
1498 IEEE Transactions on Power Systems, Vol. 10, No. 3. August 1995 
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Abstract - The basic principles of an eficient new methodology for the 
calculation of the non-sinusoidal periodic steady state in system with nonlinear 
and timevarying components are described. All linear parts, including the 
network and part of he loads. are represented in the frequency domain, while 
nonlinear and time-varying components, mainly loads, are represented in the 
time domain. This hybrid procegp b iterative, with periodic, non-sinusoidal, bus 
voltages U inputs for both fiqumcy domain solutions and time domain 
simulations: a current mismatch is calculated at each bus and used to update the 
voltages until convergence is reached. Thus the process, but not the solution, is 
decoupled for the individual harmonics. Its efficiency is enhand by the use of 
Newton type algorithms for fast convergence lo the periodic stcady stale in the 
time domain simulations. Potential applications of this methodology are in the 
oomputation of a HannoNc Power Flow and in the Steady State Initialization 
needed in the calculation of electromagnetic transients. 

Keywordr: Periodic steady state, Harmonic power flow. Initialization for 
transients, Hybrid solution, Decoupled solution, Newton's method. 

1. INTRODUCTION 

Nonlinear and time-varying elements are the main source of 
harmonics in power systems. With a periodic single frequency 
input, the output will in general contain harmonics of many 
frequencies. Thus, nonlinear elements (time-varying included) are 
responsible for having all harmonics coupled in the system. This 
phenomenon of harmonic coupling is explicitly represented in 
detailed a.c. models of power network components 11 J and of their 
interaction [2]. Accordingly, a program for the calculation of the 
non-sinusoidal Periodic Steady State of the system (Harmonic 
Power Flow) may be of very high dimension [2-6]. 

The intrinsic harmonic coupling produced by a nonlinear 
element is itself nonlinear. Only by a linearization around a 
particular opemting point is a linear relation between harmonic 
domain voltages and currents possible [1-21,[91 and it is of course 
accurate only in a close neighborhood of that point. Not only is the 
calculation of such a harmonic Norton equivalent computationally 
difficult but, for accurate results, it has to be iteratively updated. 
The computational burden is thus further increased in direct 
proportion with the size of the system and the number of harmonics 
represented. Nevertheless, improvements in computational 
efficiency can be achieved by the following actions: 

(a) Replace the harmonic domain calculations for nonlinear 
elements by direct time domain computations followed by 
Fourier transforms. 

(b) Dccouple thc harmonics but recovcr thc accuracy of the 
coupling by an itcrativc process. 
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Reference 171 has presented results along the ideas outlined above. 
There the iterative procedure consists of injecting harmonic current 
phasors into the network and using the resultant voltages, 
converted to the time domain, as inputs to a nodinear element 
yielding a periodic current as output, with all the required harmonic 
components. This is a fixed point (successive replacement) 
iteration [g]. The convergence of the process may however be very 
slow, first, because the network impedance increases with 
frequency and resonance phenomena may occur [9] and, second, 
because the time domain simulation for the load must reach the 
periodic steady state condition of a limit cycle, a process that can 
take excessive time in the case of lightly damped circuits. 
Therefore, the present paper incorporates the following features 
that assure a very efficient overall solution (see Figure 1): 

(1) Fundamentally, frequency domain methods are used for the 
linear parts where they are computationally most efficient and 
intrinsically accurate (as in the case of transmission lines with 
distributed, frequency dependent parameters); and time 
domain simulation is used for the nonlinear parts (normally 
loads) where it is the only natural approach. 

(2) The iterative process is not cyclical in the fixed point iteration 
sense of [7]. Instead, it is based on the calculation of a current 
mismatch A I ,  for all harmonics, followed by a voltage update 
AV,. The mismatch computation is accurate: for tlie linear 
part it obtains I ,  = Y,, V, for all harmonics / I  , and for each 
load it performs a time domain simulation to obtain the 
periodic steady state solution i ( r ) ,  with v(r )  as input. The 
mismatch vector AI, (comprising all load buses) is then used 
with an appropriate iteration matrix 5 ,  equal or close to U,, 
to calculate the update increment AV, from GAV, = A I , .  
This process always converges. 

(3) The time domain simulation is accelerated by noting that the 
dynamics of cycles in the neighborhood of a limit cycle is 
almost linear [l  I], so that the intercepts with a Poincari plane 
can be used to extrapolate to the limit cycle by Newton's 
Method, possibly with numerical diflercntiation. The latter 
has the advantage that it can be applied to nondifferentiable 
nonlinear load characteristics. 

The above fundamental principles for the calculation of the non- 
sinusoidal Periodic Steady State in a system with both linear and 
nonlinear components are described and validated in this paper. 
They can be applied to the development of a full-fledged, three- 
phase Harmonic Power Flow Program or for the particular 
application of Steady State Initialization needed in an Elcclro- 
Magnelic Transients Program (EMTI'). It is bcyond Uic objectives 
of this paper to deal with the dctails of either application. 

' 

(Network) 
(Load) 

Ai 

Figure 1 . The system as seen from the load buses. The voltages Vare inputs. 
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(from this base cycle) to A X " ' ;  see Figure 2. All mappings close 
to the limit cycle are quasi-linear so that Newton's method or its 
approximation can be used for obtaining the point x m  for the limit 
cycle. This is possible irrespective of its stability. 

A - The Brute Force Approach 

We could find the limit cycle by straightforward simulation of (2) 
using some integration routine as for instance a fourth order Runge- 
Kutta (R-K) algorithm. The convergence of this "brute force" 
approach is however usually very slow, especially in components 
&ith light damping, for instance in the case of nonlinear 
inductances [7]; the method can locate stable limit cycles only and 
the steady state is not generally reached without difficulty [lo]. 
Therefore, time domain methods have not been used in the past for 
the calculation of the periodic steady state condition in the presence 
of harmonics, although in [12] an acceleration method based on a 
Newton-Raphson formulation [13] is used. We shall show that 
convergence can be si-gnificantly speeded up by the use of Newton 
type methods. 

B - Conwraence Speed-Up 

In order to take advantage of the lmearity in the neighborhood of a 
base cycle, we linearize (2) around a solution x(r) from rl to 
r, + T . This results in the variational problem 

(3) A i  = A / ( x ( r )  , f )  = 0, f ( x ,  , t )  Ax  = J ( t )  A X  

where J(r)  is the (T-periodic) Jacobian matrix. The initial 
condition is 

 AX(^,) = A X *  (4) 
This is a linear, time-varying ODE [14] with the closed form 
solution 

I 

Ax(i)=exp(lJ(t)dt)  x Ax' ( 5 )  

Ax"' = BAx'  (6) 

B=exp( J'J( t>dt )  (7) 

I ,  

It clearly satisfies (3). For t = r, + T , (5) gives 

with 
I ,  +T 

4 

We note here that B results almost the same for any r,  as the 
mapping near the limit cycle is close to linear. The differences 
however matter in the application ofB to the calculation of the limit 
cycle by Newton's method, to be discussed below. 

Equation (6) shows that input segments (to a cycle) are 
mapped to the corresponding output segments by the (almost) fixed 
matrix B. Because of the overall linear relations on the Poincare 
map of Figure 2, we expect to identify also the matrix C defined by 

(8) xm -x i  = c (XI+'  - x ' )  

The relation between matrices C and B can be derived as 
follows. In Figure 2 take A x ( = x ~ - x ' .  Then we have 

. Their substitution in (6) and solution for xm gives AXI+l - 0 - xi*l 
- X  

xm = x' + c (X'+' - x ' )  (9 )  

This is an estimate for the location of the limit cycle Hith 

C=(z -B) - '  (10) 
Equation (9) leads to a Newton process if B and C are updated 

at each iteration step using (7) and (10). It becomes a linearly 
convergent process if C is kept constant after its f m t  evaluation 
using ( 10). 

2. THE HYBRID APPROACH 

Figure 1 gives a conceptual representation of the system. The 
input points are those buses where nonlinear components are 
connected (essentially, load buses) With voltages Vthe unknowns in 
the computation. For the linear part of the system (mainly the 
network and possibly generators) these voltages are viewed as the 
set of their harmonic components and the currents I ,  are 
calculated for each harmonic h using Y,. For the nonlinear part 
(usually loads) Vis considered in the time domain as the periodic 
function v ( r ) ,  and i(r) is obtained by time domain simulation; it is 
then transformed back to I ,  in the harmonic domain. Physically, 
we expect to have A I = I ,  +IN equal to zero. However, before 
convergence, V is not yet accurately known so that a mismatch 
A I = I ,  +IN will result. As seen from the bus, the system has the 
admittance U,, plus the admittance of the nonlinear part. We can 
use as voltage correction AV* the solution of the equation 

AJfh = AZh (1) 
with an appropriate approximation for E. 

2.1. Calculation of the Current Mismatch 

2.1.1. Network: Freauencv Donrain 

The calculation of the currents I ,  of Figure 1 is a simple, sparse 
matrix-vector multiplication, performed separately for each 
harmonic. 

2.1.2. Loah: Time Donrain 

As mentioned, the computations for nonlinear components, or 
loads, are performed in the time domain. Their general description 
is in terms of the differential equation 

f = f( x , t )  ( 2 )  
where x is the state vector of m elements xk . The driving force is 
periodic so that f ( - , r )  is a T-periodic vector. The steady state 
solution x(t> is also 7-periodic and can be represented as a limit 
cycle for xk in terms of another periodic element of x or in terms of 
an arbitrary T-periodical function, e.g., shot ; see Figure 2. Other 
variabIes, such as r ( t ) ,  are obtained from x ( t )  via algebraic output 
equations. 

Figure 2 . Orbit of state vector x. 

Before reaching the limit cycle, the cycles of the transient orbit 
are close to it. Their position is conveniently described by their 
trace on the Poincare plane P. A single cycle maps its starting point 
XI to its end point xi+' and maps a perturbation segment  AX^ 
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The main problem thus for efficiently finding the limit cycle is 
the identification of the B matrix. In the following we shall present 
three methods of identification. They all require having initially 
calculated the base cycle x(r) over a period T, starting from x'; 
see Figure 2. 

B. 1. Matrix Exponential 

This approach is based directly on equation (7). After the numerical 
integration over a cycle, we calculate the matrix exponential in the 
usual way by resorting to an intermediate similarity transformation 
of the malrix to diagonal form. 

B. 2. Direct Approach 

The eigenvaludvector calculation used for the computation of the 
matrix exponential is not needed if B is calculated directly from (3) 
as follows. Consider the initial vector Ax' to be a column of the 
identity matrix I. Then, if all columns are considered, (6) gives 

AX'+' =B (11) 

A i  = J ( t ) A x  (12) 

Thus, integration of 

With initial vectors Ax' being sequentially the columns of the 
identity matrix I, yields directly the columns of B. Note, that the 
integration involved here (using for instance a Runge-Kutta 
method) is more time consuming than the simple numerical 
quadrature in the Matrix Exponential approach. 

B. 3. Numerical DiJferetitiation 

Both methods described above require the knowledge of the 
Jacobian J(r) . Oncn J can be calculatcd analytically but this is not 
always the case. In particular, in the casc of switched devices it is 
easier to usc in (3) the increment A f rather than J ( r ) A x .  This 
implies that, in addition to integrating (2) with initial value XI for 
obtaining the base cycle x(r) , we also have to integrate it with the 
perturbed initial value x ' + ~ e ' ,  where e' is column J of the 
identity matrix I, and E is a small number. By taking the 
differences of the two values of x at the end of the cycle, we obtain 
thus the columns of AX'+' of (ll), i.e. of E B  in this case of 
down-scaled input. The calculation of B requires m computations as 
described, just as in the case of the Jacobian matrix. 

C - Iteration Stratepies 

As we have sccn, Uic identification (viau) of the iteratioil matrix C, 
which is equivalent to the Jacobian matrix of the Newton process 
(9), requires m + 1 computational sequences equivalent each to one 
cycle of solution of (2). Even though the dynamic order m of the 
individual nonlinear elements in power systems, considered at 
present, is usually quite low (often just l), it is reasonable to 
consider an iteration matrix alternative where the identification 
process is performed only once. Then, of course, the convergence to 
the final limit cycle is only linear, rather than quadratic. The 
evaluation of these two possibilities will be presented in section 3. 

1\11 these computational approachcs could be fairly timc consuming 
for large systems. We notc, howcvcr, that in hybrid calculations the 
individual nonlinear components arc usually of small dynamic 
order, as noted above, so that the related computational cflort is 
significantly reduced. 

0- Linear Loa& 

Note that linear loads should be represented by admittances. This is 
equivalent to including them in the bus admittance matrix. As 
already mentioned, generators are treated in the same way as long 
as they are modeled as linear elements. This increases the overall 
efficiency of the computation. 

2.2. Calculation of Voltage Updates 

To update the voltages we use equation (1) where A 1, is the 
current mismatch vector for harmonic h. Actuaily, the voltage 
correction is -AV,, obtained from (1). Ideally, Y, should be the 
exact value of the admittance seen from the buses. This, of course, 
is not just impractical but actually impossible, because nonlinear, 
as opposed to linear, elements do not respond with a single 
harmonic output to the input AI ,  of harmonic h. To make the 
computations decoupled and simple in terms of harmonics, we 
represent oiily a singlc harmonic h in each of the harmonic domain 
input/output relations of the nonlinear loads. Consequently, Y, can 
only be approximate and the convergence of process (1) is only 
linear. 

2.2.1. Structural Cotwiderations 

At power frequency the admittance Y, of the linear part of the 
system is strongly dominant. Therefore, we could take 8 = & . At 
harmonic frequencies, however, the inductive reactance of the 
network increases and, in addition, capacitive effects f d e r  reduce 
the magnitude of Y, . Thus, clearly, the effect of the nonlinear parts 
is not negligible any more. Therefore we have to add to Y, Uic 
correspondent representation of the load at harmonic h. It is 
howevkr not possible to use a complex admittance matrix for this 
purpose. 

Indeed, a given Y, means that the angle between AV, and 
AI,  remains the same while the pair can be rotated arbitrarily. In 
the case of a nonlinear load, however, the terminal power- 
frequency voltage dcfines a reference for the zero crossing of all 
harmonics and the above property no longer exists. Therefore, the 
voltagdcurrent rclation has to be given in terms of real variables. 
Let 

AJ' = AV' + jAV" , AI = N' i- jAI" , AY = AG + jAB ( I  3) 

llien the complex equation Y A V  = A I becomes 

[; =[ ,"::'I 
This equation allows rotations. If rotations are not allowed, (14) 
takes the more general form 

G' -B" AV' 
[B' G " ] [ A V " ] = [ : i ' ]  

Details of the admittance matrix are given in the next section. 

2.2.2. Identification of the Real Adniittance Matrix 

In order to identi& the 2 x 2  real admittance matrix of (15), 
perform the following computations for a given load 

(a) Apply a 1 per unit power frequency voltage sinwor and 
calculate the response t o ( t ) .  Note that this is the base case 
and that it will producc results independent of the final 
voltagc solution as thc input is fiscd (to 1 p.u.). 

(b) Apply the same voltage with U small perturbation of harmonic 
h, first in phase, then in quadrature: 

sin mot + c sin JIW, t ( 16a) 
sinw,t + ccoshw, t (16b) 

and calculate the respective responses, i ; ( t )  and i t ( t ) .  Take 
the differences with respect toio(t)and denote them as 
&Aii(r)  and 6Ai;(f). 
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1.1- ,, - 

S I  0.07845 
16 1 0.02347 

(c) Calculate the Fourier coeficients of sine- and cos-terms of 
order h of the output increments Aii(r) and Ai;(r). Since 
these correspond to 1 p.u. incremental sine- and cos-voltages 
in (la), they represent admittances and CM be identified with 
the elements G'. B' and GIf. B" of the coeficient matrix in 
(1 5). as follows: 
+ For sine-input: sidsin + G' , codsin + B' 

+ For cos-input: sidcos -+ - B" , codcos + B" 

3. VARIANTS OF IMPLEMENTATION 

The principles of the general methodology described in 
previous sections have been applied to the development of a single- 
phase a.c. Hybrid Harmonic Power Flow program. Different 
implementation strategies were explored for the modeling and 
solution of the linear and nonlinear parts, in order to investigate 
their relative merit. Details of the experience obtained throughout 
this investigation are given in the following sections. 

3.1. Strategies for the Time-Domain Accelcration Process 

The numerical procedures described in section B above have 
quadratic convergence. Thus, when applied to the brute force 
approach, fast convergence to the limit cycle will be achieved. To 
minimize the number of repetitive applications of a speed-up 
method and to better exploit its convergence properties, the 
algorithm should be first applied once the intercepts with the 
Poincark Map can be approximately represented by the linear 
equation (8). In other words, a number of full timedomain cycles 
are first run, thus allowing the initial transient to settle down. The 
numbcr of full cyclcs initially required dcpcnds on the systcm 
characteristics, in particular load damping. In the authors' 
experience, 3 to 4 are suficient for a well damped systcm and 6 to 
7 for a system with light damping. 

Each application of a time domain acceleration procedure can 
be visualized as a "jump " from a reference intercept x' with the 
Poincark plane to reach the starting point of the limit cycle, 
theoretically obtained by brute force alone only after an infinite 
time. In practical terms, the state variables at the limit cycle are 
calculated to an accuracy defined by a specified tolerance for 
convergence. In all test studies to be presented, a criterion for 
convergence of state variables of 1 P 0  p.u. was used. The 
computational eficiency to achieve convergence is directly 
dependent on the strategy followed for the time domain 
computations. The following algorithmic alternatives have been 
implemented in order to analyze and compare their potential 
advantages and drawbacks. 

-____c- 

0.07845 0.07845 
0.03536 0.03536 , 

3.1.1. Full N R N D  Procedure 

This algorithm is based on the repetitive application of the ND 
(Numerical Differentiation) or NR (Newton-Raphson of section B. 1 
or B.2) procedure during the brute force speed-up process, until a 
criterion for convergence is satisfied. The approach exploits to the 
full the quadratic convergence propcrtics of thcsc algorithms. Tlic 
ilcralion matrix B is calculalcd for cach applicalion of LIic NIUND 
method. In order to obtain all the columns of B, the procedurcs 
described in sections B.2 and B.3 require a minimum number of 
full time domain cycles equal to the number of state variables. On 
the other hand, the matrix exponential approach would involve the 
computations required for the evaluation and numerical integration 
of the Jacobian along the base cycle, followed by an eigen-analysis 
process [ 151 to obtain B of (7) as 

B = V  e V-' (17) 

where 

V : matrix of eigenvectors 

A : diagonal matrix of eigenvalues 

By way of example, the three-bus system of Figure 3 has been 
solved by the brute force approach and by applying the acceleration 
techniques of section B above. Seven state variables are to be 
calculated. Table 1 summarizes relevant information obtained from 
the application of each procedure, in terms of the number of full 
time domain cycles (NFC) required for convergence to the limit 
cycle and maximum error in state variables (in per unit). 

Figure 3. Three-bus test system 

I 32 1 0.00159 I 5.4396~-11 I 7.6770~-12 I 
n I I 

162 1 9.7602e-11 I I 
Despite the light damping assumed in the system, three 

consecutive applications of any of the speed-up algorithms were 
sufficient to satisfy the specified criterion for convergence. The 
limit cycle is obtained within this precision. In all cases, before 
applying the acceleration procedure, the brute force approach was 
run for seven initial cycles. An additional full cycle is required for 
the purpose of obtaining the base cycle. It should be noted that a 
good base cycle is essential to minimize the number of repetitive 
applications of a speed-up procedure. For this system, a minimum 
of eight full cycles are required for each "D application. 

The ND method has been found to be faster than the NR 
approach; this is because of its simpler and straightforward 
formulation. Note from Table 1 its powerful and reliable 
convergence characteristics. It differs from NR only because of the 
round-off error in numerical differentiation. 

The approximate CPU times for the Brute Force, ND and 
Direct NR procedures were 35.1,6.S and 7.9 seconds, respectively. 
Each full time domain cyclc in Table 1 took approximately 0.21 
sccolids. Mcasurcd CPU timcs arc of coiuse highly dcpciidcnt on 
the computer system (a 64 bit KSRl computer was used in this 
investigation) and individual code eficiency. 

Table 1. Enors during convergence of time domain methods 

3.1.2. Partial N W D  Procedure 

The purpose of this solution scheme is to reduce the number of full 
time domain cycles and computation time, required by the full 
"D method to lead the brute force approach to convergence at 
the limit cycle. This however is at the expense of degrading the 
natural convergence properties of the "D method. 
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The algorithm can be described as follows: an initial estimate 
of X" is first obtained with (8) with the application of the "D 
method to the brute force procedure; the iteration matrix B is kept 
constant for a number of subsequent evaluations of xp , then 
recalculated to start again this cyclic process until convergence to 
the limit cycle is achieved. A variant of this approach would 
consists in resuming the process described in section 3.1.1 once B 
has been recalculated at a particular solution stage. 

Table 2 illustrates relevant information obtained with the 
application of this solution procedure. After the first "D 
application, the same matrix B was used for the next two 
evaluations of x" , yielding the state variable emors of cycles 17 
and 18. With a second "D application the solution is brought 
very close to the limit cycle. At this stage B is very accurate: it has 
allowed the next estimation ofx" at the limit cycle to be done with 
very high precision, in just one additional time domain cycle. 

I NFC 11 P a r t i a l ~ ~ m e t h o d  I Partial NR method 1 
0.03536 0.03536 

3.6742e-03 3.6740e-03 
2.2358e-04 2.2357e-04 

26 8.9812e-10 8.4602e-10 
27 3.1090e-14 7.6600e-15 

Table 2. Errors during convergence of partial NR/ND procedures. 

3.1.3. Sinple N W D  Application 

This solution method is based on a single application to the brute 
force approach of a full "D procedure. The matrix B is used to 
obtain the first estimate of x"and kept constant for furlher 
evaluations of xm . Convergence to the limit cycle requires more 
applications of (9), as compared with those needed by algorithms 
of sections 3.1.1 of 3.1.2. However, fast updating ofx" is achieved 
with this approach, since the repeated identification process of 
matrix 13 is avoided. This procedure is an attractive alternative 
when the initial base cycle lies close to the limit cycle. Table 3 
illustrates the results obtained with this approach of linear 
convergence. 

Table 3. Errors during convergence of single NR/ND procedures. 

3.2. System Admittance Matrix Representation 

The system admittance matrix &, , defined in section 2, can be 
represented, for the iterative solution of (I), according to any of the 
following procedures. 

3.2.1. Full Svstem A(1ttiittance hfatrir 

The linear components and loads are represented as admittances 
and included directly into Yh. The nonlinear erect of loads is not 
taken into account in Yh and, therefore, the identification process of 
section 2.2.2 and the related time domain calculations are avoided. 
This is an attractive alternative for the solution of systems with low 
or moderate harmonic distortion, as it considerably speeds-up the 
iterative hybrid solution. 

3.2.2. Additrc the Effect of Non-Litiear Loa& 
The elements of the real admittance matrix, obtained with the 
identification process of section 2.2.2, are incorporated into Yh.  

This process strengthens the robustness of Yh , thus resulting in a 
significant reinforcement of the natural convergence properties of 
the hybrid method in systems with high harmonic distortion or 
where a resonance condition is present. Besides, we have observed 
that under such circumstances, the number of iterations required for 
the convergence of the hybrid algorithm can be significantly 
reduced, compared to those needed if Yh does not include the effect 
of nonlinear loads. 

In our experience, the calculation of the Fourier coefficients of 
section 2.2.2(c) is usually necessary for a limited number of 
harmonics, e.g. the first 11 harmonics. This considerably reduces 
the time domain calculations involved for their determination. 
Exception is made for the case when a higher order resonance is 
present in the system, in which case the coefficients should be 
calculated up to that particular harmonic. Furthermore, note that in 
the absence of d.c. excitation, (1) needs to be solved only for odd 
harmonic orders. Thus, the computation time for the iterative 
hybrid solution process is halved. 

3.2.3. Decorrpled Arlniittatrce Matrix Method 

Taking advantage of the structure of Yh, the principles of decoupling 
[ 161 can be applied. Thus, setting GI = G" 0 in (15) yields the 
decoupled equations 

-B" AV'' = AI' 

B' AV' = AI" 
( 1 8 4  

(1 8b) 

The effect of nonlinear loads can be appropriately incorporated 
into B' and -B" of (18). To preserve high accuracy in the 
computation of A I ,  AI'  and AI'' are calculated without 
decoupling in U , .  

It can be mentioned among the computational advantages of 
this approach, that B' and -B" are half the original size of Y, and 
are symmetrical and sparse. It should however be noted that 
decoupling of (15) generally results in an additional number of 
iterations to achieve convergence, in our experience an average of 2 
in systems with low harmonic distortion. In networks with high 
harmonic distortion this technique should be used with caution, as 
it would require a significant number of additional iterations to 
obtain convergence, which itself cannot be guaranteed in these 
cases even with the incorporation of the susceptance terms of the 
nonlinear loads. 

3.3. Achieving Network Admittance Symmetry 

Equation (15) details the real formulation of (1). Note that the 
admittance matrix of (15) is asymmetrical, with off-diagonal 
elements dominant in transmission networks. Symmetry of the 
admittance matrix can however be achieved by a simple procedure 
of reordering of rowdcolumns. Thus, reordering of rows in (1 5) 
yields the matrix equation 

In (19) G'=G" and B' = B" only for the linear part of the 
system. For the nonhear part, we set G',G" = 0 . Thus, we include 
only the susceptances representing the nonlinear effect of loads to 
preserve the symmetry of the admittance matrix. This did not 
negatively aKect the original convergence of the voltage correction 
process based on (1). 

Symmetry in the admittance matrix allows sparsity techniques 
to be applied to the lower triangular matrix only. Following the 
procedure presented, the storage and computation time required for 
the ordering, factorization and solution of (19) is nearly halved. 
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Convergence of this process is accelerated by any of the procedures 
described in section 3.1. Different degrees of nonlinearity have, for 
example, been simulated with saturable reactors of different sizes 
and levels of saturation. 

The following strategy for time domain solution has been 
found to work satisfactorily for the hybrid method: use the 
algorithm of section 3.1.1 for the first two iterations, then switch to 
the approach of section 3.1.2 and once the iterative process is close 
to convergence use the procedure of section 3.1.3. Significant 
saving in computation time can be achieved with the reduction of 
full time domain cycles. It should be noted, however, that in the 
presence of significant harmonic distortion or resonance in the 
system, the use of the procedure of section 3.1.1 throughout the 
iterative process can result in fewer full time domain cycles. 

3.5. Sparsity 

Efficient computations with the hybrid approach are achieved 
with the incorporation of sparsity techniques. Dynamic ardcring 
on U, is based on the &heme of minimal degree [ 171. Symmetry of 
Y, is restored as shown in section 3.3. Since there is no change of 
topology during the iterative solution, ordering and factorization of 
5 are carried-out only once, at the first iteration, and the resulting 
factors are used throughout the iterative process. 

3.4. System Components 

The basic a.c. network components can be represented in the 
hybrid method as follows. 

3.4.1. Transmission Lines 

A transmission line can be represented either by a simple lumped 
parameter model or by a model for long-line effects. In the former 
case, the series impedance and total shunt admittance of a 
transmission line at a frequency w are 

Z = R i- j w L  
Y = j w C  

The shunt admittance Y is halved and placed at both ends of the 
transmission line. The corresponding long-line parameters of the 
transmission line are 

where 

z, = JZIY P a )  

r= JZ  (22b) 
Note that 2, and Y, are equal to the original Z and Y only 

if w + 0 . Equations (21) accurately represent the transmission line 
at harmonic frequencies. On the other hand, it has been observed 
that the damping term of U, strengthens the convergence properties 
of the hybrid method. A reduction by one iteration to achieve 
convergence was generally noted with the use or this fixmulation. 

3.4.2. Generators 

In harmonic analysis of electric networks, generator units can be 
represented either as constant source rigidly fixed to an infinite bus 
or as an internal emf behind a generator reactance. Both models 
have been implemented and analyzed. The infinite bus model is 
given by the equation 

The phase shifts a, are obtained from a load flow solution. 

The internal generator en&E,, can be obtained by post- 
processing following the load flow solution. For the computation of 
harmonics, this results in additional buscs and branches, equal in 
number to the generator units existing in the system. It is more 
convenient to add the created emf nodes at the end of the bus list: 
this makes the computational process more efficient and 
straightforward, as any complication related to bus reordering is 
avoided. In addition, real powers originally at generator terminals 
are now transferred to the internal generator nodes; rigid buses of 
controlled voltage, slack or PV, now become " soft " load buses 
( p a .  

The solution of a power network with the hybrid technique, 
using either of' both generator models previously dcscribcd, will 
yield very accurately the original load flow solution, plus the 
harmonics. The small dcviation that will be observed with the 
application of the internal enfmodel is produced by two facts: the 
now allowed voltage variation of the created " soft "buses, and the 
cross-coupling between harmonics. Higher harmonic content is 
obtained with this model, as the generators' emf's are now driving 
the system. 

3.4.3. Nonlinear Loads 
These system components are modeled in the time domain, with 
the differential equations solved by the R-K integration method. 

4. TEST CASES 

The test system of Figure 3 has been used for the purpose of 
comparison between a pure time domain method and the proposed 
hybrid harmonic load flow method. Light damping is assumed in 
the system. The time domain convergence tolerance for state 
variables was lo-'' p.u. and the criterion for convergence of the 
hill hybrid process was p.u. In lhe hybrid approach tlic 
itcrative process is completed once either the current mismatches or 
the voltage corrections satisfy the convergence tolerance. 
Convergence was obtained in 12 and 6 iterations by using the 
representations of Y, of sections 3.2.1 and 3.2.2, respectively. 

Even for the small test system used here for illustration, the 
full time domain solution required at least one order of magnitude 
more time than the hybrid solution. For any of the realistic power 
systems of section 4.2, a full time domain solution would not have 
been feasible in a reasonable amount of time and a frcqucncy 
domain solution has complex modeling problems in the 
reprcscntation of thc nonlinear and time-varying components. 

4.1. Time Domain Solutions and Hybrid Tcchnique Validation 

The converged solutions obtained with the brute force 
approach or the accelerated time domain solution, applying the ND 
and direct NR method, are identical. In our studies agreement at 
least to the 8th digit has been obtained. Details of maximum state 
variable error and full time domain cycles required for convergence 
are given in Table 1. 

The new hybrid methodology for harmonic analysis of power 
systems has been successfully validated against solutions given by 
the different time domain approaches discussed previously. 
Excellent agreement has bccn Obtained. 

By way of example, Table 4 illustrates the solution obtained at 
bus 3 of the test system of Figure 3 with various time domain 
procedures and the hybrid method. All gave identical results. Only 
a few harmonics h are shown in the table, obtained by Fourier 
analysis of the voltage waveform. 

Table 4.Voltage harmonics obtained by different methods. 
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4.2. Application to the Solution of Larger Systems 

The hybrid method has been successfully applied to obtain the 
periodic steady state solution of larger systems. The IEEE-14, 30, 
57 and 118 Bus Test Systems [18] have been solved with this 
technique. By way of example, Table 5 illustrates the harmonic 
solution for three particular buses of the 11 8 bus test system where 
a nonlinear load has been connected. This system contains 53 
generator units and, in addition, 12 nonlinear loads were assumed 
in the system. At each bus where a nonlinear load is placed, 90% of 
the total load power is assumed to be lincar and 10% nonlinear. 
Convergence was achieved in 4 iterations. The generator units were 
represented with the emJsource model. 

Table 5 .  Some bus harmonic voltagcs. 1EEE.I 18 Tcst Systcm 

5. CONCLUSIONS 

A new algorithm for the computation of the periodic steady 
state of power systems has been presented. It is based on a hybrid 
time and harmonic domain methodology. A hybrid hannonic power 
flow program has been developed using the principles of this 
methodology. 

In the hybrid approach, harmonics are solved independently. 
However, the effect of crosscoupling between harmonics is 
rcstorcd with the accurate calculation of the currcnt mismatch at 
buses with nonlinear loads. 

The proposed hybrid method has good convergcncc propcrtics. 
Convergence has generally been obtained in less than ten iterations, 
even in the presence of significant harmonic distortion or resonance 
in the system. When required, the convergence characteristics of 
the algorithm can be reinforced with the incorporation, into the 
admittance matrix, of the effect of nonlinear loads. The linear 
network is solved with the application of sparsity techniques and of 
a procedure to restore the symmetry of the admittance matrix. 

The hybrid harmonic power flow methodology has been 
successfully validated against time domain methods. Its application 
to the solution of larger electric networks has been described. 

Eficient methods for the acceleration of convergence have 
been described, implemented and analyzed. The importance of their 
application for fast time domain computations has been clearly 
demonstrated. Strategies for the application of methods for brute 
force convergence speed-up have been detailed, their merits and 
drawbacks analyzed. 

The hybrid methodology presented in this paper is general and 
can be applied to the periodic steady state solution of three-phase 
systems. A forthcoming paper will report on the investigation in 
this area. 
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