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Computation of the Sommerfeld Integral Tails Using the
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Abstract—The oscillating infinite domain Sommerfeld integrals (SI) are
difficult to integrate using a numerical procedure when dealing with struc-
tures in a layered media, even though several researchers have attempted to
do that. Generally, integration along the real axis is used to compute the SI.
However, significant computational effort is required to integrate the oscil-
lating and slowly decaying function along the tail. Extrapolation methods
are generally applied to accelerate the rate of convergence of these inte-
grals. However, there are difficulties with the extrapolation methods, such
as locations for the breakpoints. In this paper, we illustrate a simplified ap-
proach for accurate and efficient calculation of the integrals dealing with
the tails of the SI. In this paper, we fit the tail by a sum of finite (usually 10
to 20) complex exponentials using the matrix pencil method (MPM). The
integral of the tail of the SI is then simply calculated by summing some
complex numbers. No numerical integration is needed in this process, as
the integrals can be done analytically. Good accuracy is achieved with a
small number of evaluations for the integral kernel (60 points for the MPM
as compared with hundreds or thousands of functional evaluations using
the traditional extrapolation methods) along the tails of the SI. Simulation
results show that to obtain the similar accuracy in the evaluation of the SI,
the MPM is approximately 10 times faster than the traditional extrapola-
tion methods. Moreover, since the MPM is robust to the effects of noise,
this method is more stable, especially for large values of the horizontal dis-
tances. The method proposed in this paper is thus a new and better tech-
nique to obtain accurate results for the computation of the Green’s function
for a layered media in the spatial domain.

Index Terms—Extrapolation methods, matrix pencil method (MPM),
method of moments (MoM), Sommerfeld integration (SI).

I. INTRODUCTION

Among the different numerical tools used in computational electro-
magnetics for handling layered dielectric regions, the method of mo-
ments (MoM) is one of the most efficient. It provides stable and ac-
curate results while using less number of unknowns (for example, in
[1]–[3]). Basically two main steps are involved in MoM, one is to fill
up the dense matrix and the other is to solve it. The second step usu-
ally takes the dominant computational load for dealing with objects
in an inhomogeneous media. However, for objects placed in a mul-
tilayered media or microstrip structures, the spatial-domain Green’s
function required in matrix filling is complicated by the stratified struc-
tures. The SI is then introduced to calculate each element of the Dyadic
Green’s functions [4]–[7]. The SI is semi-infinite integral involving
Bessel functions of the first kind (or infinite integral for Hankel func-
tions). Due to the oscillating and slowly decaying property of the inte-
grands, the computation of the SI is very time consuming. In somemul-
tilayered MoM calculations, the CPU time for matrix filling is larger
than the time for solving the matrix.
Much effort has been focused on the simplification of the SI. One of

these ideas is to avoid the numerical integrations by approximating the
integrands or a part of the integrand with some simple functions. Then
these approximations of the SI can be integrated analytically [8]–[13].
Bessel andHankel functions have asymptotic sinusoidal forms for large
arguments, which can be used to obtain closed-form Green’s functions
[8]. These asymptotic methods have the disadvantage of less accu-
racy, especially for small distances between the source and the field
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points. Plane wave expansion method was introduced in [9], but it is
valid only for distances less than 1.5 �. The discrete complex image
method (DCIM) was developed to avoid the numerical computation of
the SI [10]. The quasistatic and surface-wave terms are extracted first.
Instead of approximating the whole integrand, DCIM expands the spec-
tral domain Green’s function by a sum of complex exponentials. The
closed-form of the Green’s function in spatial domain is then obtained
analytically by the use of the Sommerfeld identity. However, in DCIM,
the approximation of the spectral kernel is implemented through a con-
caved finite contour instead of using a contour to infinity. The accuracy
is sensitive to parameters such as, the slope of the contour [11]. There
are difficulties in the extraction of surface-wave components and there
are errors in the near-field region due to the singularity of the Hankel
functions [12]. Moreover, without the extraction of the surface-wave
terms, DCIM cannot express the Green’s function (GF) in the far field
region. The study of DCIM also requires rigorous results from other
methods as a verification of the performance. Another DCIM applied
directly in k� domain was proposed in [13]. It has the same disadvan-
tage as the original DCIM of accuracy in the far-field region.
Attention is directed back to the classical numerical methods for the

computation of the SI using some of the other methods, which is time
consuming but provides themost accurate result. Since the integrands in
theSIaredefined in thecomplexdomain,variouspathsof integrationcan
be employed (for example, in [14]), but the real-axis path, indented into
the first quadrant to avoid the branch-point and pole singularities, has
proven to be the most convenient for multilayered media [7]. A signifi-
cant part of the computation involves the integrationof the tail, because it
is oscillatingandslowlydecaying to infinity.Asolution for thisdifficulty
is to integrate finite segments of it and get a series. Then use an extrap-
olation method to accelerate the convergence of the series. Methods of
extrapolation for the tails of the SI have been exclusively analyzed and
the results summarized in [15]. Although the acceleration by extrapo-
lation works well in most cases, it suffers from the computational load
of numerical integration. Moreover, the accuracy of the extrapolation is
sensitive to the choice of the break points in the path of integration and
the value of the horizontal distances from the source point.
The goal of this paper is to provide an accurate and efficient method

to integrate the SI at least as rigorously as the extrapolation method,
but in a much faster but robust fashion. We observe that the oscillating
and slowly decaying tails of the SI behave similar to a complex expo-
nential function with the exponent having a negative real part. Since
the integrals of the exponential functions can be easily calculated and
the values of these exponentials are zeros at infinity, we can first ap-
proximate the integrands by a sum of complex exponentials. It is dif-
ferent from the approximations used in DCIM. The approximation for
this method is done directly to the whole integrand. Hence it is a more
straightforward method. Among the many methods of approximating
a function by a sum of complex exponentials, we choose the matrix
pencil method (MPM) since it is robust to noise and computationally ef-
ficient [13]. Numerical results show that only 60 samples (or functional
evaluations) and 10 to 20 exponential functions are enough to obtain
an accuracy comparable to the traditional extrapolation methods. The
CPU time for the MPM with this small number of samples and expo-
nents is very small. Moreover, MPM is more robust to the variation in
the value of the horizontal distance �. Satisfactory results have been ob-
tained for electrically large objects in inhomogeneous media by MoM
[2], [3], but analysis of large objects in multilayered media is impeded
by the excessive computational effort and the accuracy for large �. It is
shown in this paper that MPM is robust for � from 10

�4 wavelengths
to more than 160 wavelengths, which is suitable for analysis for large
structures in MoM.
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Fig. 1. Path for typical Sommerfeld integration.

We organize this paper as follows. The nature of the SI and the ex-
trapolation methods are briefly discussed in Section II. The MPM and
its application to the evaluation of the SI is explained in Section III.
Using numerical results we show the performance of the MPM and
compare it to the traditional extrapolation methods and DCIM in Sec-
tion IV. Finally some conclusions are drawn in Section V.

II. SOMMERFELD INTEGRALS AND THE EXTRAPOLATION METHODS

In the mixed potential integral equations (MPIE) used in MoM [7],
the spatial domain dyadic Green’s functions (DGF) associated with
the vector or the scalar potentials at a field point r due to an arbitrary
oriented source at r0 in a layer of stratified media can be expressed by
a Sommerfeld-type integral [15]

I =
1

0

~G(z; z0;�)Jn(��)�d�; n = 0; 1; 2 (1)

where ~G is the spectral domain Green’s function. Jn is the nth order
Bessel functions of the first kind. � is the radial wave number and � is
the horizontal distance between the field and source points in the xOy
plane. z and z0 are the vertical components for r and r0 respectively.
The most convenient path to compute the integral in (1) is along the

indented path in the first quadrant to avoid singularities from 0 to a, and
then from a to1 along the real axis, assuming that there are no singu-
larities on [a;1). Choice of the path along [0; a] is not critical [17], as
long as the singularities are circled around and the imaginary part of �
on the path is positive and not too large to handle large values of Jn.
We choose an elliptical path C1 for integration as shown in Fig. 1. Ac-
cording to the residue theorem for complex functions, the singularities
of the spectral domain GF are accurately included in the result of the
integration. This feature differs from the DCIM method. In the DCIM
method, the complex images are approximately obtained by a set of
samples of the spectral GF. This kind of approximation is not accurate
enough to include the information of the singularities [10]–[13], espe-
cially in the far field region. This point is also illustrated by numerical
examples in Section IV. Moreover, the direct numerical integration of
the SI is still the best choice to obtain the most rigorous results.
Since we can do the finite numerical integration on [0; a] quite easily

and accurately, we focus on the more difficult integration on the path
[a;1). The integrand in (1) is given by

f(�) = ~G(z; z0;�)Jn(��)�: (2)

In some situations f(�) is not convergent, i.e., lim�!1 jf(�)j = 1,
but we can extract the divergent term easily (for example, the static term
in [10] or [18]). In this paper, we assume f(�) is convergent, such that
lim�!1 jf(�)j = 0.
Bessel functions have the following asymptotic forms for large ar-

guments:

Jn(��)� 2=(���)cos(���n�=2��=4); for ���1
n!

r!(n� r)!
:

(3)

They decay at the rate 2=(���) and have the asymptotic half pe-
riod q = �=�. The proven and most popular method to integrate f(�)

on [a;1) is the traditional “extrapolation method.” This is based on in-
tegrating f(�) during the first several half periods, accumulating them
to obtain a series whose sum is evaluated using some transforms to
accelerate the convergence of the series [15]. Note that the numerical
integration is performed only on [a; b] where b = a + Kq and K is
a finite integer. The extrapolation transforms the integration result on
[a; b] to the final result on [a;1). Problems arise on how to define the
location of the “break points” on the path and how to define each half
period. For different kinds of break points, (for example, the extremes
or zeros of Jn), the traditional extrapolation method is likely to have
different computational errors.

III. USE OF THE MATRIX PENCIL METHOD TO COMPUTE THE
SOMMERFELD INTEGRALS

TheMPM [16] can be viewed as a new extrapolation method to com-
pute the tails of the SI, since the evaluations of f(�) on [a; b] are also
used to perform the integration along [a;1).
Suppose we have m samples of f(�) per half period. We have a total

of N = mK samples, and t = � � a. We can approximate f(t) on
[0;1) by a sum of M exponentials as

f(t) �

M

i=1

Rie
s t; 0 � t <1 (4)

where Ri is called the residue or the complex amplitude, and si is the
exponent. For the assumption in Section II, limt!1 jf(t)j = 0, so
Re[si] < 0. If we sample (4) with a sampling step �T = q=m, then
(4) becomes

fp = f(p�T ) =

M

i=1

Ri
p
i ; for p = 0; 1; . . . ; N � 1 (5)

where the poles are i = es �T for i = 1; 2; . . . ;M.
To solve for the Ri and si using ffpg, we first construct the Hankel

matrix as

Y =

f0 f1 � � � fL
f1 f2 � � � fL+1
...

...
...

fN�L�1 fN�L � � � fN�1

(6)

and perform a singular value decomposition (SVD) ofY,

Y = U�VH (7)

where the superscript H defines the conjugate transpose of a matrix
and� is a diagonal matrix with singular values �i ofY.L is the pencil
parameter and we choose L = N=2 in this paper. How to choose this
parameter has been discussed in [20]. The number of exponentialsM
can be chosen by analyzing the values of �i. We can set a tolerance
tol, and discard the small �i, which are �i=�max < tol, where �max
is the largest singular value. tol can be used to adaptively control the
accuracy of the SI. Smaller tol means larger number of exponentials is
used to approximate f(t) and yield more accurate results for the SI,
but requires longer computational time. Once M is decided, the first
M columns of U are used to build a newM �M matrix using a least
squares method, and the eigenvalues of this matrix are the poles i.Ri
are solved from the least squares problem

1 1 � � � 1L
1 2 � � � M
...

...
...

N�11 N�12 � � � N�1M

R1
R2
...

RM

=

f1
f2
...

fN�1

: (8)

The si can be obtained from

si = log(i)=�T: (9)
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Once Ri and si are solved for, the integration of f(�) on [a;1) can
be simply calculated analytically through

1

a

f(�)d� =
1

0

f(t)dt �
M

i=1

1

0

Rie
s tdt = �

M

i=1

Ri

si

(10)

with the assumption Re[si] < 0. There are three dominant computa-
tional loads: first in the computation of the SVD in (6), second in the
eigenvalue solver for i and the third in the least squares solver for
Ri in (8). For large L andM , the computational effort for these three
steps is the most time consuming. Fortunately, the tails of the SI have
shapes which are suitable for MPM. Simulation results in the next sec-
tion show that N = 60(L = 31) andM � 20 are enough to obtain
satisfactory accuracy for this integration. With this method, eigenvalue
and least squares solvers for a 20� 20 matrix can be performed with
trivial computational effort.
The fundamental differences between MPM and the traditional ex-

trapolation methods in [15] are as follows.

A) No splits of half periods are necessary. There is no need to
find the optimal locations for the break points.

B) The whole set of samples on [a; b] are used at one time to
solve the parameters of the exponentials.

C) The exponentials obtained are used to fit f(�) on the entire
domain of [a;1).

D) There is no numerical integration of the tails of the SIwith the
MPM method and the matrix computations become trivial.

Because of these features, one would expect that MPM is more ro-
bust and efficient than traditional extrapolation methods. This expecta-
tion is validated by numerical results in the next section.

IV. NUMERICAL RESULTS

In this section, we show the accuracy and CPU times used for MPM
for integration of the tails of the SI, and we compare these two per-
formance parameters to results obtained by one of the most efficient
traditional extrapolation methods.
We use the same examples as in [15]. The simplest of the SI is the

Sommerfeld identity [4]. Suppose we have the following SI

1

a

e�jk jzj

jkz
J0(��)�d� =

e�jkr

r
�

a

0

e�jk jzj

jkz
J0(��)�d� (11)

where r = �2 + z2 and kz =
p
k2 � �2. k = k0

p
" is the wave

number in the media with dielectric constant ", where k0 is the wave
number in free space. We choose " = 16� j0:1. There is a singularity
at � = k0

p
". To avoid this singularity, the integration of the right hand

side of (11) is computed along the path from 0 to a shown in Fig. 1.
It is integrated to machine accuracy by using the adaptive Lobbatto
quadrature [21]. The integration for the tail starts at a.
We choose the most critical case as z = 0, in which case the tail

is oscillating and slowly decaying to 0 as � ! 1. The remaining
parameters to be decided are the samples ffpg used as inputs forMPM.
Simulation shows that stable and accurate results can be obtained by
equally sampling f(�)withm = 6 points per half period, andK = 10
half periods are good enough for the extrapolation from b to1. Hence
the total number of evaluations of the integrand is N = 60. Fig. 2
shows the real part of the 60 samples of the tails used in MPM for
k0� = 0:01 and k0� = 100. The two series of samples show the
similar oscillating and slow decaying shape. For larger k0�, the rate of
decay is smaller.
Note that the plots shown in Fig. 2 are typical tails of the SI. Ad-

ditional real forms of the SI for a stratified media due to horizontal or
vertical sources have also been computed by using the MPM but not

Fig. 2. Samples of the tails of the Sommerfeld integral used in MPM.

Fig. 3. Normalized errors for the tail integration, tol = 10�14.

shown in this paper. The inputs to the MPM for these other examples
look similar to Fig. 2 and the integration results are stable and accurate.
Simulation results are shown Figs. 3 through 7 for different values of

tol along k0� from 10�3 to 103. Note that k0 = 2�=�0 where �0 is the
wavelength in free space. Hence � varies from around 1:6� 10�4 �0
to 160 �0. The integration results on the left hand side of (11) are com-
pared with the results obtained from the right hand side, and the nor-
malized errors are plotted. Among the various traditional extrapolation
methods listed in [15], the weighted-average method (WAM) is one of
the most versatile and efficient convergence accelerators for evalua-
tion of the tails of the Sommerfeld integrals. For this reason, we chose
to compare the performance of the asymptotic WAM to the proposed
MPM method. Recall that the parameter tol is the tolerance, related to
the ratio of the singular values in MPM. This parameter is also applied
as a measure of relative error for adaptive Lobbatto quadrature used for
integration in each half period in WAM. As in [15], the number of half
periods is set to 10 for both methods.
Fig. 3 shows the normalized errors for MPM and WAMwhen tol =

10�14. The performance of WAM is better when k0� is small. How-
ever, when k0� is larger than 1 (� > 0:16�0), MPM has better accu-
racy than WAM. Moreover, MPM is more stable than WAM when k0�
increases. The normalized error of MPM remains below 10�7 for all
k0�.
The CPU-times of both methods are shown in Fig. 4. To calculate the

integrals to tol = 10�14, MPM is generally 19 times faster thanWAM.
An average of 17 exponentials are required to approximate f(�). The
dominant computational time of WAM is spent on the evaluation of
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Fig. 4. Comparison of CPU times for the two methods, tol = 10�14.

Fig. 5. Number of functional evaluations for the two methods, tol = 10�14.

Fig. 6. Normalized errors for the tail integrations, tol = 10�12.

the integrand. Fig. 5 shows that thousands of integrand evaluations are
required for WAM compared to a constant 60 evaluations for MPM.
When tol becomes higher from 10�14 to 10�10, the performance

of MPM remains consistent, as shown in Figs. 6 and 7. However, the
performance of WAM deteriorates. For tol = 10�12 as in Fig. 6, the
accuracy of MPM is better than WAM for most k0�, and the CPU-time
forWAM averages 8 times longer thanMPM. An average of 14.5 expo-
nential functions are required to approximate f(�). For tol = 10�10,
the CPU-time used for WAM is 2 times longer than MPM since less
evaluations of the integrand is necessary, but the performance of WAM

Fig. 7. Normalized errors for the tail integrations, tol = 10�10.

Fig. 8. Stratified structure of the 7-layer media.

Fig. 9. Performance comparison between the proposed method and the DCIM
method.

is even worse. An average of 13 exponentials are required to approxi-
mate f(�) when tol = 10�10. Based on the numerical results shown
in Figs. 3–7, we can observe that MPM is generally more accurate
than WAM. MPM has two additional advantages: greater robustness
and faster computational time.
As another example, we use a complex problem and compare the

results of the proposed method to the DCIM. We analyze the spatial
domain GF for a 7-layer media. The stratified media is described in
Fig. 8. The source is located at z0 = 1 mm (in the second layer) and
the field point is located at z = 2 mm (in the sixth layer). The x com-
ponent of the vector potential GF (GA

xx) due to a horizontal source and
the scalar potential GF (Gq) are shown in Fig. 9. The results of the
DCIM method is not correct for larger values of �. The reason for this
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is explained in Section II. The results obtained by WAM are slightly
different from those obtained by the proposed method. The WAM re-
sults are not shown in Fig. 9 because they essentially overlay with that
of the proposedmethod. However, the CPU time used inWAM is 10–15
times faster than MPM. Also, from Figs. 3 through 7 we see that use of
MPM in the computation of the SI provides more accurate results.

V. CONCLUSION

An adaptive, efficient and robust method is introduced to compute
the tails of the SI. It uses the MPM to extrapolate the tail using a few
known samples, and the integration on [a;1) is analytically computed
from the sum of complex exponentials. Compared with the traditional
extrapolation methods, MPM does not require the difficult task of lo-
cating the optimal break points. Moreover, MPM uses the whole data,
and the poles and residues are computed using a least squares method.
Hence, MPM is more robust and efficient than any of the other extrapo-
lation methods available in current publications. The integration of the
tails remains accurate for horizontal distances greater than 160 wave-
lengths, an achievement which no other method can claim; hence it is
capable of providing rigorous results for MoM applied to large struc-
tures in a multilayered media.
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