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Computation of the stationary

distribution of an infinite

stochastic matrix of special form

G.H. Golub and E. Seneta

An algorithm is presented for computing the unique stationary

distribution of an infinite regular stochastic matrix of a

structural form subsuming both upper-Hessenberg and generalized

renewal matrices of this kind. Convergence is elementwise,

monotone from above, from information within finite truncations,

of increasing order.

1. Finite stochastic matrices

Let P = {p. .} . ._.. be a finite stochastic matrix. It is well
I'd 7* ,t/—-L

known

that there is at least one essential class, J , of indices,

tr c (l, 2, . .. , n} , and that there is at least one stationary distribution,

namely, a vector V = [v.} , satisfying

(1.1) v > 0 , v'p = v1 , v'l = i .

In the case when there is only one essential class (other indices, if

any, being inessential) there is a unique stationary distribution. Such a

P is called regular. The vector V is then in fact completely determined

as the unique solution of the last two expressions of (l.l) alone, that is,

of

(1.2) V'{1, I-T) = {1, 0'} ,
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as follows, for example, from the Perron-Frobenius theory of non-negative

matrices, where the matrix {1, I-P} is n x (n+l) . The uniqueness of

solution implies this matrix is of rank n , and hence contains n

linearly independent columns. Clearly the last n cannot be taken as

such, for {J-P}1 = 0 ; and consequently, it is easily seen that the

vector 1 combined with any n - 1 columns of I-P gives n linearly

independent vectors. Thus, for a regular P , it follows that any (n-l)

of the stationary equations V 'P = v' are sufficient to determine the

stationary distribution vector to a constant multiple (and the additional

condition v'l = l then specifies it completely). These ideas are not new

(for example, [3]) although of historical origin unknown to us.

We shall find these facts useful in the construction of an algorithm

for computing successive finite approximations, converging elementwise from

above, to the unique stationary distribution of certain kinds of infinite

stochastic matrices. In an earlier memoir [7] we considered the problem

for infinite Markov matrices, and produced an algorithm for convergence

elementwise from below.

We shall call an infinite stochastic matrix P = {p..}. ._, regular

if its index set {l, 2, ...} contains precisely one positive-recurrent

class of indices (any other indices being null-recurrent or transient).

This is a necessary and sufficient condition for a unique stationary

distribution (that is, a vector V satisfying (l.l)J to exist, and so is

exactly consistent with the definition of regularity in the finite case.

We write , >P for the n * n northwest corner truncation of a stochastic

matrix P .

2. Infinite stochastic matrices of special form

We consider in this section infinite stochastic matrices P which are

assumed regular, and are further either of upper-Hessenberg, or of

generalized renewal, form. (The assumption of regularity of P may be

partially relaxed for these special kinds of matrices, to give not

uninteresting consequences, as the interested reader will readily

perceive. )
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(a) Upper-Hessenberg matrices

A matrix of this type satisfies

(2.1) p. . = 0 , i > o + 1 »

so that its entries below the subdiagonal are all zero. It follows that

its stationary equations V'P = V' may be written

(2.2) I v.p. = v o = 1, 2, ... .
i=l % V3 3

Let us assume that V'1 = 1 .

Let / ,P denote the truncation , *P after it has been made
(n) (n)

stochastic by replacing p. by
t-Yl

CO

so that only the last column of / %P is affected. If we assume for the

moment that / >P is regular, it is readily seen that the first n - 1 of

the n stationary equations / \V'/ \P = / \v' which its unique

stationary vector satisfies coincide with the first n - 1 of the

equations (2.2). Thus

( n f i = c M v i ' l = X' •••' n '

where e(n) is a constant, and since we take , ,V to satisfy

(2.3) , )vi= v. I I v , i = 1, ..., n .

Thus it follows that if we can find an infinite sequence i r \P\ of

truncations with each t \P regular, then, elementwise, as k -*•<*>,

KJ 1>
u. , i = l, 2, ....
^
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(b) Generalized renewal matrices

A matrix of this type satisfies

(2A) p.. = 0,i>0>l.

The stationary equations V 'P = V' may be written

(2.5)

3

i=l

where we assume v ' l = 1 .

If we consider stochastic , ,P formed from / ,P by replacing p .
\nj \ n) i\

%1 ^ j=n+i ™

so that only the first column of , >P is affected, then, on assumption of

the regularity of ,*P , the last n - 1 of its stationary equations

coincide with equations with indices j = 2, 3, ..., n of (2.5), and (2.3)

and the subsequent conclusion follow as before.

The following theorem, whose validity was kindly pointed out to us by

Tweedie [7] upon reading an earlier version of this note, shows that the

assumption of regularity of / «P is not required in those cases where the

computational problem is truly one for an infinite matrix (the only cases

of present interest).

THEOREM. Suppose for regular P , the positive-recurrent class

consists of an infinite number of indices. Let , >P be stochastic and

obtained from , %P by augmenting any specific one column of , J? only

to make it stochastic. Then , vP is regular.

An easy proof results from showing by a contradiction argument that

/ %P contains only one essential class of indices, using canonical form of
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This enables us to state the operative principle in general: if we

can find a sequence \r -\P\ of truncations, such that by changing one

column only (not necessarily the same for each k ), f \P can be made

ln
k)

stochastic in such a way that the other n - 1 stationary equations of

r \P coincide with n - 1 of the first n stationary equations of

infinite regular P having infinite positive-recurrent class, then (2.3)

obtains with n = n. , k = l , 2 , . . . .

3. Background

As mentioned before, for infinite Markov matrices, we have already an

algorithm for convergence elementwise from below. The present note was

largely motivated by the wish to obtain an algorithm for convergnece

elementwise from above, and this has been achieved for another class of

matrices. Clearly there is an overlap in the classes: those generalized

renewal matrices with elements of the first column uniformly bounded away

from zero. One such is the structurally simple example with

, a > i > 1 ;

I p , 3 = 1, i > 2 ;
r=l

0 otherwise,

where (p.j , j = 1, 2, ... is a probability distribution with each
0

element positive. For this example it is readily shown that

X
Vi = ~ Pi ' l>~ 2 '

T T (i-Pr)
r=2

so that as n

I W -v const. I p
r=n+l r=n+l
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Since the convergence rate of , ,w. to v. with n , for fixed i , i s ,

from (2.3)j iw general

r=n+l

it follows from the example that this rate may be rather slow; although it

will be geometrically fast if the distribution [v .} has geometrically

decreasing tail. This situation is similar to that of the algorithm in

The method of "stochastizing" truncations of an infinite stochastic

matrix was suggested by Sarymsakov [4], and used by him for other purposes;

it is an obvious idea, whose general utility is less clear as regards

truncation theory. Upper-Hessenberg structure of infinite stochastic P ,

with first state absorbing, lends itself (on account of the special

"column finiteness") to useful analysis [5], [6]. Kemeny [2] has carried

out substantial analysis on irreducible lower-Hessenberg P ("slowly

spreading Markov chains"). This structure is not directly amenable to the

foregoing type of analysis for stationary distribution.
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