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ABSTRACT
Let g be a univariate separable polynomial of degree n with
coefficients in a computable field K and let (α1, . . . , αn)
be an n-tuple of its roots in an algebraic closure K̄ of K.
Obtaining an algebraic representation of the splitting field
K(α1, . . . , αn) of g is a question of first importance in ef-
fective Galois theory. For instance, it allows to manipulate
symbolically the roots of g. In this paper, we focus on the
computation of the splitting field of g when its Galois group
is a dihedral group. We provide an algorithm for this task
which returns a triangular set encoding the relations ideal
of g which has a degree 2n since the Galois group of g is
dihedral. Our algorithm starts from a factorization of g in
K[X]/〈g〉 and constructs the searched triangular set by per-
forming n2 computations of normal forms modulo an ideal
of degree 2n.

Categories and Subject Descriptors
I.1 [Computing Methodologies]: Symbolic and algebraic
manipulations

General Terms
Algorithm, Theory

Keywords
Galois theory, triangular set, splitting field, dihedral group

1. INTRODUCTION
The computation of the splitting field of a polynomial plays
an important role in Galois theory and more generally in
algebra. It is the smallest field where all the roots of the
polynomial lie. Computing a suitable representation of this
field allows us to manipulate all the roots of the polyno-
mial. Let g be a polynomial of degree n with coefficients in
a computable field K and whose Galois group is dihedral,
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which implies that it is irreducible and separable. We are
interested here with the computation of the splitting field of
g and the representation of the action of the Galois group
over the roots of g. Our aim is to exploit the knowledge on
the Galois group of g.

The splitting field of g can be represented as a simple ex-
tension of the base field but, since here we want to compute
with all the roots of g it is better to considerate another
representation. The natural representation for this task is
the following quotient algebra

K(α1, . . . , αn) ≃ K[x1, . . . , xn]/I

where I is the kernel of the surjective morphism from K[x1,
. . . , xn] to K(α1, . . . , αn) which maps xi to αi. The ideal
I is called a relations ideal of g. Remark that I is zero-
dimensional and maximal. A Gröbner basis of I allows com-
putations in this quotient algebra by means of linear algebra
operations (see e.g. [7, 5]) and then to make symbolic oper-
ations with the roots of g.

When n = 5 and K = Q, Spearman and Williams give in [21]
a first solution to this problem: they provide closed formulæ
which express all the roots of g as rational functions of any
two roots α1, α2. Thus, if we have a radical representa-
tion of α1 and α2, we have the ones for all the other roots.
But, when n > 6, the result of Spearman an Williams is
not generalized. Moreover, the radical representation of the
roots is not suitable for symbolic computation (see [15, Sec-
tion 9]) when n > 6. Thus, we focus on the computation of
the representation of the splitting field of g with the above
representation.

It is well known that the ideal I has a triangular reduced
Gröbner basis for a lexicographical order (see e.g. [22, 14, 2,
24, 4]). This Gröbner basis can be obtained from the poly-
nomial g by computing successive factorizations in algebraic
extensions of K (see e.g. [2]). Another method for this task
is based on computations and factorizations of resolvents
(see e.g. [24, 10]). When such a triangular basis is known,
we can compute the symmetric representation of the action
of the Galois of g over α1, . . . , αn (see [2, 1]). None of the
aforementioned methods take advantage of the fact that the
Galois group of the studied polynomial is dihedral.

In this paper, we focus on the computation of this triangu-
lar Gröbner basis. In our specific case, this triangular set



{f1, f2, f3, . . . , fn} verifies a theorem of Galois which states
that polynomials f3, . . . , fn are linear in their principal vari-
able. Thus, as soon as we know an irreducible factor g2 of
g over its stem field (an extension of K generated by one of
its roots) we can take f1 = f and f2 = g2, then it rests to
compute the polynomials f3, . . . , fn. If we know the action
of the Galois group of g over approximations (complex or
p-adic) of its roots we can compute these relations by in-
terpolation (see [16, 25, 20]). Here, we do not assume the
knowledge of the explicit action of the Galois over approxi-
mations (we only know the name of the group) so we cannot
use these methods.

An other framework for the computation of such a basis is
presented in [17]: the main idea is to begin the process by
a factorization of g over its stem field and to end the al-
gorithm by computations using the algorithm GaloisIdeal

(see [24]) with a tricky use of the galoisian informations ob-
tained from the factorization in order to avoid some com-
putations. This framework describes a method for the con-
struction of a table-based algorithm for the computation of
relations ideal of polynomial with a fixed degree.

The algorithm we provide here starts also from a factoriza-
tion of g over its stem field but, it does not depend neither
on the degree of g and nor on the field of its coefficients. We
prove that the knowledge on the fact that the Galois group
of g is dihedral allows to reduce the end of the process to
computations of normal forms modulo an ideal of degree
2n obtained from the pre-process of factorization. We also
prove that the number of normal forms computed by our
algorithm is dominated by n2, and that they are computed
modulo a zero-dimensional ideal of degree bounded by 2n.

In the particular case of degree n = 5, we prove that this
basis can be given from the factorization of g over its stem
field without any other computation of normal forms. This
can be viewed as an improvement of the result of [21].

The paper is organized as follows. In section 2, we present
results about Galois ideals relating them to triangular sets.
These results are used in Section 3 which is devoted to the
proof of the principal results leading to the algorithm and
its complexity study. Section 4 presents two examples of use
of this algorithm.

Notations

In this paper, the following notations are used:

• K is a computable field and K̄ is an algebraic closure
of K.

• For i ∈ [[1, n]], the multivariate polynomials ring K[x1,
. . . , xi] is denoted by K[Xi].

• For i ∈ [[2, n]], K[Xi] is equipped with the lexicograph-
ical monomial order x1 < x2 < . . . < xi. For f ∈
K[Xi], we denote by HM(f) the greatest monomial of
f .

• Given an ideal I of K[Xn], the set of zeroes of I in K̄n

is denoted by Z(I). For i ∈ [[1, n − 1]], we denote by
Z(I)i the projection of Z(I) on the first i coordinates.

• Given V a finite subset of K̄n, the unique radical ideal
of K[Xn] vanishing on V is denoted by I(V ).

• The natural actions of the symmetric group Sn over
elements of K̄n and K[x1, . . . , xn] are defined by

Sn × K̄
n −→ K̄

n

(σ, α) −→ σ.α = (ασ(1), . . . , ασ(n))

Sn × K[Xn] −→ K[Xn]

(σ, f) −→ σ.f = f(xσ(1), . . . , xσ(n))

• Dn denotes the symmetric representation of the dihe-
dral subgroup of degree n of Sn. In the case where n
is odd, it is generated by the product of transpositions

τ = (2, 3) . . . (n − 1, n)

and the cycle

σ = (1, 2, 4 . . . , 2k, . . . , n − 1, n, . . . , 2k − 1, . . . , 5, 3).

When n is even,

τ = (2, 3) . . . (n − 2, n − 1)

and

σ = (1, 2, 4 . . . , 2k, . . . , n, n − 1, . . . , 2k − 1, . . . , 5, 3).

For example, when n = 5 (resp. n = 8) we have
τ = (2, 3)(4, 5) (resp. τ = (2, 3)(4, 5)(6, 7)) and σ =
(1, 2, 4, 5, 3) (resp. σ = (1, 2, 4, 6, 8, 7, 5, 3)).

2. GALOIS IDEALS
In this section, we recall the definition and give some results
about Galois ideals (see [24, 4]).
In the whole section, g is a separable polynomial of degree
n with coefficients in K and α = {α1, . . . , αn} an n-tuple of
its roots in K̄.

Definition 1. An ideal I of K[Xn] is a Galois α-ideal if
there exists a subset L of the symmetric group Sn containing
the identity such that:

I = I(L.α) .

More generally an ideal I of K[Xn] is said to be a Galois ideal
if there exists a tuple β of roots of a separable polynomial
of degree n such that I is a Galois β-ideal.

Example 2. The Galois ideal I({α}) is called a relations
ideal and is denoted by I(α). Since K[Xn]/I(α) is isomor-
phic to the splitting field of g, I(α) is maximal [24, 2]. In
fact, it is the unique maximal Galois α-ideal. More gen-
erally, all maximal ideals of K[Xn] which contain a Galois
ideal are relations ideals (see [24]).

We have the following obvious characterization of a Galois
α-ideal:



Lemma 2.1. [4] An ideal I of K[Xn] is a Galois α-ideal
if and only if I is radical and its associated algebraic variety
Z(I) satisfies

{α} ⊂ Z(I) ⊂ Sn.α .

The Galois group of g, for a fixed numbering of its roots, is
now defined from a Galois ideal.

Proposition-Definition 3. [24, Définition 1.12] There
exists a subgroup G of Sn such that the algebraic variety
V = Z(I(α)) verifies V = G.α. A symmetric representation
of the Galois group of g is such a maximal subgroup G (for
the inclusion) of Sn. It is denoted by GalK(α) in the sequel.

Remark 4. As soon as a Gröbner basis of I(α) and the
generators of GalK(α) are known, we can represent the ac-
tion of the Galois group of g over a symbolic representation
of its roots. In fact, the group GalK(α) is the stabilizer of
I(α) (see [1]), thus it represents the K-automorphisms of
the algebra K[Xn]/I(α). Hence, the objects that we want to
compute are exactly a Gröbner basis of I(α) and its stabiliser
GalK(α).

Lemma 2.1 shows that any Galois α-ideal is included in I(α).
More generally, we have the following result:

Lemma 2.2. Let σ be a permutation of GalQ(α). For any
Galois α-ideal I, we have:

∀R ∈ I, I + σ.R ⊂ I(α) .

Proof. We have I ⊂ I(α), thus R ∈ I(α). Since σ.α ∈
Z(I(α)) (see Proposition-Definition 3), we have (σ.R)(α) =
R(σ.α) = 0, which implies that σ.R ∈ I(α) since I(α) is
radical.

When K is perfect, a Galois α-ideal I ⊂ K[Xn] for which
there exists a subgroup G of Sn such that Z(I) = G.α is
generated by a separable triangular set (see [4]). Following
the proof of [4], we provide further a more general result.

Definition 5. A subset T = {f1, . . . , fn} of K[Xn] is said
to be triangular if there exist n positive integers k1, . . . , kn

such that:

∀i ∈ [[1, n]], HM(fi) = xi
ki .

A triangular set T = {f1, . . . , fn} is said to be separable if
for all i ∈ [[1, n]], and for all β ∈ Z(〈T 〉)i−1, fi(β, xi), seen
as a univariate polynomial in xi, is separable.

Remark 6. Note that in our definition, we only consider
triangular sets whom initials are equal to 1, so that the ideal
generated by the considered triangular set is the saturated
ideal of the triangular set (see [3]). In particular, from [3],
the saturated ideal of a separable triangular set is radical.
In our case, this means that the ideals generated by the sep-
arable triangular sets we consider are radical.

We show now how to generalize the result of [4] about tri-
angular sets and Galois ideals. The first result we need is
about equiprojectable varieties (see [4, 8] for a definition).

Lemma 2.3. An algebraic variety V of (K̄sep)n (where
K̄sep is the separable closure of K) is equiprojectable if and
only if the ideal I(V ) can be represented by a separable tri-
angular set.

Proof. A proof is given in [4] for the case where K is
perfect but this result does not depend on the perfectness of
the base field as soon as we suppose the field K[V ] separable
which is the case here (for example, see [9] where this result
is used).

From this lemma we obtain the following generalization of
[4].

Proposition 2.4. Let I ⊂ K[Xn] be a Galois ideal. If
there exists a subgroup G of Sn and an element α of the
algebraic variety V = Z(I) such that V = G.α then there
exists a separable triangular set generating I.

Proof. Let G be a subgroup of Sn. An algebraic variety
V ⊂ K̄n such that V = G.α, where α is an n-tuple of roots of
a separable degree n polynomial, is equiprojectable (see [4]).
Moreover, since K(α) is separable so is K[V ] and the result
follows from Lemma 2.3.

Remark 7. A Galois ideal whose associated algebraic va-
riety satisfies the conditions of Proposition 2.4 is said to be
pure. There exist Galois ideals which are not pure and trian-
gular thus Proposition 2.4 is not an equivalence. Moreover,
there exist Galois ideals which are not triangular (see [19]).

Separable triangular sets have many other properties (see
[3]), we use the following one in the sequel.

Lemma 2.5. Let T = {f1, . . . , fn} be a separable triangu-
lar set of K[Xn] and R be a polynomial of K[Xn] such that
HM(R) = xj with j > 2. Suppose that the ideal 〈T , R〉 6=
K[Xn]) and 〈f1, . . . , fj−1〉 is a maximal ideal of K[Xj−1].

Then, the ideal 〈T , R〉 is generated by the triangular set

T ′ = {f1, . . . , fj−1, R, fj+1, . . . , fn}

which is separable.

Proof. Denote by Tj−1 the set {f1, . . . , fj−1}. Since
〈Tj−1〉 is maximal, the quotient ring A = K[Xj ]/〈Tj−1〉
is a field. This implies that A[xj ] is a principal ideal do-
main. For p ∈ K[Xj ], we denote by p̂ its image in A[xj ].

Let F be a representative of the gcd F̂ of f̂j and R̂ in
A[xj ]. Since F can be rewritten as an algebraic combination
of R and fj and f1, . . . , fj−1, one has 〈f1, . . . , fj−1, F 〉 ⊂
〈f1, . . . , fj−1, fj , R〉. Consider now an element p of 〈f1, . . . ,



fj−1, fj , R〉 and let p̂ its image in A[xj ]. Thus, p̂ is a multi-

ple of F̂ which implies that p can be written as an algebraic
combination of f1, . . . , fj−1, F . Thus, 〈f1, . . . , fj−1, F 〉 =
〈f1, . . . , fj−1, fj , R〉. This implies that 〈f1, . . . , fj−1, F, . . . ,
fn〉 = 〈f1, . . . , fj−1, fj , R, . . . , fn〉. By assumption HM(R) =

xj which implies that either F̂ is the unit in A, or R̂ = F̂ .

Since 〈T , R〉 6= K[Xn], one has F̂ = R̂.

It remains to prove that T ′ = 〈f1, . . . , fj−1, R, . . . , fn〉 is sep-
arable. Note that by assumption, Tj−1 is separable. Since R

is linear in xj , R̂ is separable in A[xj ]. Consider now for j +
1 6 i 6 n, the image of fi in K[Xi−1]/〈f1, . . . , fj−1, R, . . . ,
fi−1〉. Remark that if it is not separable, then T can not be
separable since Z(T ′) ⊂ Z(T ).

3. MAIN RESULTS
In this section, we fix g ∈ K[x] a polynomial of degree n > 5
with Dn as a symmetric representation of its Galois group
(thus this polynomial is irreducible and separable). Such a
polynomial is said to be a dihedral polynomial of degree n.
We present an algorithm for the computation of a relations
ideal of g from its factorization over its stem field. Here
we only know the name of the Galois group of g. We show
how to fix the representation of this group by numbering
the factors of g over its stem field (which is equivalent to fix
the order of roots orbits of g). Then, from this particular
representation of the Galois group we deduce a process in
order to construct a triangular set of a relations ideal of g
by group action (same sorts of group actions are used in [20,
17] in order to avoid computations).

Proposition 3.1. Let α1 be a root of g.
The factorization of g over its stem field K(α1) is given by:

(x − α1)g2(α1, x) . . . g n+1
2

(α1, x) n odd

(x − α1)g2(α1, x) . . . g n
2
(α1, x)(x − b n

2
+1(α1)) n even

where gi(t, x) = x2 + bi(t)x + ai(t) and ai, bi are univariate
polynomials of degree at most n − 1.

Proof. A symmetric representation of the Galois group
of g over the field K(α1) is

StabDn({1}) = {s ∈ Dn | s(1) = 1}.

This group is explicitly given by:

StabDn({1}) =



〈(2, 3) . . . (n − 1, n)〉 n odd
〈(2, 3) . . . (n − 2, n − 1)〉 n even

The orbits of the action of StabDn({1}) over {1, . . . , n} are:

{1}, {2, 3}, . . . , {n − 1, n} n odd
{1}, {2, 3}, . . . , {n − 2, n − 1}, {n} n even.

There is a one-to-one correspondence between the orbits of
the canonical action of the Galois group of a polynomial over
its roots and the set of roots of its irreducible factors, so the
result follows.

Let gi be the factors of g over its stem field with a fixed
numbering as in Proposition 3.1. We consider the ideal of
K[Xn] generated by the following separable triangular set
T1:

n odd: n even:
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:

f1 = g(x1)
f2 = g2(x1, x2)
f3 = x3 + x2 + b2

.

.

.
f2i = gi+1(x1, x2i)
f2i+1 = x2i+1 + x2i + bi+1

.

.

.
fn−1 = g(n+1)/2(x1, xn−1)
fn = xn + xn−1 + b(n+1)/2
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>

>

>
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>
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:

f1 = g(x1)
f2 = g2(x1, x2)
f3 = x3 + x2 + b2

...
f2i = gi+1(x1, x2i)
f2i+1 = x2i+1 + x2i + bi+1

...
fn−2 = gn/2(x1, xn−2)
fn−1 = xn−1 + xn−2 + bn/2

fn = xn + bn/2+1

where the polynomials bi are univariate in x1.

Remark that the set T1 depends on the numbering of the
factors of g in its stem field. Thus, there exist several dif-
ferent sets constructed as T1. Actually, if Ω denotes the set
of permutations of StabSn({1}) defined by

n odd :
2 3 4 5 . . . n − 1 n
l l l l . . . l l

2k1 2k1 + 1 2k2 2k2 + 1 . . . 2k(n+1)/2 2k(n+1)/2 + 1

n even :
2 3 4 5 . . . n − 2 n − 1
l l l l . . . l l

2k1 2k1 + 1 2k2 2k2 + 1 . . . 2kn/2 2kn/2 + 1

where ki ∈ [[1, ⌊n+1
2

⌋]], then the set

S = {{ω.f : f ∈ T1} : ω ∈ Ω}

represents all possible triangular sets with the same form as
T1 and constructed with the factors gi (a permutation of Ω
corresponds to a numbering of these factors).

Proposition 3.2. There exists a triangular set T in S
such that the ideal 〈T 〉 is an α-Galois ideal where α is an
n-tuple of the roots of g satisfying GalK(α) = Dn.

Proof. Let α be an n-tuple of different roots of g ver-
ifying GalK(α) = Dn. In the proof of Proposition 3.1,
we have seen that for all integer i in [[1, ⌊n+1

2
⌋]], the set

Ri = {α2i, α2i+1} corresponds to the roots of a quadratic
factor of g in K(α1)[x]. If we number these factors so that
Roots(gi) = Ri for each i in [[1, ⌊n+1

2
⌋]], then we can con-

struct a triangular set T contained in S so that α is a zero
of I = 〈T 〉 and Z(I) ⊂ Sn.α. As T is clearly triangular and
separable (since T1 is) , we have the result by Lemma 2.1
and Remark 6.

In particular, we have the following result:

Corollary 3.3. With the same notations as in Proposi-
tion 3.2, if the degree n of g is equal to 5, then all the ideals
generated by the triangular sets of S are α-Galois ideals with
GalK(α) = D5.

Proof. When n = 5, by Proposition 3.1 we have two
non linear factors, so two possible numberings and thus two



triangular sets in S. Let 〈T1〉 and 〈T2〉 be the two possible
ideals corresponding to these two possible numbering. By
Proposition 3.2, at least one of these ideals is an α-Galois
ideal with GalK(α) = D5, let 〈T1〉 be this ideal. We have

T2 = {ω.f | f ∈ T1}

where ω = (5, 3)(2, 4), thus 〈T2〉 is an (ω−1.α)-Galois ideal
with

GalK(ω−1.α) = ω−1. GalK(α).ω .

Since ω−1 GalK(α)ω = ω−1D5ω = D5 we obtain the re-
sult.

Remark 8. Corollary 3.3 can be seen as a symbolic re-
formulation of the result of Spearman and Williams [21].

If the ideal 〈T 〉 of Proposition 3.2 is known, the following
proposition shows how to construct a Gröbner basis of the
relations ideal I(α) with GalK(α) = Dn by only applying the
action of a permutation on the variables of the polynomials
of T . Actually, a triangular set of S which generates an α-
Galois ideal with GalK(α) = Dn fixes an order on the roots
of g, thus we can apply a particular group action on this set.

Proposition 3.4. Consider a triangular set T = {f1(x1),
f2(x1, x2), . . . , fn(x1, . . . , xn)} of S such that 〈T 〉 is an α-
Galois ideal with GalK(α) = Dn and

µ =



(1 2)(3 4) . . . (n − 2 n − 1) n odd
(1 2)(3 4) . . . (n − 1 n) n even

be a permutation of Sn. Then, the set T ′ containing the 3
polynomials f1, f2, fn, all the fi with even integer 1 < i < n
and µ.fi with odd integer 1 < i < n − 1, is a Gröbner basis
of the ideal I(α).

Proof. We can suppose w.l.o.g. that T = T1 (as we have
seen above, it depends only on the numbering of the factors
gi). Since for all odd integer k = 2i − 1 with i ∈ [[2, ⌊n−1

2
⌋]],

we have:

µ.fk = µ.(xk + xk−1 + bi+1(x1)) = xk+1 + xk−2 + bi+1(x2) ,

the set T ′ is given by

n odd : n even :

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

f1

f2

f3

x4 + x1 + b2(x2)
.
.
.

x2i + x2i−3 + bi(x2)
f2i+1

.

.

.
xn−1 + x1 + b(n+1)/2(x2)
fn

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

f1

f2

f3

x4 + x1 + b2(x2)
.
.
.

x2i + x2i−3 + bi(x2)
f2i+1

.

.

.
xn−2 + x1 + b(n−2)/2(x2)
fn−1

fn

By construction, the set T ′ is triangular, so it is a Gröbner
basis (see [7]) and we just have to prove that this set gen-
erates the relations α-ideal. For this, we first prove that

the ideal generated by T ′ is maximal and then that it is
contained in I(α).

The permutation µ is in Dn, more precisely we have the
(right) product µ = στ . Since K[X2]/〈f1, f2〉 is isomorphic
to a field (since f1 = g and f2 corresponds to an irreducible
factor of g over its stem field), all ideals of the form

〈f1, f2, x3 + h3(x1, x2), . . . , xi + hi(x1, . . . , xi−1)〉

is a maximal ideal of K[Xi]. Thus we can recursively use
the lemma 2.5 in order to construct a new ideal which is
generated by T ′:

I = 〈T1〉 + 〈µ.f3〉 + 〈µ.f5〉 + . . . + 〈µ.fm〉,

where m is the greatest odd integer less than n− 1. Then I
is generated by the set T ′ and is maximal. By lemma 2.2,
we have I ⊂ I(α), hence I is the relations α-ideal.

Remark 9. The last relation of the set T ′ can be replaced
by the classical one xn + xn−1 + . . . + x1 + c where c is the
coefficient of xn−1 in g.

Now, if we want to apply Proposition 3.4 for the computa-
tion of a relations ideal of g, we need to know an effective
method to choose a triangular set in S which verifies the
hypothesis of this proposition.

Proposition 3.5. Let T be a triangular set of S and T ′

be the triangular set obtained by action of µ on T (as in
Proposition 3.4). If we have the following inclusion

〈T 〉 ⊂ 〈T ′〉 ,

then T is an α-Galois ideal with α an n-tuple of roots of g
and verifying GalK(α) = Dn

Proof. Assume that 〈T 〉 ⊂ 〈T ′〉. As we have seen in the
proof of Proposition 3.4, the ideal 〈T ′〉 is maximal, thus, if
β denotes one of its zeros, it is a relations β-ideal. Because

of the form of T ′, one can see that GalK(β), which is a
conjugate of Dn, contains these two permutations:

µ =



(1 2)(3 4) . . . (n − 2 n − 1) n odd
(1 2)(3 4) . . . (n − 1 n) n even

τ =



(2 3)(4 5) . . . (n − 1 n) n odd
(2 3)(4 5) . . . (n − 2 n − 1) n even

Thus GalK(β) contains µτ = σ and GalK(β) = Dn. Hence
〈T 〉 is a β-Galois ideal with GalK(β) = Dn.

Now, we give the algorithm which computes a triangular
basis of a relations ideal of g from its factorization over its
stem field K[x1]/〈g〉. We recall that any quadratic factor
g(t, x) of g is of the form g(t, x) = x2 + b(t).x + a(t).

We first give the scheme of the algorithm. By Corollary 3.3
we can split the process in two parts, the first one for degree
5 where no computations of normal forms is needed, the sec-
ond for degree at least 6. In the second part, we successively
number the factors of g in order to satisfy the condition of



Proposition 3.5 and we apply, at the same time, the action
of permutation µ to construct two linear relations. At the
end of the process we obtain a triangular set of a relations
ideal of g.

Algorithm: DihedralRelationsIdeal
Require: A dihedral polynomial g of degree n > 5 and the set

F of its irreducible quadratic factors over its stem field.
Ensure: The set T = {f1, . . . , fn} is a triangular Gröbner basis

of a relations ideal I(α) of g with GalK(α) = Dn.

n := Degree(g);
f1(x1) := g(x1);

if n = 5 then

Let f2(t, x) = x2+b(t).x+a(t) and f3(t, x) = x2+d(t).x+c(t)
be the two elements of F ;
T := [f1(x1), f2(x1, x2), x3 +x2 +b(x1), x4 +x1 +b(x2), x5 +
x4 + d(x4)];
return T ;

end if

Let f2(t, x) = x2 + b(t).x + a(t) and f3(t, x) = x2 + d(t).x +
c(t) be two elements of F such that NormalForm(f3(x1, x4),
[f1(x1), f2(x1, x2), x3 + x2 + b(x1), x4 + x1 + b(x2)]) = 0;
F := F \ {f2, f3};
T := [f1(x1), f2(x1, x2), x3 + x2 + b(x1), x4 + x1 + b(x2), x5 +
x4 + d(x1), x6 + x3 + d(x2)];
if n = 6 then

return T ;
end if

i := 3;
while |F | > 1 do

i := i + 1;
Let f(t, x) := x2 + b(t).x+a(t) be an element of F such that
NormalForm(f(x1, x2i), T ) = 0;
F := F \ {f};
T := Concat(T , [x2i−1+x2i−2+b(x1), x2i+x2i−3+b(x2)]);

end while

i := i + 1;
f(t, x) := x2 + b(t).x + a(t) be the last element of F ;
T := Concat(T , [x2i+1 + x2i + b(x1)]);
if n is even then

c := the coefficient of xn−1 in g;
T := Concat(T , [x2i+2 + x2i+1 + . . . + x1 − c]);

end if

return T ;

Theorem 3.6. The algorithm DihedralRelationsIdeal

terminates and computes a triangular basis of a relations
ideal of g. Moreover, the number of normal forms performed
during the computation is bounded by

Ψ(n) =

8

<

:

0 n = 5
1 n = 6
1
2
(3m2 − 7m + 6) n > 7

where n is the degree of the polynomial g and m := ⌊n−1
2

⌋.

Proof. By Proposition 3.4 and Proposition 3.5, it is clear
that this algorithm terminates and gives the good result.
All the normal forms are performed when we have to find
the good numbering of the fi, so degree 5 is not affected.
Finding f2 and f3 requires at most m!

(m−2)!
= m2 − m, so

there is exactly one normal form to compute in the cases
n = 6. All the other normal forms are performed during the
while loop. Any such loop performs at most |F | − 1 normal

form. As |F | = m−2 before the while loop, the total number
of normal forms computations is bounded by:

m−2
X

k=2

k − 1 =
1

2
(m − 3)(m − 2)

which gives the result.

Remark 10. Consider an irreducible separable polynom-
ial g of degree n whose their irreducible factors over its stem
field have the same degrees than the ones of a dihedral poly-
nomial of the same degree. If the above algorithm, applied
to the factors of g, terminates then, by Proposition 3.5, the
Galois group of g is proved to be Dn and we compute at
the same time a relations ideal of this polynomial. Using
Theorem 3.6, one can stop the while loop if the number of
computed normal forms is greater than the bound we provide.

4. EXAMPLES
In this section we give two examples of computations of re-
lations ideals using the results of this paper.

4.1 Generic D5 relations ideal
This first example is devoted to the computation of a rela-
tions ideal of the D5 generic polynomial fD5 of Brumer (see
[11, Theorem 2.3.5]). This polynomial has its coefficients in
the function field Q(s, t). The polynomial fD5 is given by:

x5 +(t− 3)x4 +(s− t+3)x3 +(t2 − t− 2s− 1)x2 + sx+ t .

Using Trager’s algorithm (see [23]) we can compute the fac-
torization of fD5 over its stem field K[α1]. The two non
linear factors computed with Magma ([6]) are given by:

x
2

+
1

t
(−α

4
1 + (−t + 2)α

3
1 + (−s − 1)α

2
1 + (s − t

2
+ 2t)α1 − t)x

−α1 + 1

x
2

+
1

t
(α

4
1 + (t − 2)α

3
1 + (s + 1)α

2
1 + (−s + t

2
− t)α1 + t(t − 2))x

+
1

t
((t − 1)α

4
1 + (t

2
− 4t + 2)α

3
1 + (st − s − t

2
+ 3t − 1)α

2
1

+(−2st + s + t
3
− 2t

2
)α1) + s − t + 1

Corollary 3.3 gives without any other computation the tri-
angular basis of a generic D5 relations ideal:

x
5
1 + (t − 3)x

4
1 + (s − t + 3)x

3
1 + (−2s + t

2
− t − 1)x

2
1 + sx1 + t

x
2
2 −

1

t
x2x

4
1 +

t + 2

t
x2x

3
1 +

−s − 1

t
x2x

2
1 +

s − t2 + 2t

t
x2x1

−x2 − x1 + 1

x3 + x2 −
1

t
x
4
1 +

−t + 2

t
x
3
1 +

−s − 1

t
x
2
1 +

s − t2 + 2t

t
x1 − 1

x4 −
1

t
x
4
2 +

−t + 2

t
x
3
2 +

−s − 1

t
x
2
2 +

s − t2 + 2t

t
x2 + x1 − 1

x5 + x4 +
1

t
x
4
1 +

t − 2

t
x
3
1 +

s + 1

t
x
2
1 +

−s + t2 − t

t
x1 + t − 2

This ideal can be said generic because every irreducible
polynomial f ∈ Q[x] with D5 as Galois group is Tchirn-
haus equivalent to a specialization of fD5 . So, the basis
of a relations ideal I of f verifying D5.I = I, is Tchirn-
haus equivalent to a specialisation of the basis of this generic
ideal.



4.2 An example in degree 8
Let g = x8 − 3x5 − x4 + 3x3 + 1 be a polynomial given by
the Database for Number Fields of J. Klüners and G. Malle
(see [13]) with rational coefficients and Galois group D8.
The factorization of g over its stem field Q(α1) can be com-
puted with Magma, GP/PARI (see [18]) or KANT/KASH
(see [12]). The three quadratic factors are:

g2(α1, x) = x
2

+
1

3
(5α

7
1 − 2α

6
1 + 4α

5
1 − 15α

4
1 + 5α

3
1

+7α
2
1 − 5α1 + 3)x − 1

g3(α1, x) = x
2

+
1

3
(−2α

7
1 + α

6
1 − 3α

5
1 + 7α

4
1 − 2α

3
1 + α

2
1 + 3α1 − 5)x

+
1

3
(2α

7
1 − 3α

6
1 + 2α

5
1 − 8α

4
1 + 8α

3
1 − 4α1 + 4)

g4(α1, x) = x
2

+
1

3
(α

6
1 − α

5
1 − α

4
1 − 6α

3
1 + α

2
1 + 5α1 + 2)x

+
1

3
(α

7
1 + 3α

6
1 + α

5
1 − α

4
1 − 8α

3
1 + 4α1 − 1)

Using Algorithm DihedralRelationsIdeal, we obtain two
different choices of numbering which give a trivial normal
form. Actually, let f1(x1) be g(x1), if we choose f2(x1, x2)
to be the polynomial g4(x1, x2) or g3(x1, x2) and f3(x1, x4)
to be the polynomial g2(x1, x4) then, in all cases, we obtain:

NormalForm(f3(x1, x4), [f1(x1), f2(x1, x2), x3+x2+b(x1), x4+x1+b(x2)]) = 0

where b is the coefficient of x1 in the polynomial f2(x1, x2).
If we choose the first numbering we obtain the following
relations ideal:

x
8
1 − 3x

5
1 − x

4
1 + 3x

3
1 + 1

x
2
2 +

1

3
(x

6
1 − x

5
1 − x

4
1 − 6x

3
1 + x

2
1 + 5x1 + 2)x2

+
1

3
(x

7
1 + 3x

6
1 + x

5
1 − x

4
1 − 8x

3
1 + 4x1 − 1)

x3 + x2 +
1

3
(x

6
1 − x

5
1 − x

4
1 − 6x

3
1 + x

2
1 + 5x1 + 2)

x4 + x1 +
1

3
(x

6
2 − x

5
2 − x

4
2 − 6x

3
2 + x

2
2 + 5x2 + 2)

x5 + x4 +
1

3
(5x

7
1 − 2x

6
1 + 4x

5
1 − 15x

4
1 + 5x

3
1 + 7x

2
1 − 5x1 + 1)

x6 + x3 +
1

3
(5x

7
2 − 2x

6
2 + 4x

5
2 − 15x

4
2 + 5x

3
2 + 7x

2
2 − 5x2 + 1)

x7 + x6 −
1

3
(2x

7
1 + x

6
1 − x

5
1 + 7x

4
1 − 2x

3
1 + x

2
1 + x1 − 5)

x8 + x7 + x6 + x5 + x4 + x3 + x2 + x1 − 3

5. CONCLUSION
In this paper, we proposed a method for the computation
of the relations ideal of a dihedral polynomial which per-
mits us to avoid factorizations. We also did the complexity
analysis of the underlying algorithm. we hope that a better
study of the set S could improve this algorithm, this will be
investigated in a future work.
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volume 141 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1993. A computational
approach to commutative algebra, In cooperation with
Heinz Kredel.

[6] W. Bosma, J. Cannon, and C. Playoust. The Magma
algebra system. I. The user language. J. Symbolic
Comput., 24(3-4):235–265, 1997. Computational
algebra and number theory (London, 1993).

[7] D. Cox, J. Little, and D. O’Shea. Ideals, varieties, and
algorithms. Undergraduate Texts in Mathematics.
Springer-Verlag, New York, second edition, 1997. An
introduction to computational algebraic geometry and
commutative algebra.

[8] X. Dahan, M. Moreno Maza, É. Schost, W. Wu, and
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racines d’un polynôme d’une variable. Bull. Belg.
Math. Soc. Simon Stevin, 6(4):507–535, 1999.

[25] K. Yokoyama. A modular method for computing the
Galois groups of polynomials. J. Pure Appl. Algebra,
117/118:617–636, 1997. Algorithms for algebra
(Eindhoven, 1996).




