
COMPUTATION OF THE ONE-DIMENSIONAL UNWRAPPED PHASE

Zahi N. Karam and Alan V. Oppenheim

Massachusetts Institute of Technology
Digital Signal Processing Group

77 Massachusetts Avenue, Cambridge, MA 02139
zahi@mit.edu, avo@mit.edu

ABSTRACT

In this paper, the computation of the unwrapped phase of the discrete-
time Fourier transform (DTFT) of a one-dimensional finite-length
signal is explored. The phase of the DTFT is not unique, and may
contain integer multiple of 2π discontinuities. The unwrapped phase
is the instance of the phase function chosen to ensure continuity.
This paper compares existing algorithms for computing the unwrapped
phase. Then, two composite algorithms are proposed that build upon
the existing ones. The core of the proposed methods is based on re-
cent advances in polynomial factoring. The proposed methods are
implemented and compared to the existing ones.

Index Terms— Phase, Phase Unwrapping, Unwrapped Phase,
Cepstrum

1. INTRODUCTION

Homomorphic signal processing with the complex cepstrum [1] has
been applied, with considerable success, to many areas of digital
signal processing [3], most notably speech, seismic and electroen-
cephalogram (EEG) data processing. The computation of the com-
plex cepstrum requires the unwrapped phase, which is the continu-
ous and periodic instance of the phase of the discrete-time Fourier
transform (DTFT) of a given signal.

Existing algorithms for computing samples of the unwrapped
phase of a signal are often not sufficiently reliable and in many cases
fail. This paper presents two composite algorithms that build upon
the existing ones. The reliability and accuracy of the proposed algo-
rithms have been demonstrated through numerous experiments. The
scope of this paper is restricted to finite length sequences, and we
assume that the z-transform of the signal has no zeros on the unit
circle.

2. PHASE OF THE DTFT

The phase of the DTFT (X(ejω)) of a discrete-time signal x[n] is in
general ambiguous since at any frequency an integer multiple of 2π

can be added without affecting the result of the complex exponenti-
ation. The principal value ARG{X(ejω)} is the unique instance of
the phase function where the 2π ambiguity is resolved by restrict-
ing the value of ARG{X(ejω)} at any ω to the range [−π, π). The
principal value can be calculated by computing the arctangent of the
DTFT.

The unwrapped phase, arg{X(ejω)}, is the phase function for

This work was supported in part by: the Texas Instruments Leadership
University Program, BAE Systems PO 112991, and MIT Lincoln Laboratory
PO 3077828.

which the additive integer multiples of 2π at each frequency ω ∈
[0, 2π) are chosen to ensure that it is continuous. The unwrapped
phase is directly affected by the location of the poles and zeros of
the z-transform (X(z)) of the signal. Most importantly, the closer a
pole or zero of X(z) is to the unit circle in the z-plane, the sharper
the change in the unwrapped phase at frequencies in its vicinity.

3. EXISTING ALGORITHMS

This section describes several existing algorithms to compute sam-
ples of the unwrapped phase arg{X[k]} and highlights their limita-
tions.

The unwrapped phase can be obtained from the principal value
of the phase by detecting and removing the discontinuities intro-
duced by the arctangent routine [2]. The limitation of this method
is that it assumes that the difference between two consecutive sam-
ples of the unwrapped phase is at most a set constant, usually π.
This assumption fails when the phase varies rapidly. One possible
way to find out if all the discontinuities have been detected is to
use this method with progressively shorter frequency sampling in-
tervals until two consecutive computed unwrapped phase functions
match. However, this test is not reliable and does not guarantee that
an even shorter frequency sampling interval will not yield a differ-
ent unwrapped phase. Phase unwrapping by detecting and removing
discontinuities using progressively shorter frequency sampling inter-
vals will be referred to as the DD method.

Numerical integration can be used to compute samples of the
unwrapped phase from samples of the derivative of the unwrapped
phase (arg′{X[k]}). The derivative can be computed by taking the
imaginary part of the ratio of the derivative of the DTFT and the
DTFT [1], we will refer to this as the ratio method. Unfortunately, it
is not possible to determine a priori the integration step size needed
to yield correct results. Tribolet [4] suggests an adaptive numerical
integration (ANI) method that adaptively decreases the step size un-
til the computed samples of the unwrapped phase become consistent
with those of the wrapped phase. The check for consistency is as
follows:

| arg{X[k]} − ARG{X[k]} + 2πL[k]| < ε, (1)

where L[k] is an integer function of k and ε is a set threshold. This
method becomes more computationally intensive and may fail at fre-
quencies where the phase function varies sharply due to zeros of
X(z) close to the unit circle.

Steiglitz and Dickinson [5] suggested computing the unwrapped
phase by adding together the phase contribution of each zero. The
success of this method is contingent on the success of the polyno-
mial factoring algorithm used to find the location of the zeros of

304

1-4244-0882-2/07/$20.00 c©2007 IEEE

X(z). Sitton et al [6] propose an efficient method for factoring high
degree polynomials. This algorithm focuses on searching for zeros
in the area close to the unit circle, and thus works best on polyno-
mials with zeros clustered closer to the unit circle. However, this
method becomes less efficient and may fail for polynomials with
zeros located farther away from the unit circle. Computing the un-
wrapped phase by first finding the zeros using the polynomial fac-
toring method proposed by Sitton et al and then adding together the
phase contributions of the zeros will be referred to as the PF method.

There are several other methods for computing the unwrapped
phase, each with its limitations. McGowan [11] presents an algo-
rithm that computes the unwrapped phase directly from the discrete-
time sequence x[n]. This method is limited to short sequences due to
its sensitivity to computational errors. Quatieri and Oppenheim [12]
presented an algorithm that uses an iterative method to compute the
corresponding minimum-phase sequence of x[n]. The unwrapped
phase of the minimum-phase sequence is then used to compute that
of the input sequence. This method has two limitations. The first
is that the minimum-phase sequence is in general infinite in length
even if x[n] is finite length which limits the accuracy of the iterative
computation of the minimum-phase sequence. The second is that it
assumes that the number of zeros outside the unit circle is known
a priori which is not usually the case. Al-Nashi [13] proposed a
method that computes the unwrapped phase by only using zeros that
are close to the unit circle; this method performs poorly on signals
with zeros clustered close to each other near the unit circle.

4. PROPOSED COMPOSITE ALGORITHMS

This section presents two new methods for phase unwrapping that
are capable of reliably computing the unwrapped phase in situations
where the existing algorithms may fail. These methods are a com-
posite of polynomial factoring and either DD or ANI.

4.1. Motivation

Phase unwrapping using the DD and ANI methods are the most fre-
quently used in practice. These methods become inefficient and may
fail as the zeros of the z-transform of the signal approach the unit
circle. This limitation is of concern because, as presented in [14],
sampled natural physical signals tend to have their zeros clustered
in a tight annulus around the unit circle. Moreover, the area of the
annulus decreases with increasing signal size. On the other hand,
computation of the unwrapped phase using the PF method, performs
best when all the zeros are close to the unit circle. We conclude
that the DD and ANI methods tend to be complementary to the PF
method: DD and ANI perform poorly when PF performs well and
vice versa. This motivates two composite algorithms: the first (CA1)
combines polynomial factoring and DD and the second (CA2) com-
bines polynomial factoring with ANI.

4.2. Overview

Any signal x[n] can be decomposed as

x[n] = xUC [n] ∗ xrem[n],

X(z) = XUC(z)Xrem(z),

where XUC(z) contains the zeros (zUC) that are closer to the unit
circle, and Xrem(z) contains the remaining zeros of X(z).

The proposed algorithms consist of five steps:

1. Use polynomial factoring to find the zeros zUC that are clus-
tered near the unit circle, i.e. zeros of XUC(z).

2. Calculate the unwrapped phase contribution (arg{XUC [k]})
of these zeros.

3. Obtain xrem[n] by deflating x[n] using xUC [n]. Deflation
removes the zeros zUC from x[n] to produce the polynomial
xrem[n] which has lower degree.

4. Use either the DD or ANI algorithm to unwrap the phase con-
tribution of the remaining zeros to obtain arg{Xrem[k]}.

5. Add the unwrapped phase calculated in Step 2 and in Step 4
to obtain the total unwrapped phase.

arg{X[k]} = arg{XUC [k]} + arg{Xrem[k]} (2)

DD or ANISucceeded

Deflation
Failed

Compute arg [k]
UC

Compute arg [k]
rem

ModDD or ModANI

Compute arg [k]
UC arg|X[k]|

x[n]

z

z

xrem

UC

UC

Polynomial
Factoring

And
Deflation

remCompute arg [k]

Deflation

Fig. 1. Overview block diagram.

4.3. Polynomial Factoring (PFact) Subroutine

The polynomial factoring and deflation algorithms used in the pro-
posed composite methods are taken from Sitton et al [6]. MATLAB
code downloaded from the website [9] of the authors of [6] is modi-
fied and used to implement this subroutine.

PFact Subroutine
1. Create a search grid that is dense around the unit circle.
2. Find local minima, and use them as candidate locations for

roots.
3. Improve the accuracy (polish) of the the candidate locations

using Laguerre’s algorithm [10] to obtain the correct location.
4. Remove any duplicates (zeros that polished to the same loca-

tion) from the set of computed zeros.
5. Deflate the input polynomial using the computed roots.
6. i) If deflation succeeds, return the computed zeros and the

deflated polynomial, xrem[n].
ii) If deflation fails, and this is the first iteration through

this subroutine, repeat all the steps while using a denser
search grid in Step 1.

iii) If deflation fails, and this is the second iteration, return
the computed zeros.

Empirical tests suggest that a maximum of two iterations should be
allowed to attempt to obtain a deflated polynomial. Additional iter-
ations increase computation time and in most cases do not improve
the result. It is important to note that the PFact subroutine finds most
of the zeros that are close to the unit circle, but usually misses a few:
this is mainly because the signal may have multiple zeros that are
very close to each other. A block diagram outlining these steps is
shown in Figure 2.

The search grid used in the subroutine is created by sampling
the z-plane on concentric circles of varying radii. This sampling is
performed by applying exponential weighting to the input sequence
and then taking the discrete Fourier transform (DFT) of the weighted

Proc. of the 2007 15th Intl. Conf. on Digital Signal Processing (DSP 2007) 305

Laguerre’s

No Yes

1st

2nd

Deflate x[n]
With Found

Roots

Create Search
Grid Around
Unit Circle

Find Local
Minima

Remove
Duplicates Work?

Did Deflation

Number?
Iteration

Deflation
Worked?

xrem

Repeat using a denser search grid

Computed Zeros Deflated Polynomial

OUTPUT

Yes/No

x[n]

zUC

Polish Candidate
Roots Using

Fig. 2. Polynomial factoring and deflation block diagram.

sequence. The grid is chosen so that it is denser near the unit cir-
cle: as the unit circle is approached the concentric circles are more
closely spaced and the number of samples (DFT size) on each circle
increases.

The deflation step attempts to obtain a polynomial xrem[n] of
lower degree by removing the contributions of the computed zeros
from the input polynomial. The zeros that have determined are un-
factored into a polynomial xfnd[n] which is then used to deflate
x[n]. To check if deflation succeeded, a reconstructed polynomial
xrec[n] is formed as

xrec[n] = xrem[n] ∗ xfnd[n],

and compared to the input polynomial x[n].

4.4. Modified DD and ANI Subroutines (ModDD & ModANI)

When deflation fails, xrem[n] cannot be obtained. Thus, the DD
and ANI algorithms cannot be directly applied. In this section we
modify these algorithms to compute arg{Xrem[k]}, without access
to xrem[n], using only the input signal x[n] and the computed roots
zUC .

The ModDD subroutine differs from the DD phase unwrapping
algorithm in that it computes samples of ARG{Xrem[k]} without
using xrem[n]. The following steps outline the subroutine:

1. Compute ARG{X[k]}, i.e. samples of the wrapped phase of
x[n], using the arctangent routine.

2. Compute arg{XUC [k]} from the computed roots zUC by
summing the individual phase contributions of each zero.

3. Subtract modulo 2π the unwrapped phase of the computed
roots from the wrapped phase of the input x[n],

arg{Xrem[k]} = mod{ARG{X[k]} − arg{XUC [k]}}2π .

The ModANI subroutine differs from the ANI phase unwrap-
ping algorithm in that it computes samples of the wrapped phase
ARG{Xrem[k]} and samples of the phase derivative arg′{Xrem[k]}
without using xrem[n]. ModANI uses the same steps as ModDD to
compute ARG{Xrem[k]}, while arg′{Xrem[k]} can be computed
in the following steps:

1. Compute arg′{X[k]} using the ratio method.
2. Compute arg′{XUC [k]} from the computed roots zUC by

summing the individual phase derivative contributions of each
zero.

3. Subtract the phase derivative of the computed roots from the
phase derivative of the input x[n],

arg′{Xrem[k]} = arg′{X[k]} − arg′{XUC [k]}.

4.5. Robustness To Errors In Factored Zeros

The PFact subroutine also computes an estimate of the error of each
polished root. The error estimate, as proposed in the code obtained
from [9], is based on the Newton correction −f(z)/f ′(z) evaluated
at the location of the polished zero [7]. Errors incurred by the poly-
nomial factoring section of the algorithm may cause the deflation to
fail. However, in general, they will not translate into errors in the un-
wrapped phase. This is because an error in a zero location due to the
first section of the algorithm will be absorbed into the second sec-
tion and will not affect the final computed unwrapped phase [14]. It
is important to note, however, that if the errors are large they will in-
terfere with the ModDD and ModANI subroutines. Therefore, zeros
that have large error estimates are removed. From empirical results,
it is best to remove zeros whose estimated errors were larger than
10−6.

5. ALGORITHM EVALUATION

In this section DD, ANI, PF are compared against the proposed com-
posite algorithms CA1 and CA2. The criteria for comparison are run
time and accuracy. Run times are measured from MATLAB imple-
mentations on a PC with a 1.6GHz Pentium M processor and 512
MB of RAM. In this paper we present results for real-valued input
signals; however, with minor modifications the algorithms should
perform similarly for complex-valued signals.

Two types of tests are used in the comparison. The first evaluates
the algorithms on a large number of synthetic signals for which the
zero locations are known: knowing the zero locations allows us to
compute the exact unwrapped phase function for comparison. This
test is used to demonstrate the reliability of the proposed algorithms.
The second evaluates the algorithms on sampled speech and EEG
data, which are examples of natural signals that are of practical in-
terest.

5.1. Synthetic Signals

The algorithms are evaluated using two thousand synthetic test sig-
nals for which the zero locations are randomly chosen to span a large
class of possible input signals [14]. Table 1 shows the average run

306 Proc. of the 2007 15th Intl. Conf. on Digital Signal Processing (DSP 2007)

time of each algorithm and the percentage of times the correct un-
wrapped phase was computed. These results clearly demonstrate the
reliability of the composite algorithms and their superiority to the
existing ones. An important observation is that CA1 is about three
times faster than CA2; however, CA2 only failed once on this test
set while CA1 failed five times.

Method Percentage Correct Average Run Time
DD 84.8% 1sec
ANI 84.8% 73sec
PF 48.5% 23sec
CA1 99.75% 8sec
CA2 99.95% 24sec

Table 1. Results from 2000 synthetic signals.

5.2. Speech and EEG Signals

This section evaluates the algorithm performance on natural signals
which one might encounter in practical applications: speech, EEG,
and filtered versions of these signals. The speech signal is a record-
ing sampled at 8kHz of the utterance “unwrapped phase”. The EEG
data is recorded from a subject performing a multiplication task col-
lected at Colorado State University’s Computer Science Department
(downloaded from [8]); the signal is EEG electrode data sampled at
250Hz for 10 seconds.

The zeros of both the speech and EEG signals are clustered close
the unit circle. The locations of the zeros were calculated by the
polynomial factoring algorithm presented in [6]. We therefore ex-
pect that the PF and the composite algorithms will perform well,
while DD and ANI will perform poorly. Table 2 confirms these
expectations, with both DD and ANI failing to provide the correct
unwrapped phase.

Speech EEG
Method Correct Run Time Correct Run Time
DD No 1.87sec No 0.49sec
ANI No FAIL No 63.2
PF Yes 26.2sec Yes 4.7sec
CA1 Yes 17.26sec Yes 5sec
CA2 Yes 26.23sec Yes 5sec

Table 2. Results for speech and EEG data.

The speech and EEG signals are filtered with a 220
th order low-

pass Parks-McClellan filter with a transition band between 0.2π and
0.3π. The filtered signals are truncated to remove leading and trail-
ing transients such that the length of the resulting sequence is that of
the original. The algorithms were evaluated using the filtered signals
and the results are presented in Table 3. These two examples are of
particular interest because polynomial factoring fails and, therefore,
the roots of the signal are unknown. Consequently, it is not possi-
ble to check that the computed unwrapped phase is correct. In such
situations we assume the unwrapped phase from CA2 to be the cor-
rect one, because as is seen in Table 1 it is the most reliable. Conse-
quently the results presented in Table 3 are based on this assumption.

6. CONCLUSION

Correctly and reliably computing the unwrapped phase of any one-
dimensional finite-length discrete-time signal, regardless of the lo-
cations of its z-transform zeros, is an unsolved problem. Existing
algorithms are unreliable and only perform well on specific classes

Speech EEG
Method Correct Run Time Correct Run Time
DD Yes 0.4sec Yes 0.1sec
ANI Yes 116.3sec Yes 11.2sec
PF No FAIL No FAIL
CA1 Yes 31.3sec Yes 6.5sec
CA2 Yes 121.1sec Yes 43sec

Table 3. Results for filtered speech and EEG data.

of signals. We have proposed two composite algorithms to reliably
compute the unwrapped phase of the DTFT that are robust to the lo-
cations of the z-transform zeros. The composite algorithms outper-
form the existing methods by combining their strength while avoid-
ing their limitations. The reliability and efficiency of our proposed
algorithms were shown by evaluating them on a large number of
synthetic signals.

7. REFERENCES

[1] A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal Pro-
cessing, chapter 12. Prentice Hall, Englewood Cliffs, NJ, 1989.

[2] A. V. Oppenheim, R. W. Schafer and J. R. Buck. Discrete-Time
Signal Processing. Prentice Hall, Englewood Cliffs, NJ, 1998.

[3] A. V. Oppenheim and R.W. Schafer. From frequency to que-
frency: A history of the cepstrum. IEEE Signal Processing
Magazine, 2004.

[4] J. M. Tribolet. A new phase unwrapping algorithm. IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, 25(2),
1977.

[5] K. Steiglitz and B. Dickinson. Phase unwrapping by factoriza-
tion. IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, 30(6), 1982.

[6] G. A. Sitton, C. S. Burrus, J. W. Fox, and S. Treitel. Factoring
very-high-degree polynomials. IEEE Signal Processing Maga-
zine, 2003.

[7] Eric W. Weisstein. Newton’s method.
From MathWorld – A Wolfram Web Resource.
http://mathworld.wolfram.com/NewtonsMethod.html.

[8] Colorado State University Computer Science Department. EEG
data. http://www.cs.colostate.edu/eeg/?Summary#Data.

[9] Rice University Digital Signal Processing Group. Fac-
toring very high degree polynomials Matlab code.
http://dsp.rice.edu/software/fvhdp.shtml

[10] K. G. Orchard. The Laguerre method for finding the zeros
of polynomials. IEEE Transactions on Circuits and Systems,
36(11), 1989.

[11] R. McGowan and R. Kuc. A direct relation between a sig-
nal time series and its unwrapped phase. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 30(5), 1982.

[12] T. F. Quatieri and A. V. Oppenheim. Iterative techniques for
minimum phase signal reconstruction from phase or magnitude.
IEEE Transactions on Acoustics, Speech, and Signal Process-
ing, 29(6), 1981.

[13] H. Al-Nashi. Phase unwrapping of Digital Signals. IEEE
Transactions on Acoustics, Speech, and Signal Processing,
37(11), 1989.

[14] Z. N. Karam. Computation of the One-Dimensional Un-
wrapped Phase. Master’s Thesis, Massachusetts Institute of
Technology, 2006.

Proc. of the 2007 15th Intl. Conf. on Digital Signal Processing (DSP 2007) 307

