithm [5] (sometimes called Viterbi-style parsing) described in §3.
Once the best parse tree has been computed, the N best parse trees can be
computed by the algorithm presented in §4. The experimental results, reported
in §5, show the practical efficiency of this algorithm.

2 Notation and Problem Formulation

Let G = (V, Σ, S, P, w) be a weighted Context-Free Grammar in CNF [3,4],
where V is a finite set of nonterminal symbols, Σ is a finite set (disjoint from V)
of terminal symbols, S ∈ V is the start symbol, P is a finite set of productions
of the form A → α with A ∈ V and α ∈ (V × V) ∪ Σ, and w : P → IR is a
function that assigns a weight to each production in P .

Given G and given a string x = x1x2 . . . x|x| ∈ Σ+, where |x| denotes the
length of x, let us define a set T of binary trees whose nodes are of the form
Ai:k with A ∈ V and 1 ≤ i ≤ k ≤ |x|, and a weighting function W : T → IR, as
follows:

(i) If there is a production A → xi in P then the tree 〈Ai:i〉 with the single node
Ai:i is in T, and has weight W (〈Ai:i〉) = w(A → xi).

(ii) If there is a tree T1 with root Bi:j in T, a tree T2 with root Cj+1:k in T, and
a production A → BC in P , then the tree 〈Ai:k, T1, T2〉 with root Ai:k, left
subtree T1, and right subtree T2 is in T, and has weight W (〈Ai:k, T1, T2〉) =
W (T1) + W (T2) + w(A → BC).

A tree in T whose root is Ai:k is a partial parse tree representing a derivation
of the substring xi . . . xk from the nonterminal A. A parse tree for x according to
G is a binary tree T ∈ T whose root is S1:|x|. The best parse tree is the parse tree
of minimum weight. The N best parse trees are the N parse trees of minimum
total weight. The problem we study in this paper can then be formulated as:

Given a weighted Context-Free Grammar in CNF G, given a string x ∈
Σ+ and given a positive integer N , find the N best parse trees for x in
order by weight.

Computation of the N Best Parse Trees for Context-Free Grammars 185

Let us denote Tn(Ai:k) the n-th best tree among those in T that have root
Ai:k, and let Wn(Ai:k) be its weight. The problem is then finding T 1(S1:|x|),
T 2(S1:|x|), . . . , TN (S1:|x|).

A particular case of this problem is the computation of the N most likely
parse trees for x when G is a stochastic Context-Free Grammar [3,4]. In this
case, a function p : P → IR assigns a probability to each production, verifying
0 ≤ p(A → α) ≤ 1, for all A → α ∈ P , and

∑
A→α∈P p(A → α) = 1, for

all A ∈ V . If T is a parse tree for x, its probability is the product of the
probabilities of all the productions involved in its construction. If we assign to
the productions in P a weight w(A → α) = − log(p(A → α)) then maximizing
products of probabilities becomes minimizing sums of weights, and the N parse
trees of maximum probability are the N parse trees of minimum weight.

A problem closely related to the computation of the N best parse trees is the
enumeration of parse trees until the best one satisfying some desired restriction
is obtained, without fixing a priori a value for N . The algorithm that we present
in §4 also solves this problem.

3 Computing the Best Parse Tree

The CYK algorithm was initially proposed by Cocke, Younger, and Kasami to
solve the problem of, given a Context-Free Grammar G in CNF (not necessarily
weighted) and given a string x ∈ Σ+, determine whether there is a parse tree
for x according to G or not [5]. The CYK algorithm can be easily modified to
compute the best parse tree when G is weighted, on the base of the following
recursive equations [6,9].

Recursive Equations For every A ∈ V and 1 ≤ i ≤ k ≤ |x| the best parse
tree with root Ai:k is

T 1(Ai:k) =




argmin
T∈T1(Ai:k)

W (T), if k > i,

〈Ai:i〉, if k = i and A → xi ∈ P ,
(1)

where, for k > i,

T1(Ai:k) = {〈Ai:k, T 1(Bi:j), T 1(Cj+1:k)〉 : A → BC ∈ P, i ≤ j < k} (2)

denotes a set of candidates to be the best parse tree with root Ai:k. According to
the definition given in §2, the weight of a tree T = 〈Ai:k, T 1(Bi:j), T 1(Cj+1:k)〉
in T1(Ai:k) is W (T) = W 1(Bi:j)+W 1(Cj+1:k)+w(A → BC). The weight of the
best parse tree with root Ai:k is

W 1(Ai:k) =




min
T∈T1(Ai:k)

W (T), if k > i,

w(A → xi), if k = i and A → xi ∈ P .
(3)

If k > i and T1(Ai:k) is empty, or k = i and A → xi /∈ P , then T 1(Ai:k) does
not exist.

186 V.M. Jiménez and A. Marzal

1: Algorithm CYK for weighted CFGs
2: for i := 1 to |x| do
3: for all A → xi in P do
4: T 1(Ai:i) := 〈Ai:i〉
5: for l := 1 to |x| − 1 do
6: for i := 1 to |x| − l do
7: k := i + l
8: for all A in V do
9: T 1(Ai:k) := arg minT∈T1(Ai:k) W (T)

10: return T 1(S1:|x|)

Fig. 1. CYK algorithm for weighted CFGs. Given a weighted grammar (V, Σ, P, S, w)
in CNF and a string x, the algorithm returns its best parse tree.

CYK Algorithm The problem of computing the best parse tree for x con-
sists then in solving the equations (1–3) to find T 1(S1:|x|). The CYK algorithm
(Fig. 1) is a dynamic programming algorithm that computes T 1(Ai:k) iteratively
for increasing values of the length l = k − i, thus guaranteeing that the right-
hand sides of the equations have been previously computed when they are going
to be used. Its running time is O(|x|3|P |), and the required space is O(|x|2|V |),
where |P | is the number of productions and |V | is the number of nonterminals
in G.

4 Computing the N Best Parse Trees

Let us now consider how to calculate Tn(Ai:k) in general for A ∈ V , 1 ≤ i ≤
k ≤ |x|, and 1 ≤ n ≤ N . In particular, Tn(S1:|x|) for 1 ≤ n ≤ N will be
the solution to the problem we are addressing. Let us assume in what follows
that |x| > 1 (otherwise T 2(S1:|x|) does not exist). We will first generalize the
recursive equations given in §3 to compute the N best parse trees, and then we
will propose an algorithm to solve the generalized equations.

Recursive Equations Let us study which trees should be considered candida-
tes to Tn(Ai:k). Clearly, Tn(Ai:k) does not exist for n > 1 if k = i (while T 1(Ai:k)
will exist or not depending on whether there is a production A → xi in P , as we
have seen in §3). Let us then examine the case k > i. It should also be clear that
in order to calculate Tn(Ai:k) we do not need to consider the trees of the form
〈Ai:k, T p(Bi:j), T q(Cj+1:k)〉 with p > n or q > n (because there are at least n
trees among those with p ≤ n and q ≤ n, with lower or equal weight). Therefore,
Tn(Ai:k) can be chosen as the best tree different from T 1(Ai:k), . . . , Tn−1(Ai:k)
in the set

{〈Ai:k, T p(Bi:j), T q(Cj+1:k)〉 : A → BC ∈ P, i ≤ j < k, 1 ≤ p ≤ n, 1 ≤ q ≤ n}.

Computation of the N Best Parse Trees for Context-Free Grammars 187

〈Ai:k, T 1(Bi:j), T 1(Cj+1:k)〉 〈Ai:k, T 1(Bi:j), T 2(Cj+1:k)〉 〈Ai:k, T 1(Bi:j), T 3(Cj+1:k)〉

〈Ai:k, T 2(Bi:j), T 1(Cj+1:k)〉 〈Ai:k, T 2(Bi:j), T 2(Cj+1:k)〉 〈Ai:k, T 2(Bi:j), T 3(Cj+1:k)〉

〈Ai:k, T 3(Bi:j), T 1(Cj+1:k)〉 〈Ai:k, T 3(Bi:j), T 2(Cj+1:k)〉 〈Ai:k, T 3(Bi:j), T 3(Cj+1:k)〉 · · ·

· · ·

· · ·

· · ·

Fig. 2. Schematic representation of the partial order among some candidate trees.

But we can do quite better than computing the N best parse trees for every
possible root Ai:k, because there is a partial order defined among some elements
of this set of trees. Based on the relations (schematically represented in Fig. 2)

W p(Bi:j) + W 1(Cj+1:k) ≤ W p+1(Bi:j) + W 1(Cj+1:k), (4)
W p(Bi:j) + W q(Cj+1:k) ≤ W p(Bi:j) + W q+1(Cj+1:k), (5)

we can define a smaller set Tn(Ai:k) of trees with root Ai:k in such a way that
we still have the guarantee that Tn(Ai:k) is the best among them. Let T1(Ai:k)
be the set of trees defined in (2). For n > 1, let us assume that Tn−1(Ai:k) =
〈Ai:k, T p(Bi:j), T q(Cj+1:k)〉, and if q = 1, let

Tn(Ai:k)=
(
Tn−1(Ai:k) − {Tn−1(Ai:k)}) ∪ {〈Ai:k, T p(Bi:j), T q+1(Cj+1:k)〉}

∪ {〈Ai:k, T p+1(Bi:j), T q(Cj+1:k)〉};
(6)

otherwise (if q > 1), let

Tn(Ai:k)=
(
Tn−1(Ai:k) − {Tn−1(Ai:k)})∪{〈Ai:k, T p(Bi:j), T q+1(Cj+1:k)〉} (7)

assuming always that {〈Ai:k, T1, T2〉} denotes the empty set if T1 or T2 does not
exist. Then we have

Tn(Ai:k) = argmin
T∈Tn(Ai:k)

W (T), (8)

Wn(Ai:k) = min
T∈Tn(Ai:k)

W (T), (9)

if Tn(Ai:k) is not empty (otherwise Tn(Ai:k) does not exist).

Recursive Enumeration of the N Best Parse Trees The problem of com-
puting the N best parse trees consists then in solving the equations (6–9) to
find T 1(S1:|x|), T 2(S1:|x|), . . . , TN (S1:|x|). The algorithm in Fig. 4 solves them
for increasing values of n, after the best parse tree has been computed by the
CYK algorithm, recursively starting from the node S1:|x|.

The algorithm makes use of the recursive procedure NextTree. For n > 1
and k > i, and once Tn−1(Ai:k) = 〈Ai:k, T p(Bi:j), T q(Cj+1:k)〉 is available,

188 V.M. Jiménez and A. Marzal

A1: Algorithm Recursive enumeration of the N -best parse trees
A2: Compute T 1(Ai:k) for all A ∈ V , 1 ≤ i ≤ k ≤ |x| using the CYK algorithm
A3: for n := 2 to N do NextTree(T n−1(S1:|x|), n)
A4: return {T 1(S1:|x|), T 2(S1:|x|), . . . , T N (S1:|x|)}
B1: procedure NextTree(〈Ai:k, T p(Bi:j), T q(Cj+1:k)〉, n)
B2: if n = 2 then
B3: T[Ai:k]:={〈Ai:k, T 1(Bi:j), T 1(Cj+1:k)〉 : A → BC ∈ P, i ≤ j < k} − {T 1(Ai:k)}
B4: if q = 1, j > i, and T p+1(Bi:j) has not been computed then
B5: NextTree(T p(Bi:j), p + 1)
B6: if q = 1 and T p+1(Bi:j) exists then
B7: T[Ai:k] := T[Ai:k] ∪ {〈Ai:k, T p+1(Bi:j), T q(Cj+1:k)〉}
B8: if k > j + 1 and T q+1(Cj+1:k) has not been computed then
B9: NextTree(T q(Cj+1:k), q + 1)

B10: if T q+1(Cj+1:k) exists then
B11: T[Ai:k] := T[Ai:k] ∪ {〈Ai:k, T p(Bi:j), T q+1(Cj+1:k)〉}
B12: if T[Ai:k] 6= ∅ then
B13: T n(Ai:k) := arg minT∈T[Ai:k] W (T)
B14: T[Ai:k] := T[Ai:k] − {T n(Ai:k)}
B15: else
B16: T n(Ai:k) does not exist

Fig. 3. Algorithm to compute the N best parse trees.

NextTree(〈Ai:k, T p(Bi:j), T q(Cj+1:k)〉, n) computes Tn(Ai:k) according to equa-
tion (8). In first place, it builds Tn(Ai:k) from Tn−1(Ai:k) according to equati-
ons (6–7). This may require inserting in this set at most two new candidate trees:
〈Ai:k, T p+1(Bi:j), T q(Cj+1:k)〉 and 〈Ai:k, T p(Bi:j), T q+1(Cj+1:k)〉. If T p+1(Bi:j)
(or T q+1(Cj+1:k)) is required and has not been computed before, it is computed
by calling NextTree(T p(Bi:j), p + 1) (or NextTree(T q(Cj+1:k), q + 1)).

Both Tn−1(Ai:k) and Tn(Ai:k) can be implemented by the same structure
T[Ai:k], because once Tn−1(Ai:k) has been calculated, Tn−1(Ai:k) is no longer
necessary. On the other hand, the set T[Ai:k] is initialized only when the second
best parse tree with root Ai:k is required, because there could be nodes Ai:k for
which it is not necessary to compute alternative trees.

Finiteness of the recursion is guaranteed by the fact that the first arguments
of the recursive calls are trees with root Ai:k for decreasing values of k − i, and
are only performed if k − i > 0, so that the number of recursive calls produced
by NextTree(Tn−1(S1:|x|), n) to compute Tn(S1:|x|) is at most |x|.

Data Structures and Implementation Issues The trees T 1(Ai:k), T 2(Ai:k),
T 3(Ai:k), . . . can be stored ordered by weight in a linked list associated to
node Ai:k. Every tree of the form 〈Ai:k, T p(Bi:j), T q(Cj+1:k)〉 can be efficiently
represented in memory by just three values: its weight, a pointer to its left subtree
T p(Bi:j), and a pointer to its right subtree T q(Cj+1:k). In this way, Tn(Ai:k) can
be inserted, in step B13, in constant time following Tn−1(Ai:k) in the list of trees

Computation of the N Best Parse Trees for Context-Free Grammars 189

associated with node Ai:k, and steps B4, B6, B8, and B10 take constant time to
check whether T p+1(Bi:j) or T q+1(Cj+1:k) are available.

The only operations performed by the algorithm with the sets of candidates
T[Ai:k] are those supported by priority queues: insertion of new elements and
selection/deletion of the best element. Several data structures allow to perform
these operations in time logarithmic with respect to the number of elements in
the priority queue [7]. The results reported in §5 correspond to an implementa-
tion using leftist trees [7].

An additional improvement in the algorithm is possible: of all the candidate
trees with the same value of j, only the best one needs to be inserted in T[Ai:k]
when it is initialized in step B3. The rest of candidates with that value of j only
need to be inserted if the best one is extracted (after step B14).

Computational Complexity The CYK algorithm runs in time O(|x|3|P |).
The number of different sets T[Ai:k] is O(|x|2|V |) and, in the worst case, all
of them are initialized by step B3 (in different calls to NextTree) in total time
O(|x|3|P |), because each initialization can be performed in linear time with res-
pect to the size of the set.

The computation of the N best parse trees requires at most N |x| calls to
NextTree. Each call may require to insert at most two new elements in a set
of candidates (steps B7 and B11), and to select and delete the best candidate
(steps B13 and B14) from it. Since no more than N trees with root Ai:k may need
to be computed, the size of T[Ai:k] is bounded by its initial size plus N . Thus,
the total time required by the whole algorithm to compute the N best parse
trees is O(|x|3|P | + N |x| log(|x| |P |

|V | + N)).
On the other hand, the space complexity of the algorithm is O(|x|3|P |+N |x|).
This computational complexity analysis is based on worst case assumptions

that could be too pessimistic. In practice, it can be expected that even for large
values of N , not all the sets of candidates are initialized and the number of
recursive calls can be much lower than N |x|.

5 Experimental Results

In order to assess the behavior of the algorithm in practice, we have performed
experiments with strings and grammars corresponding to two different domains.
All the experiments have been run on a 400 MHz Pentium-II computer running
under Linux 2.2. The algorithm has been implemented in C and compiled with
gcc 2.91 using the optimization level ‘-O2’.

Chromosome Grammar Strings of different lengths have been randomly ge-
nerated using the chromosome grammar described in [4, §2.3.1] and assuming
that all the productions with the same left-hand symbol have the same probabi-
lity. The grammar in CNF has 9 nonterminals, 5 terminals, and 20 productions.
Fig. 4 shows the observed dependency of the running time of the algorithm in

190 V.M. Jiménez and A. Marzal

N

ti
m

e
(i

n
m

s)

0
0 20

25

40

50

60

75

80

100

100

|x| = 75

|x| = 65

|x| = 55

|x| = 45

|x| = 35
|x| = 25

|x| = 15

N

ti
m

e
(i

n
m

s)

0
0

25

50

75

100

200 400 600 800 1000

|x| = 75

|x| = 65

|x| = 55

|x| = 45

|x| = 35

|x| = 25
|x| = 15

(a) (b)

|x|

ti
m

e
(i

n
m

s)

0
15 30 45

50

60 75

100

N = 1
N = 10
N = 100
N = 1000

|x|

{
〉

∈
∈

6

N = 10
N = 100
N = 1000

(c) (d)

Fig. 4. Dependency of running time with N and |x| using the chromosome grammar.

milliseconds, averaged for 20 strings of each length, as a function of N (for dif-
ferent string lengths) and as a function of the string length (for different values
of N).

Figs. 4a and 4b show the average time (± two times the standard deviation)
required to compute up to 100 and up to 1000 best parse trees, respectively.
Fig. 4c depicts the dependency of time with the string length for different values
of N . Time for N = 1 corresponds to the CYK algorithm. It can be clearly
observed that once the best parse tree has been found by the CYK algorithm,
the rest of the N best parse trees are computed very efficiently, in just a small
fraction of the total running time. This is made more explicit in Fig. 4d, where
the time to compute from the second to the N -th best parse tree is shown as a

Computation of the N Best Parse Trees for Context-Free Grammars 191

N

ti
m

e
(i

n
m

s)

0
0

100

200

200

300

400

400

500

600

600 800 1000

|x| = 45

|x| = 35

|x| = 25

|x| = 15
|x| = 5

|x|

{
〉 ∈

∈

6
N = 10
N = 100
N = 1000

Fig. 5. Dependency of running time with N and |x| using the Wall Street Journal
grammar.

percentage of the time required by the CYK algorithm to find the optimal parse
tree.

Wall Street Journal The algorithm has also been tested using sentences from
the Wall Street Journal (WSJ) corpus, as annotated in the Penn Treebank [10].
A grammar with 42 terminals (part of speech tags), 14 nonterminals, and 518
productions has been obtained using the Inside-Outside algorithm with the sen-
tences shorter than 16 words in sections 00–19 of this corpus [14]. Sentences from
sections 20–24 have been used to measure the running time of the algorithm to
compute the N best parse trees with this grammar. The results, shown in Fig. 5
(also averaged for 20 sentences of each length), are similar to those obtained
with the chromosome grammar.

6 Conclusions

In this paper, a new algorithm to compute the N best parse trees for weighted
(or stochastic) Context-Free Grammars has been presented. The experimental
results with two different pattern recognition tasks have shown the practical
efficiency of this algorithm, which can be used to compute a large number of
parse trees, in order by weight, in a small fraction of the time required by the
CYK algorithm to compute the best one. Since there is no need to fix a priori
the value of N , the algorithm can be used to enumerate parse trees until the
best one satisfying some desired constraint is obtained.

192 V.M. Jiménez and A. Marzal

Acknowledgments

The authors wish to thank to J. A. Sánchez and J. M. Bened́ı for providing the
Wall Street Journal grammar used in the experiments.

References

1. R. Cole, editor. Survey of the State of the Art in Human Language Technology.
Studies in Natural Language Processing. Cambridge University Press, 1998.

2. A. Corazza, R. De Mori, R. Gretter, and G. Satta. Optimal probabilistic evaluation
functions for search controlled by stochastic context-free grammars. IEEE Trans.
on Pattern Analysis and Machine Intelligence, 16(10):1018–1027, 1994.

3. K. S. Fu. Syntactic Pattern Recognition and Applications. Prentice-Hall, Engle-
wood Cliffs, NJ, 1982.

4. R. C. Gonzalez and M. G. Thomason. Syntactic Pattern Recognition, An Intro-
duction. Addison-Wesley, Reading, MA, 1978.

5. M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, Rea-
ding, MA, 1978.

6. F. Jelinek, J. D. Lafferty, and R. L. Mercer. Basic methods of probabilistic context
free grammars. In P. Laface and R. De Mori, editors, Speech Recognition and
Understanding, volume F75 of NATO ASI, pages 345–360. Springer-Verlag, 1992.

7. D. E. Knuth. The Art of Computer Programming, volume 3 / Sorting and Sear-
ching. Addison-Wesley, Reading, MA, 1973.

8. K. Lari and S. J. Young. Applications of stochastic context-free grammars using
the Inside-Outside algorithm. Computer, Speech and Language, 5:237–257, 1991.

9. S. E. Levinson. Structural methods in automatic speech recognition. Proceedings
of the IEEE, 73(11):1625–1650, 1985.

10. M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz. Building a large annotated
corpus of English: the Penn Treebank. Computational Linguistics, 19(2):313–330,
1993.

11. H. Ney. Dynamic programming parsing for context-free grammars in continuous
speech recognition. IEEE Trans. on Signal Processing, 39(2):336–340, 1991.

12. Y. Sakakibara, M. Brown, R. Hughey, I. S. Mian, K. Sjolander, R. C. Underwood,
and D. Haussler. Stochastic context-free grammars for tRNA modeling. Nucleic
Acids Research, 22(23):5112–5120, 1994.

13. J. A. Sánchez and J. M. Bened́ı. Estimation of the probability distributions of
stochastic context free grammars from the K-best derivations. In Proc. Int. Conf.
on Spoken Language Processing (ICSLP), pages 2495–2498, 1998.

14. J. A. Sánchez and J. M. Bened́ı. Learning of stochastic context-free grammars
by means of estimation algorithms. In Proc. of the European Conf. on Speech
Communication and Technology (EUROSPEECH), 1999.

	Introduction
	Notation and Problem Formulation
	Computing the Best Parse Tree
	Computing the N Best Parse Trees
	Experimental Results
	Conclusions

