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COMPUTATION OF THE NIELSEN TYPE NUMBERS FOR
MAPS ON THE KLEIN BOTTLE

Hyun Jung KiM, JoNnGg BuMm LEE, AND WON SOK YOO

ABSTRACT. Let f: M — M be a self-map on the Klein bottle M. We
compute the Lefschetz number and the Nielsen number of f by using the
infra~nilmanifold structure of the Klein bottle and the averaging formulas
for the Lefschetz numbers and the Nielsen numbers of maps on infra-
nilmanifolds. For each positive integer n, we provide an explicit algorithm

for a complete computation of the Nielsen type numbers NP, (f) and
N®,(f) of fm.

1. Introduction

Let M be a closed manifold, and let f : M — M be a self-map. Then we
define

Fix(f) ={z € M | f(z) = z}

the fized point set of f. There are well known invariants in fixed point theory,
the Lefschetz number L(f) and the Nielsen number N(f). It is known that
the Nielsen number is much more powerful than the Lefschetz number but
computing it is very hard.

In [2], Brooks, Brown, Pak, and Taylor show that for a self map f : M — M
on a torus, the Nielsen number N(f) and the Lefschetz number L{f) are equal
up to a sign, i.e., N(f) = |L(f)| = | det(I — f)|, where fy : m (M) — m (M) is
the homomorphism on 71 (M) induced by f. In [1], this result is extended to
compact nilmanifolds. Let L be a connected, simply connected nilpotent Lie
group, I' a uniform lattice of L, and M = T'\L a nilmanifold. Any f: M — M
is homotopic to a map obtained from an endomorphism F : L — L for which
F(T) CT. Let F\ be the corresponding endomorphism of the Lie algebra of L.
Then N(f) = |L(f)| = |det(I — F\)|. In [10] and [12], the averaging formula

Received March 28, 2007.

2000 Mathematics Subject Classification. Primary 57525; Secondary 37D20, 20F18.

Key words and phrases. Klein bottle, Nielsen type numbers, weakly Jiang maps.

Supported in part by the Sogang University Research Grant in 2006 and in part by the
Korea Research Foundation Grant funded by the Korean Government(MOEHRD) (H00021,
KRF-2006-311-C00216).

(©2008 The Korean Mathematical Society
1483



1484 HYUN JUNG KIM, JONG BUM LEE, AND WON SOK YOO

for the Nielsen number on infra—nilmanifolds is obtained:

Z |det(A. — fu)l,

AE\I/

where f : M — M is a self-map on the infra-nilmanifold M with holonomy
group V.

In dynamical systems, it is often the case that topological information can
be used to study qualitative and quantitative properties (like the set of periods)
of the system. For the periodic points, two Nielsen type numbers NP, (f) and
N®,,(f) are lower bounds for the number of periodic points of least period
exactly n and the set of periodic points of period n, respectively.

In this paper we will give a complete computation (see Theorem 2.3) of the
Lefschetz numbers L(f™) and the Nielsen numbers N(f") of all iterates of f
when f is a self-map on the Klein bottle. To this end, we will use the fact
that the Klein bottle is an infra-nilmanifold, and then use the above averaging
formula for Nielsen numbers of continuous self-maps on the infra-nilmanifold.

It is known that on solvmanifolds, the Nielsen numbers of iterates of a map
are related with the Nielsen type numbers N®,(f) and NP,(f) (cf. [4], [5],
6], [7], [8]). In particular, if f™ is weakly Jiang with N(f") # 0, then two
Nielsen type numbers are related to each other:

N®.(f) =Y NPn(f), NPu.(f)=>_ mwm)N®=(f).
m|n min

The second purpose of this paper is to give an explicit algorithm for a complete
computation of the Nielsen type numbers NP, (f) for periodic points of self-
maps on the Klein bottle. In a series of papers [5], [6], [7] and (8], Heath and
Keppelmann explored calculation of these numbers under some conditions, see
Corollary 3.6 of this paper.

2. The Klein bottle maps
Let a = (a, A) and ¢; = (e, I2) be elements of R? x Aut(R?), where

<[ 2= =[]

Then A has period 2, (a,A4)? = (a + Aa,I) = (e, I2), and tra = aty; . Let
T be the subgroup generated by ¢; and ¢;. Then it forms a lattice in R? and
I'\R? is the 2-torus. It is easy to check that the subgroup

Il = (T, (a, A)) C R? x Aut(R?)

generated by the lattice I' and the element (a, A) is discrete and torsion free.
Furthermore, I' is a normal subgroup of II of index 2. Thus II is an (almost)
Bieberbach group, which is the Klein bottle group, and the quotient space
ITI\R? is the Klein bottle. Thus I'\R? — IT\R? is a double covering projection.
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Lemma 2.1. Any homomorphism ¢ : Il — II on the Klein botile group II is
given as follows:

pla) = Oﬂ»té? o(t2) = t%,

where either r is odd, or v is even and g = 0.

Proof. Since IT is generated by o and f2 subject to toa = at;l, every element
of I is of the form a™#}. Thus p(a) = a"t§ and p(t2) = at] for some integers
r,4,s,q. Since toa = aty"', we have p(ta)p(a) = p(a)p(tz) . Inspection of
this equation induces that s = 0, and r is odd or ¢ = 0. (|

Let f: TI\R? — IT\R? be any continuous map on the Klein bottle II\R?.
Fix a lifting f : R? — R? of f. Then the lifting f induces a homomorphism
w : II — II which is defined by the following rule:

ola)of=foa forall aell

The homomorphism ¢ is called a homomorphism of type (r,£,q) induced by f.
In this case, f is said to be of of type (r, ¢, q).

Recall from [11, Proposition 3.3 and Theorem 3.4] the following homotopy
classification of all maps on the Klein bottle.

Lemma 2.2. Every continuous map on the Klein bottle II\R? is homotopic to
a map of type (r,£,q) where if v is odd then £ = 0,1 and ¢ > 0; and if 7 s
even and q = 0, then £ > 0. Furthermore, two such maps of type (r,£,q) and
(r', €', ¢") are homotopic if and only if r =1, q=¢q and £ =1,

The following was observed in [6, Example 5.5] using fiber space techniques
for solvmanifolds. See also {3, Theorem 5.7], in which another algebraic method
is used. Our calculation is obtained using the averaging formula for infra-
nilmanifolds, {10, Theorem 3.5] and {12, Theorem 1.4]. This method is much
explicit and entirely different from fiber space techniques. In particular, the
element (¢, F) € Aff(2)} (see below) will play a crucial role in calculating the
Nielsen type numbers, see Sections 5 and 6.

Theorem 2.3. Let f : II\R? — II\R? be any continuous map on the Klein
bottle TI\R? of type (r,¢,q). Then for anyn € N, the Lefschetz number and the
Nielsen number of the nth iterate of f are

n N . . dd d :
L(f")=1-r", N(f“>={:3.<1rn1r ! szjg ez

Proof. Let f:I1I\R? — II\R? induce a homomorphism ¢ on II of type (r,, q).
By Lemma 2.1, ¢ must map T into T itself. Thus f always has a lifting
f:T\R? — I'\IR? so that the following diagram commutes:
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R2 _._.__._>.R2

L
NR2—— > \R?
A
mMR? — > MR?

On the other hand, for such a homomorphism ¢ there exists an affine map
(c, F) € R? x Aut(R?) such that

pla)(c, F) = (c, Fa, p(t2)(c, F) = (¢, F)ta.
This is due to Theorem 1.1 of [13]. These equalities yield that

(i) e
(14

Furthermore, from the above equalities we see that the affine map (c, F') on R?
induces a map ®(; py : [I\R? — II\R?. Since |r = F|r, the endomorphism
F on R? induces a map ¢r : I'\R? — I'\R? Clearly the maps @ p) and
¢r induce homomorphisms ¢ and ¢|r, respectively. Since II\R? and I'\R? are
K (m, 1) manifolds, it follows that . ) ~ f and ¢r = f.

Since the Nielsen numbers are homotopy invariants, we may assume in what
follows that @, py = f and ¢ = f so that the following diagram commutes:

RQ __(CLR2

I I

M\R2 —7 - \R?

798
mR2 —2 5 MR?

Now we recall the averaging formula for the Nielsen numbers on infra-
nilmanifolds from [10, Theorem 3.5] and [12, Theorem 1.4]

1 det(A* e f*)
L = ]‘Ill Z det A,

(*) (e, F) =

) if 7 is even and ¢ = 0.

I‘I’l Z | det(As — fi)l]-

Ac¥
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Here f is any continuous map on an infra-nilmanifold with holonomy group ¥.
Thus for the case of the Klein bottle, we have for any n € N

) . 1odet(I — F")  det(A — F")
L{f") = L@, p) = 5( det ] det A )
=1-7",

N(f™) = N(@], 1) = %(| det(I — F™)| + | det(A — F™)])

_Jlg" (1 —=r™)| ifris odd and g # 0;
T - if g=0.

Therefore we have proved our theorem. O

3. Preliminaries on the Nielsen type numbers

For each n = 1,2,..., f™ is a lifting of f”, and the homomorphism deter-

mined by the lifting f™ is ¢™ : II — II. The homomorphism ¢" defines the
Reidemeister action of 11 on 11 as follows:

OxI~—TI, (y,a)yap™(y)"h

The Reidemeister class containing o will be denoted by [a]" and the set of
Reidemeister classes of II determined by ¢™ will be denoted by R[¢™]. Write
Rlg") = IR ~

For each a € 11, af is a lifting of f and af™ is a lifting of f”. They induce
homomorphisms 7, and 7,¢", where 7, denotes the conjugation by ¢, i.e.,

7o (B) = afa?.

It is known that the periodic point classes of f” are the subsets p(Fix(a f"))
{o € II) of the periodic point set Fix(f") of f. Each periodic point class
p(Fix(af™)) is determined by the Reidemeister class [a]” € R]¢"™]. The peri-
odic point set Fix(f™) splits into a disjoint union of periodic point classes (cf.
[10]). That is,

Fix(f) =[] p(Fix(a/™)).
[o]m€R[pm]

For m | n, Fix(f™) C Fix(f"). Let z € Fix(f™) and & € p~'(z). Then there
exist unique o, § € II such that af™(Z) = & and Sf™(&) = &. It can be easily
derived that

B =ap™ (@)™ (@) " (@),
This defines a function ¢, 5, : R[p™] — R[p"] defined by
tmn ([0]™) = [ag™ (@)™ (@) - - " ()]

Moreover, the following diagram is commuting:
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p(Fix(af™)) — " p(Fix(ap™(@)p?™(a) - - - "™ (a) f)

I !

[o]™ R ™ (@)p*™ () - - "™ ()]

Clearly, as a set p(Fix(af™)) C p(Fix(ag™(@)p?™(a) - " ™a)f™)), ie., if

p(Fix(af™)) is the periodic point class of f™ determined by z, then

p(Fix(ap™(@)p*™ (@) - " ™) /")

is the periodic point class of f" determined by z.
‘On the other hand, for € p(Fix(af™)) we choose Z € p~'(x) so that
af™(Z) = . Then
o(0) " /() = (@) F (@) = fof"@) = (@)
and so f(z) € p(Fix(p(a)f™)). Namely, p(Fix(p(a)f™)) is the periodic point

class determined by f(z). Therefore f induces a function on the periodic point
classes of f™, which we denote by [f], defined as follows:

[£]: p(Fix(af™)) = p(Fix(p(a) /).

By [9, Theorem II1.1.12], [f] is an index-preserving bijection on the periodic
point classes of f". We say that [@]™ is essential if the corresponding class
p(Fix(af™)) is essential. Evidently,

fn—1

Fix(af") —> Fix(p(a) f) 2L Fix(afm).
T identity/
This implies that for each « € II, the restrictions of f
f1: p(Fix(af™)) — p(Fix(p(x) /™))

are homeomorphisms such that [f]™ is the identity. In particular,

pFix(af") =8 <= p(Fix(p(a)f™) =0.

Obviously, ¢ induces a well-defined function on the Reidemeister classes of ™,
which we will denote by [¢], given by [¢] : [a]™ — [p(@)]™. Then the following
diagram is commuting:

p(Fix(of)) —— 2> p(Fix(p() f))

! I

" @l
Note that since [f]™ is the identity, [¢]™ is the identity. Moreover, tm n © [p] =
[‘P] Olm,n-

[#]
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Definition 3.1. The length of the element [o]” € R[¢™], denoted by p([a]),

is the smallest positive integer p such that [@[?([a]™) = [a]®. The p-orbit of
[a]™ is the set

{led™) = {le]™, [pl(fd™), -, [P ([}

where p = p([a]™). The element [a]" € R[p™"] is reducible to m if there exists
B € Rlp™] such that 1, ,([8]™) = [a]™. Note that if [o]™ is reducible to
m, then m | n. If [a]” is not reducible to any m < n, we say that [a]" is
irreducible. The depth of [o]™, denoted by d([a]™), is the smallest integer m to
which [@]™ is reducible. Since clearly d([a]") = d([¢]([a]™)}), we can define the
depth of the orbit ([a]™): d({{a]™)) = d([]™). If n = d([o]™), the element [a]"
or the orbit {[o]") is called irreducible.

Let Oy () be the number of irreducible, essential periodic point orbits of
Rlp"]. If [o]™ is irreducible and essential, then so is p(Fix(af™)) and its f-orbit
contains at least n periodic points of least period n.

Definition 3.2. The Nielsen type number of period n is defined by the formula
NP, (f) =n x On(yp).

Take the set of all the essential orbits, of any period m | n, which do not
contain any essential orbits of lower period. To each such an orbit, find the
lowest period which it can be reduced to. The Nielsen type number for the n-th
iterate, denoted by N®,(f), is the sum of these numbers.

Then the Nielsen type numbers N P,(f) and N®,(f) are homotopy invari-
ant, non-negative integers [9, Theorem I11.4.10].

Definition 8.3. Themap f: M — M is called weakly Jiang if either N(f) =0
or N(f) = Rl#].

Now let us recall some of the main results in [5], [6], [7].

Theorem 3.4 ([5, Theorem 1], [6, Theorems 1.2]). Let f: M — M be a self-
map of a nilmanifold or NR solvmanifold, or if M is an arbitrary solvmanifold
suppose that f7 is weakly Jiang. If N(f™) # 0, then for allm|n

N(f™y =S NP(f), NPu(f) =Y uk)N(fF),
klm klm
where 1 is the Mobius function.

Theorem 3.5 ([6, Corollary 4.6]). Let f : M — M be a self-map. If M is a
solumanifold, then

N&,(f) =Y NP(f), NP.(f)=) uk)NOs(f).
k|n kin

The following is observed in [5], [6], 7] using the structure of fibrations on
solvmanifolds.
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Corollary 3.6. Let f : II\R? — II\R? be any continuous map on the Klein
bottle II\R? of type (r,£,q). Then for odd r,

(1) if ¢ # £1, then for all n, the Nielsen type numbers of periodic points
of f are

N&,(f) = N(f") = lg"(1 = "),
NP(f) = 3 uW)lg® (1 - rB)];

k|n
(2) ifq=1 and n = 2%, then

NP.(f) = N(f") = 1 =%,
k

N, (f) =Y N(f™) =Y j1-r%].

min i=0

4. Weakly Jiang maps on the Klein bottle

Suppose that f : II\R? — IT\R? induces a homomorphism ¢ on II of type
(r,£,q). Then f™ induces a homomorphism ¢" of type

(rmf+ql+---+q" ", q") if ris odd;
(r™,r™1e,0) if r is even and ¢ = 0.

By Lemma 2.2, we may assume that if r is odd, then £ = 0,1 and ¢ > 0; if r is
even, then £ > 0 and ¢ = 0.

Now we will discuss the case where f™ is weakly Jiang.

Theorem 4.1. Let f : II\R? — II\R? be any continuous map on the Klein
bottle TI\R? of type (r,£,q). Then f™ is weakly Jiang if and only if one of the
following holds
(1) Case: N(f*)=0
e r odd and g=10
e r=1
e n evenandr = —1.
(2) Case: N(f") = Rlg"]
o revenand g=10
e nodd, r=-1andq+#0,1
o r £ =1 odd and ¢ #0,1.

Proof. Note that N(f™) = 0 if and only if either ¢ = 0 or r = %1 when n is
even and r = 1 when n is odd. Thus we need to know when f" is weakly Jiang
in the case where N(f™) # 0, i.e., the case where r is even and ¢ = 0, the case
where ¢ # 0 and r # 1, and the case where ¢ # 0 and r # 1 if n is odd.
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Case A: ¢ = 0 and r even.
In this case N(f™) = [1 —r"} # 0, and ¢" is of type (v, 7" 1¢,0). Noting that

<pn (Oéatg) — aar"tgrn_lf

?

—ar™ t~ar“’lé
2 R

Pt = a

v

we have, for each ¢, 5 € Z,
ot = {a g e )

It follows that Rlp"] = {{a}”, [@®",. .., [a“"'n‘}"}. Thus N{f*") = |1 —r"| =
R[p"]. Hence in this case f™ is always weakly Jiang.
Case B: n odd, ¢ % 0 and r = —1.

In this case N(f™) = 2¢" # 0, and ™ is of type (~1, M, q"), where M =
£+ gl + .-+ q" 1L Noting that

- naM . .
oo tb M if g is odd;

—asbg™ PR
oMy if a is even,

P (at3) = {

bg™ . .
a3 M if g s odd;

#"at) ™ = {aatg"bqn, if a is even,
we have, for each 1,5 € Z,
[t = {a4k+2i+1tgq"+1)h+j’ a4k+2i+3tgq”+1)h+M*j | hk e Z},
[ait]" = {a4kT2it(2q”~1)h+j’ a4k+2é+2t(29"—1)h+M—-j | hk € Z}.
It follows that
(1) if g # 1, then
Rlp" = {[e]", [ota]". .. [ot] 1", [o]", 0%a]",.... o8] )" s
(2) if ¢ = 1, then
Rlp") = { o], ota] } {024 | k e 2}

Note here that [o]® = [a***1]" for even ¢, and [o]" = [a*+1]" =
[a**—1t,]" for odd 4.

In particular, if ¢ # 1, then N(f") = 2¢™ = (¢" + 1)+ (¢" — 1) = R[p"]. Hence
in the case when n is odd, ¢ # 0 and r = ~1, we see that f™ is weakly Jiang if
and only if ¢ # 1. ‘
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Case C: ¢ # 0 and 7 # 1 odd.
Let M =+ gl + -+ ¢" 'L Then ©" is of type (r™, M, ¢™). Noting that

"(asth) = a5 M i g is odd;
? ¥ e ;’q", if a is even,
n(ooth)1 = a5 M i g is odd;
? YT lae %, ifa s even,
we have, for each 4,j € Z,
[a2i+1t%}7z _ {a2(1_r")k+2i+ltgq”+1)h+j,
a2(1—r")k+(r"+2i)tgqﬂ'*'l)kﬂ"M“f |k, he Z},
{ailit%’]n - {azm-r’l)k+2¢tgq"~1)f»+j7
a2(1—r")k+(r"+2i—1)tgqn—1)h+M’j |k, he Z}.
It follows that
1) if 1, then
(1) ifg#1,

Rlg" = {['B" |1 <i<1-1",
1<7<qg"+1if4is odd;
1<j<q"—1ifiiseven};

(2) if ¢ =1, then
Rlp"] = {{ai]", [@ta]* |1 <i <1 ~r",d odd}

U {[ait?]" [1<i<|1—7r"|,ieven;m € Z}.

In this case M = nf. Note further that if nf is even, then for all s € Z

[ai}n — {asll-r"]—ké}n’ {aitz}ﬂ — {as|1—r"|+it2]n;
if n€ is odd, then [a1=""1+i]" = [aity]".

In particular, if g # 1, then N(f") = [¢"(1-r")| = B ((¢" + 1)+ (¢" - 1)) =

R[p"]. Hence in the case when ¢ # 0 and r # %1 and is odd, we see that f" is

weakly Jiang if and only if ¢ # 1.

Corollary 4.2. Let f : II\R? — II\R? be any continuous map on the Klein

bottle TI\R? of type (r,£,0) with r even. Then for all n,

NP(f) = pk)1 —r¥|, N&(f) =1 -7"].
kin
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Proof. When r is even and ¢ = 0, by Theorem 4.1, f" is weakly Jiang and

N(f") =|1 —r"| # 0. Now the assertion follows directly from Theorems 3.4
and 3.5. O

Therefore, we are left to consider the case where r is odd. Moreover, the case
where g # 1 was treated completely in Corollary 3.6. Hence we may assume in
what follows that r is odd and ¢ = 1.

5. The Nielsen type numbers: non-weakly Jiang case 1

Let f: II\R? — II\R? be any continuous map on the Klein bottle II\R? of
type (r,£,q). The case where N(f") = R[¢"] is equivalent, by Theorem 4.1, to
one of the following cases:

e 7 even and g = 0; this is solved in Corollary 4.2.
e nodd, r = —1 and g # 0, 1; this is solved in Corollary 3.6.
e 7 # +1 odd and ¢ # 0, 1; this is solved in Corollary 3.6.
If N(f™) =0, then by Theorem 4.1, we have either
e rodd and ¢ =0,
e r=1,or
e neven and r = —1.

Remark 5.1. In the first two cases, N(f*) = 0 and thus there are no essential
Reidemeister classes determined by ¢* for all k. It follows that the Nielsen
type numbers of periodic points of f are NP,(f) = 0= N®,(f).

Remark 5.2. Consider the last case, that is, the case where n is even and r = —1
(and ¢ = 1). By definition, NP,(f) = 0 and NPy(f) = 0 for all even k. By
Theorem 3.5 and Theorem 5.3 below,

N®w(f) =Y _NP(f)= > NP(f)=NP(f) =2
kln k odd, kin

Now we are left to evaluate the Nielsen type number of periodic points of f
in the case where 0 # N(f™) # R[¢"], i.e., f is non-weakly Jiang. Explicitly,
we should consider the following cases in this section and the next section:

e nisodd,r=—-landg=1
e r# +1isodd and ¢ = 1.

Theorem 5.3. Let f : II\R? — II\R? be any continuous map on the Klein
bottle II\R? of type (r,£,q). If n is odd, = —1 and q = 1, then the Nielsen
type numbers of periodic points of f are

N(f")=2; NPi(f) =2, NP,(f)=0(n>1); N®,(f) = 2.
Proof. Suppose first that ¢ = 1. This is Case B in the proof of Theorem 4.1.

Thus
Rlip") = {[a]", lata] } U {e?h]" | k € 2}.
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Recall here that [a]" = [@#**1]" for even ¢, and [o|* = [a¥F1]" = [af*~ 1)
for odd £. Now if m | n, then since n is odd, both m and + are odd. For any
k, ©* is of type ((—1)*, k¢, 1). Observing that
m 25 m 1+ 254
imn([0]™) = [oty * T, tmn((od2]™) = [aty” T,
m 2k

Lm,n([a2t§] ) = [Pt
we see that {([@®t5]") | k € Z — Ummn 7 Z} are the only irreducible periodic
orbits of R[p™] for n > 1, and obviously everything is irreducible for n =

1. The Reidemeister class [a]" € R[p"] corresponds to the fixed point class
p(Fix(af™)) of f™. Recalling from the proof of Theorem 2.3 that

r-on- (35 D -GEE )

since af" = (a, A)(c, F)" = ([%] -1 [—Zl] , [~01 _OID, we can see easily that

Fix(a.f") and hence p(Fix(af™)) consist of single element. This tells that the
corresponding Reidemeister class [a]™ is essential. Similarly, we can show that
the Reidemeister class [at2]™ is also essential. Since N(f") = 2, it follows that
all other classes are inessential.

Next we find the length of each y-orbit of the essential Reidemeister classes
[@]™ and [ot2]". Recalling here that [o]® = [@***!]" for even ¢, and [o|" =
[a4F1]n = [@**~1¢,]" for odd ¢, we see that

p(lo") = [o7'tg]" = [o]",
and hence we have ([o]") = {[¢|"} and ([at2]™) = {[at2]"}. In all, we obtain
01(p) =2, On(p) =0(n>1).
Therefore, NP,(f) =2 and NP,(f) =n x On(p) = 0 for all odd n > 1, and
by Theorem 3.5, N&, (f) = 2. a

Corollary 5.4. Let f : II\R? — II\R? be any continuous map on the Klein
bottle TI\R? of type (r,£,q). If r = —1 and q = 1, then for all n, the Nielsen
type numbers of periodic points of f are

N®,(f) =2.
Proof. Follows from Remark 5.2 and Theorem 5.3. O

6. The Nielsen type numbers: non-weakly Jiang case II

In this section, we will consider the remaining cases when r # +1 is odd and
g = 1. Our computation problem of the Nielsen type numbers can be done by
the following general four steps.

Step 1: Find the Reidemeister classes R["].

Step 2: Find the essential Reidemeister classes.

Step 3: Find the irreducible essential Reidemeister classes.




NIELSEN TYPE NUMBERS FOR MAPS ON THE KLEIN BOTTLE 1495

Step 4: Find the length of the irreducible essential Reidemeister classes. In
fact, we will show that all the irreducible essential Reidemeister classes have
the same length n.

Step 1: Find the Reidemeister classes R[¢"].
This is Case C in the proof of Theorem 4.1. Thus

Rle" = {[a]" lo'ta]" [ 1< i < J1 =77, i odd}
U{[aitg]” [1<i<|1—r"|,¢even; k€ Z}.
Note further that if nf is even, then for all s € Z
o] = [ (i) = (ol i)
if n¢ is odd, then [all=T"1+4" = [ait,]".

Step 2: Find the essential Reidemeister classes.
Recalling that

r=en= (5[ ) -G )

we can see easily that Fix(a’f") (¢ odd) and hence p(Fix(a’f™)) consist of
single element. This tells that the corresponding Reidemeister classes [a*]" are
essential. Similarly, we can show that the Reidemeister classes [a’ts]™ are also
essential. Since N(f™) =|1 —r™|, it follows that

{l", fo'ta]" |1 <4 <1 =17, 4 0dd }

are the essential Reidemeister classes. Hence if nf is even, then O, [| O, where
On ={i|1<i<|1-7"], i 0dd}, corresponds to the essential classes, and if
nf is odd, then R, = {i |1 < ¢ < 2|1 —r"|, 7 odd} corresponds to the essential
classes.

Step 3: Find the irreducible essential Reidemeister classes.
Then for odd i, we have

(') = o, M (alty) = o R

1'1_7‘71' n;me n .
i o=, , - is odd;
Lm,n(a ) = c1—r™ nyp .
o= - is even,

n n
nyg n

j1or £+1 .
ot , = is odd;

o, )
(e 2 L is even.

Therefore:
Case: n is of the form 4k.
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Then 3£ is even, and if ;> is odd, then m must be even and hence 252/ is

even. Thus,
‘ R . [aiil—;:’n”]” 2 s even;
tmn([@]™) = [ =] pa(0tt]™) =4 ™ ’
[T 8], L s odd.

Case: n is of the form 4k + 1.
Both m and - are either of the form 4a + 1 or of the form 4a + 3. If o s of
the form 4a + 1, then

s 1—r™

b ([0]™) = [T, ([@fte]™) = [T ],
If >+ is of the form 4a + 3, then:
e if / is even, then
tmn([0]™) = [ T5]", L a([0ta]™) = [T )"
e if /is odd, then
: c1—r™ : L 1—prT
tnn([0f]™) = [T 8], tmn([@it2]™) = [t
Case: n is of the form 4k + 2.
Either m is of the form 2a + 1 and = is of the form 4b + 2, or m is of the form

4a + 2 and ;: is of the form 2b + 1. If m is of the form 4a + 2 and - is of the
form 2b + 1, then

tmn([@]™) = [0 T, n([02]™) = [0,
If m is of the form 2a + 1 and 2 is of the form 4b + 2, then:
e if / is even, then
tmn([0]™) = [PF], (f0it]™) = [af 15
e if ¢ is odd, then
tmn([@]™) = [0 I, i ([@i2]™) = [ 58],
Case: n is of the form 4k + 3.
Either m is of the form 4a + 3 and = is of the form 4b+1, or m is of the form

4a+1 and ;> is of the form 4b + 3. If m is of the form 4a + 3 and - is of the
form 4b + 1, then

tma(@]™) = @ i ([0fo]™) = [0 ]
If m is of the form 4a + 1 and Z is of the form 4b + 3, then:
e if £ is even, then
tmn([0]™) = [T, ([0ta)™) = [P 1)
e if / is odd, then

tmn([@]™) = o = ", tma(@ita]™) = [aill—;:ﬁ]n‘
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Step 4: Find the length of the essential Reidemeister classes.
We can show that the essential g-orbits are as follows:

o if 7 is even, then
([ = {[o], o], o),
([o'ta]™) = {[o'ta]™, [ 8], .., [0 2] s
e if / is odd, then
([ = {[e* 5
([e'ta]™) = {[*ta]™, [ )", [ 85]7 )

fo—an
3
——t
@
3
~~
L]
-
ey
Q
~
3
)
=
2
(-

Based on the above four steps, we give an explication of how to derive the
formulas for the Nielsen type numbers.

Recall that

={i|1<i<2]1-7r™, {o0dd},
Om=11|1<i<|1—7™, i odd}.

Suppose first that nf is odd. Then n and £ are odd, and if m | n, then m and
2 are odd. By Steps 1 and 2, R,, corresponds to the essential Reidemeister
classes. By Step 3, we can see that if 7> = 1 (mod 4), then ty, », sends each
itoill_:,: and each?;+]1—r | to 1425 + |1 — 77|, and if & = 3 (mod4)
then ¢y, », sends each i to z T +|1—7"| and each i + |1 — r“| to i+ i where
1<i<|1—7™is odd. Thus

Un=Ro— | {f::m mU 2Ot -1}

min, m<n

corresponds to the irreducible essential Reidemeister classes. According to the
equalities [a2="" 1+ = [aity]" of Step 1, for each i € U, we define a subset
(i) of Uy for which

@y = Lyt it it e L= it 4 L= L =)
{mod 2(1 —r")).

For each odd integer 7 with 1 < ¢ < 2|1 ~ ™|, the smallest positive integer k(¢)
for which []” = [p*(¥) (a?)]" is the length of the orbit ([a*]"). Equivalently,
we consider the smallest even positive integer k; such that i(1 — r¥1) = 0
(mod 2{1 — r™)), and consider the smallest odd positive integer k2 such that
i(1—r*2) = 1 — 7" (mod 2(1 — r™)). But since the even integer k; cannot
divide the odd integer n, there is no solution k;. Thus k(i) = ko is the length
of (i), and |{3)| = k(4). Since (i) corresponds to the w-orbit {[@]"), the number
of subsets (¢) of U, is the number of irreducible essential @-orbits, Oy (¢).

For each i € U, we claim that k(i) = n. For simplicity write k instead of
k(4). Consider i(1—7*) = 1—7" (mod 2(1-r")), or i(1—1*) = (2a+1)(1-r")
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for some integer a. Then 2a+1 <. If2a+1 < i,thenk <nand1 <2a+1<
2|1 — r*|. This implies that i = }_T:;(%L + 1) ¢ U,,. This is a contradiction,
which yields that 2a+ 1 = i, and hence k = n. Therefore all the orbits (i) have
the same length n. This implies that O, (y) = |Un|/n.

In all, the Nielsen type numbers are

NP, (f)=nXOp(p)=nx — |U| = |Un|,

N®,(f) =) NPu(f )=Z|Um|.

m|n min

Finally, note that since Ry, = O |J (O + |1 — r™|), we have 11::; R, =
rmO Ui ~ (O + |1 = ™]), and hence

U=FRo- | B

1—pm

m|n, m<n

Suppose next that nf is even. By Steps 1 and 2, O, ][ O, corresponds to
the essential Reidemeister classes. Note that one of the following cases holds:

(i} ¢ is even and n is odd.
(ii) both £ and n are even.
(iii) £ is odd and n is even.

Consider the first case, that is, assume that £ is even and n is odd. Since n
is odd, both m and 2 are odd. By Step 3, we can see that if

then V,, [{V,, corresponds to the irreducible essential Reidemeister classes.
Next, for each i € V,, we define a subset (i) of V;, for which

(&) = {i,ir,...,ir""'} (mod 1 —r").

For each i € V,,, consider the smallest positive integer ¥ = k(i) such that
i(1—7*) = 0 (mod 1—7"), which is the length of (i), and |(¢)| = k(¢). Since (i)
corresponds to the g-orbits ([a!]") and ([a’ts]"), twice the number of subsets
(i) of V, is the number of irreducible essential @-orbits, On(yp). Similarly as
before, we can show that all the orbits (i) have the same length k(i) = n.
Therefore, the Nielsen type numbers are

NP,(f) =n X On(p) =n X 2|—%—| = 2|V,|,
N®n(f) =D NPu(f) =2 [Vl

min m|n
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Consider the second case, that is, assume that both £ and n are even. By
Step 3, we can see that if

ViimOi= | ~oOp, WamOn— |J 20

1—’]"m izl

m[n, m<n min, m<n
= odd

then V,, [[ W,, corresponds to the irreducible essential Reidemeister classes. If
2 is even, % is also even. Since O, contains only odd integers, it follows
that V,, = W,,. Therefore, V,, ][V, corresponds to the irreducible essential
Reidemeister classes. Next, for each i € V,, we define a subset (i) of V,, for

which
(@) = {iyiry...,ir" '} (mod 1 —r").

For each i € V,,, consider the smallest positive integer k = k(i) such that
i(1—7%) =0 (mod 1—r"), which is the length of (), and |(i)| = k(¢). Since ()
corresponds to the -orbit ([@*]") or the w-orbit ([aft2]™), twice the number
of subsets (i) of V;, is the number of irreducible essential p-orbits, O, (). On
the other hand, similarly as before, we can show that all the orbits (i) have the
same length k(i) = n.

Consider the last case, that is, assume that £ is odd and n is even. By Step 3,
we can see that the irreducible essential Reidemeister classes corresponds to the
set Vi, [I Wy, or W, [] V;, according asn = 0 (mod 4) or n = 2 (mod 4). Since,
as above, W, = V,,, V. [V, is the set of all irreducible essential Reidemeister
classes. Similarly as before, we can show that all the orbits (i) have the same
length = n.

Therefore, in the second and the third cases, i.e., in the case where n is even,
the Nielsen type numbers are

NP, (f) =nxOn(p) =nx 2|—‘7—/:—| = 2|V,|,
Now(f) =Y NPu(f)= Y NPu(f)+ D NPu(f)

m|n min, m|n,

m even m odd
= > 2AVil+ D 2V =2 [Vl
e ok min

Now observe easily that |Uy,| = 2|V,,| for all m, we will express |V,,| in terms
ofn,r, fand ¢ =1.

Notation. Let n = 2°p}* - .- pf* be the prime decomposition of a positive inte-
ger n (so that the p;’s are distinct odd primes). Write for each j = 1,2,...,t,

nj = —.
g
p;
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Lemma 6.1. We have

Wl =5 (1L =+ (1) S 1 i),
where {k1,...,ks} C {1,2,...,t}.

Proof. Assume that n is even. First we observe that if m is a divisor of n
with n/m is even, then & s ~ O, consists of only certain even integers. By the
definition of the set V;,, we only need to consider the divisors m of n which are
of the form 2¢n’

Next we observe that if k | £ | n where both k and ¢ are of the form 2¢n’,
then

1—r" 1—-7r"
—0
1ok & T4

For, if ¢ is odd with 1 < i < |1 — r*|, then

Oq.

1—r" i 1—r" » 1-rf i
= xg=—'
1—rk 1—rf " 1—1rk
and {=5; x i is odd between 1 and |1 — r¢|.
Fmally we observe that if ni,ns,...,n; are the distinct maximal proper
divisors of n both of which are of the form 2¢n/, then
. ;
1—r" 1—r"
ﬂ 1 — ks Onki = 1— T(nkl""’nks) O(nklw-anks)’
i=1
where (n,,...,nk,) is the least common multiple of ng,,. .., ng,.

The above observations yield that the size of the set V,, is

[Val = [On| + (-1)° Zl (nkl, T )O(mcl, vnks)l’

where {k1,...,ks} C {1,2,...,t}. This proves the assertion for the case where
n is even. The assertion for the case where n is odd can be proved in a similar
way. O

Immediately we have

Theorem 6.2. Let f : II\R? — TI\R? be any continuous map on the Klein
bottle TI\R? of type (r,£,q) where r # %1 is odd and ¢ = 1. Then for any
positive integer n,

NPa(f) = (L= 17|+ (-1)* Y _[1 = rmrmel],
N@u(f) = 37 (1= 1™+ (1) 31 = v )

mln
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Corollary 6.3. Let f : II\R? — II\R? be any continuous map on the Klein
bottle TI\R? of type (r,€,q) where r # £1 is odd and ¢ = 1. Then for any odd
mteger n,

= ST Uk —rE], N (f) =1 —r"| = N(f").

kln

As another application, we consider the very special case where all the non-
trivial divisors of n are even, namely, n = 2*. This case was already considered
in Corollary 3.6.(2) (cf. [5], [6], [7]). Note that our proof is much simpler and
very direct.

Corollary 6.4. Let f : II\R? — II\R? be any continuous map on the Klein
bottle T\R? of type (r,£,q). If r # £1 is odd, ¢ = 1 and n = 2%, then

NP,(f) = N(f") = 1 - %),

k

=SNG =31 -7,

min i=0

7. Summary

Let f:II\R? — TI\R? be any continuous map on the Klein bottle II\R? of
type (r,£,q). The Lefschetz number and the Nielsen number of the n-th iterate
f" of f are given by
lg"(1 —r™)| if ris odd;

[1—7r7 if r is even and ¢ = 0.

L(f")=1-r" N(f*) = {

and the Nielsen type number N®,(f) is given by the formula N®,(f) =
ke NPe(f) and vice versa, NPy (f) = 3oy, p(k)N@3 (f).

In all, we can tabulate a complete description of the formulas for the Nielsen
type numbers N P, (f) of all maps f on the Klein bottle as follows:

Theorem 7.1. For each positive integer n and a triple (r,£,q) of integers with
£,q >0, we have

[+ 17 q] NP() ot Nou(f) [Proof ||
even #0 Not a right choice for f Lemma 2.1
0 . (f)=11—r"] Corollary 4.2
70,1 ®,(f) =lg"(1 —r")] Corollary 3.6
0 ®.(f) =0=NP,(f) Remark 5.1
odd 1 &.(f) = 0 = NP.(f) Remark 5.2
-1 1 o, (f) = Corollary 5.4
P(f) = ll — 7"
# 1 ( 1) 1 — ey mis)| Theorem 6.2
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Remark 7.2. Suppose that a self-map f on the Klein bottle is of type (r,4,q).
All the formulas of L(f™), N(f"), NP,(f) and N®,(f) are independent of the
variable £. This is due to the fact that the “linearization F of f” (see the proof
of Theorem 2.3) loses the information on £ completely.
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