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Computation of three dimensional tokamak and spherical torus equilibria

Jong-kyu Park,1, ∗ Allen H. Boozer,2 and Alan H. Glasser3

1Princeton Plasma Physics Laboratory, Princeton, New Jersey, NJ 08543
2Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027

3Los Alamos National Laboratory, Los Alamos, New Mexico, NM 87545

A nominally axisymmetric plasma configuration, such as a tokamak or a spherical torus, is highly
sensitive to non-axisymmetric magnetic perturbations due to currents outside of the plasma. The
high sensitivity means that the primary interest is in the response of the plasma to very small per-

turbations,
˛

˛~̨b/ ~B
˛

˛

˛
≈ 10−2 to 10−4, which can be calculated using the theory of perturbed equilibria.

The Ideal Perturbed Equilibrium Code (IPEC) is described and applied to the study of the plasma
response in a spherical torus to such external perturbations.

I. INTRODUCTION

Nominally axisymmetric plasma configurations, such
the tokamak and the spherical torus, are extremely sen-
sitive to non-axisymmetric magnetic perturbations. This
sensitivity implies that the response of axisymmetric
equilibria to small non-axisymmetric perturbations is a
critical issue in equilibrium design and control [1–5]. The
linear response of a plasma equilibrium to a perturbation
in which the plasma conserves its safety factor and pres-
sure profile is given by the same equations as the theory
of ideal, linear magnetohydrodynamic (MHD) stability
[6–8].

The DCON ideal MHD stability code [9] can be used
to make calculations of perturbed equilibria, but to do
this an interface is required between DCON and the ex-
ternally produced magnetic fields. This interface is in-
cluded in the Ideal Perturbed Equilibrium Code (IPEC),
which is described in this paper. Many find the method
used in IPEC for including external magnetic fields sub-
tle, because it is an inverse method. To aid the physical
understanding of the method used in IPEC, a qualitative
discussion will be given in the Introduction.

Given an external magnetic perturbation, which can be
represented by the normal magnetic field it produces on
the unperturbed plasma surface, IPEC finds the result-

ing displacement of the plasma, ~ξ(~x), and the perturbed

magnetic field, ~b(~x) = ~∇×(~ξ× ~B) throughout the plasma
volume. Some of the applications of this information are
also discussed in the Introduction.

A. Description of IPEC method

To understand the method used by IPEC for includ-
ing external magnetic fields, consider an ideal MHD ax-
isymmetric equilibrium. The use of DCON to calculate
perturbations about this equilibrium gives a set of M

plasma displacements ~ξi(ψ, θ, ϕ), which is the set of M

∗
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ideal MHD eigenmodes for a given toroidal harmonic
number n, where 1 ≤ i ≤ M and M is the number of
poloidal harmonics retained in DCON run. Each of these

displacements ~ξi is associated with a certain deformation

of the plasma boundary, ~ξi · n̂ ≡ (~ξi · n̂)(ψb, θ, ϕ), where
~ξi is evaluated on the unperturbed plasma boundary at
ψ = ψb and n̂ is the normal to the unperturbed plasma
boundary. Each of these M displacements of the plasma

boundary ~ξi · n̂ defines a perturbed equilibrium if an ex-
ternal magnetic field produces a required force to support
it. That is, the set of M ideal MHD eigenmodes found by
DCON defines a set of M neighboring perturbed equilib-
ria. Each of the neighboring equilibria is supported by an
external magnetic field and has the same profiles of pres-
sure and safety factor as the unperturbed equilibrium;
only the shape of the plasma has been changed.

To understand that each displacement of the plasma

boundary ~ξi · n̂ is associated with a unique externally

produced magnetic field ~bx
i , one can imagine that a thin

perfectly-conducting shell surrounds the plasma and is
an infinitesimal distance outside. The deformation of the
plasma boundary ~ξi · n̂ is produced by the deformation
of the perfectly conducting shell. When the shell is de-
formed, a current must flow in the shell to make zero
normal magnetic field on the shell. Assuming the shell
has an infinitesimal thickness, this current is a surface

current ~Kx
i , which is external to the plasma. The nor-

mal component of the externally produced normal mag-

netic field, ~bx
i · n̂ ≡ (~bx

i · n̂)(ψb, θ, ϕ), associated with the

displacement ~ξi · n̂ is the normal component of the mag-

netic field produced by the external surface current ~Kx
i .

In other words, each of the actual magnetic field pertur-

bations calculated by DCON, ~bi = ~∇ × (~ξi × ~B), is the
sum of a magnetic field produced by currents within the

plasma and an external magnetic field ~bx
i produced by

currents outside the plasma, ~Kx
i . The actual location

and magnitude of the external currents is only relevant
to the response of the plasma through their producing an

external normal magnetic field~bx ·n̂ at the plasma bound-
ary. This follows from the fact that the magnetic field in
the vacuum region between the plasma and the external

currents obeys ~bx = ~∇χ with ∇2χ = 0, and the fact that
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Laplace’s equation, ∇2χ = 0, has a unique answer that
is regular in region bounded by the external currents if
the normal component of the external magnetic field is
specified on the plasma boundary.

If the perturbed equilibrium is not supported by an ex-
ternal magnetic field, the plasma inertia associated with
an eigenfrequency ω2

i = 2δWi/
∫

dx3ρ|ξi|
2 must supply

the required force. The DCON is used for finding per-
turbed equilibria because it minimizes δW , which gives
perturbed equilibria, rather than ωi. For stable modes, a
minimization of ωi is in effect a maximization of the iner-
tia, so the resulting displacements ~ξi · n̂ do not represent
perturbed equilibria.

Although imagining the plasma is surrounded by a
perfectly-conducting shell provides a compelling basis for
defining the external magnetic field associated with each
plasma perturbation, calculations are easier using a con-
trol surface that is located just outside the unperturbed
plasma surface, and this is the method used in IPEC.
A plasma displacement determines a magnetic perturba-

tion ~b = ∇× (~ξ × ~B), so IPEC uses the displacement of

the plasma boundary ~ξ · n̂ to determine a part of the per-
turbed magnetic field that is normal to the unperturbed

plasma boundary, ~b · n̂, and a part that is tangential to

the plasma boundary, n̂ × ~b(p). Since the normal field
~b · n̂ is continuous across the plasma boundary and the

control surface, ~b · n̂ then gives a unique vacuum field

outside the plasma, ~b(vo), that vanishes at infinity. The
difference between the tangential field infinitesimally out-

side the control surface n̂×~b(vo) and the tangential field

on the plasma side of the control surface n̂ ×~b(p) deter-
mines an external surface current on the control surface,

µ0
~Kx = n̂ × ~b(vo) − n̂ × ~b(p). Once ~Kx is known, the

externally produced normal magnetic field ~bx · n̂ can be

found by ∇×~bx = µ0
~jx in vacuum.

Each of the M neighboring equilibria calculated by
DCON has a unique distribution of the external normal

magnetic field ~bx
i · n̂, where 1 ≤ i ≤ M , that must be

produced by currents outside the plasma to sustain that
equilibrium. If an external magnetic perturbation, such

as that due to a magnetic field error ~bx · n̂, is specified on
the unperturbed plasma boundary, this perturbation can

be expanded as ~bx · n̂ =
∑M

i=1 ci
~bx

i · n̂, with expansion co-
efficients ci. If this is done, the plasma displacement that
gives the perturbed equilibrium produced by the field er-

ror is ~ξ(ψ, θ, ϕ) =
∑M

i=1 ci
~ξi(ψ, θ, ϕ). This is the method

used by IPEC to find the perturbed equilibrium associ-
ated with a given magnetic field error. More information
about numerical implementation is provided in Sec. II
and theoretical consideration for the numerical result is
given in Sec. III.

B. Information from a perturbed equilibrium

The Ideal Perturbed Equilibrium Code (IPEC) cou-
ples the DCON ideal MHD stability code with a routine

for relating a specific plasma displacement ~ξ to a given

externally produced magnetic field ~bx and gives all infor-
mation that can be derived from an ideal MHD equilib-
rium. With magnetic surfaces ~x0(ψ, θ, ϕ) in the unper-
turbed equilibrium, the perturbed equilibrium has sur-

faces ~x(ψ, θ, ϕ) = ~x0(ψ, θ, ϕ) + ~ξ(ψ, θ, ϕ) · n̂s, where n̂s is
the normal to the unperturbed magnetic surfaces.

Given the externally produced magnetic field on the
plasma boundary, particular things that IPEC can cal-
culate are: (1) The jumps in the perturbed magnetic field
tangential to the magnetic surfaces, or equivalently the
parallel current that is localized near the rational sur-
faces, which is required in ideal MHD to preserve the
magnetic surfaces. (2) The magnitude of the magnetic

perturbation throughout the plasma volume, |~b| where
~b = ∇ × (~ξ × ~B), or the variation of the magnetic field
strength within the magnetic surfaces.

The parallel current in the vicinity of the q = m/n ra-
tional surface is measured by the jump in the perturbed
magnetic field tangential to the magnetic surfaces, or
equivalently [11]

∆mn ≡

[

∂

∂ψ

~b · ∇ψ

~B · ∇ϕ

]

mn

, (1)

where only the resonant component m and n is consid-
ered in calculation of the jump [· · · ]. When a pressure
gradient exists at the rational surface q = m/n, the inter-
pretation of the jump is subtle due to the large Pfirsch-

Schlüter, j||/B, current that arises from ~B · ∇(j||/B) =

−( ~B × ∇p) · ∇(1/B2), near the rational surface. This
phenomenon is known as the Glasser effect [12, 13]. If
the Eq. (1) is interpreted as the jump across a fraction
of the radial coordinate |δψ/ψ|, then for cases we have
investigated, the current given by ∆mn is well behaved
if one calculates the current flowing in a narrow channel
but no narrower than approximately 10−3 of the plasma
radius–a width comparable to the narrowest width at
which MHD could be a valid model, the gyroradius of
the ions or the electrons. If one ignores the region of
validity of MHD and calculates the current flowing in
narrower channels, interesting variations occur at 10−5

of the plasma radius.
The magnitude of ∆mn for a given external magnetic

field is a measure of how wide the magnetic island would
be if this localized current were to dissipate. If this lo-
calized current is not dissipated, then the island does not
open, but energy must come out of the plasma to the
maintain the current in the presence of resistivity. In an
MHD model, the flow velocity of the plasma dotted into a
force between the plasma and the magnetic perturbation
must balance the ηj2 dissipation. Even when an island
does not open, there can be a significant drag between



3

the plasma and the perturbation.

The magnitude of the magnetic perturbation, |~b|, in a
plasma due to an external field error can be larger than
one would expect from a vacuum calculation of the error
penetration. This happens not only through a differ-
ent inner profile of perturbed magnetic field, but also by
general amplification of the external magnetic perturba-

tion. The averaged |~b| on the magnetic surfaces is a well
defined quantity showing how the actual field and the
vacuum penetrating field can be different inside plasma.
It is related to the change in the magnetic field strength
at a given spatial point,

| ~B +~b|2 − | ~B|2 = 2( ~B ·~b) + |~b|2. (2)

The first term ~B ·~b is usually very small, but more phys-
ical importance lies in the the variation of magnetic field
strength on the perturbed flux surfaces [14], which is the
Lagrangian change in the field strength. The first term

in the Lagrangian change in the field strength, ( ~B ·~b)L,

is expected to be much larger than ~B ·~b or |~b|, since the
primary cause of this variation is generally the wobble
of the magnetic surfaces rather than the variation of the
magnetic field strength itself at a given spatial point. As
the first computational work for the perturbed equilibria
in the axisymmetric configuration, this paper provides

the numerical examples of the ∆mn and |~b| in Sec. IV.

II. NUMERICAL IMPLEMENTATION

As discussed in the Introduction, the actual field ~b · n̂

is associated with the external surface current ~Kx and
the ~Kx gives the required external field ~bx · n̂ to support
each of the M neighboring equilibria. Their interrela-

tions are expressed by linear operators as ~b · n̂ = Λ̂
[

~Kx
]

and ~bx · n̂ = L̂
[

~Kx
]

, respectively, in the real space (θ, ϕ)

on the unperturbed plasma boundary, or equivalently on
a control surface. The actual field and the external field

are finally related by ~b · n̂ = P̂
[

~bx · n̂
]

through a lin-

ear operator P̂=Λ̂L̂−1. These linear operators can be
represented as matrices and constructed to the required
accuracy using a sufficiently large number M of the per-
turbed equilibria found by DCON. That is, with proper

functional bases, one can express the functions of~b·n̂, ~Kx

and ~bx · n̂ by flux and current vectors and the operators
of Λ̂, L̂ and P̂ by inductance and permeability matrices
[11, 15]. The interfaces between an arbitrary actual field,
surface current and external field are constructed in this
way by IPEC.

In the implementation, the operator L̂ is obtained by

calculating the external surface current ~Kx from the

given external field ~bx · n̂ rather than calculating the

field ~bx · n̂ from the surface current ~Kx. The set of
the given external fields ~bx

i · n̂ is expanded as the set

of the actual fields ~bi · n̂ found by DCON. In this way,
one can complete the problem by calculating the tan-
gential magnetic fields for the external surface current

µ0
~Kx

i = n̂ ×~b
(vo)
i − n̂ ×~b

(p)
i to obtain Λ̂ and a different

surface current µ0
~Kv

i = n̂ × ~b
(vo)
i − n̂ × ~b

(vi)
i to obtain

L̂, from the given normal field ~bi · n̂ of the M neighbor-
ing equilibria found by a single DCON run. Here the

purpose of the vacuum surface current ~Kv is only to ob-
tain the operator L̂ by solving inversely the Ampere’s law

∇ ×~b = µ0
~j in vacuum. The superscripts (p), (vo) and

(vi) are used for discriminating between the tangential
fields of the plasma, the vacuum outside and inside the
plasma boundary, respectively. To calculate them, one
can introduce surface current potentials κ for the sur-
face currents and effective magnetic scalar potentials χ
for the tangential fields. The details are described in the
following subsections.

A. Inductances and permeability

The normal perturbed magnetic fields of the M neigh-
boring equilibria can be represented in the Fourier space,
where M poloidal harmonics, m, construct each normal
magnetic field. Since the unperturbed equilibria are ax-
isymmetric, the toroidal harmonic numbers, n, are un-
coupled so they can be treated separately. With any set
of flux coordinates, (ψ, θ, ϕ), the normal magnetic field
on the plasma boundary is expanded as

(~b · n̂)(θ, ϕ) = Re

(

∑

m

Φmw(θ)ei(mθ−nϕ)

)

, (3)

where the weight function w(θ) = 1/(J (θ)|∇ψ|(θ)) with
the Jacobian J (θ) is used for an orthogonal basis, by
the definition of

∮

wfmfm′da = δmm′ on the boundary

surface, with fm = ei(mθ−nϕ). Since the weight function

has inverse units of area, ~Φ is a matrix vector of flux that

represents ~b · n̂.
The jump in the tangential field across the control

surface just outside the plasma gives a surface current
~j = ~Kδ(ψ − ψb). The surface current can also be ex-
pressed as

~K = ∇κ(θ, ϕ) ×∇ψ (4)

when κ(θ, ϕ) is a surface current potential. This is the

general form of a surface current if the current ~j has no
component normal to the boundary and no divergence.
The potential κ(θ, ϕ) has units of current and can be used

for representing the surface current ~K by

κ(θ, ϕ) = Re

(

∑

m

Imei(mθ−nϕ)

)

(5)

with the matrix vector ~I having units of current. Com-

bining the actual fluxes ~Φi and external currents ~Ix
i of
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the M neighboring equilibria, one can obtain a plasma

inductance matrix Λ
↔

on the Fourier space, where the M

poloidal harmonics are retained. Λ
↔

gives the relation be-
tween an actual flux and an external current by

~Φ = Λ
↔
· ~Ix. (6)

Similarly, the external normal magnetic perturbation ~bx ·

n̂ producing the surface current ~Kx can be expanded and
related to the current by

~Φx = L
↔
· ~Ix, (7)

where L
↔

is a surface inductance matrix since it depends
only on the shape of the boundary surface. As described,

the IPEC uses the given set of the fluxes ~Φi of the M
neighboring equilibria and computes the associated ex-

ternal currents ~Ix
i to obtain Λ

↔
from ~Φ = Λ

↔
· ~Ix and the

vacuum currents ~Iv
i to obtain L

↔
from ~Φ = L

↔
· ~Iv.

The linear relation between an actual flux ~Φ and an
external flux ~Φx can be written as

~Φ = P
↔
· ~Φx (8)

with a permeability matrix P
↔

= Λ
↔

· L
↔

−1. If a magnetic

field error ~Φx is specified on the boundary, one can ex-

pand it by ~Φx =
∑M

i=1 ci
~Φx

i =
∑M

i=1 ciP
↔

−1 ·~Φi, or equiva-

lently by ~Φ = P
↔
·~Φx =

∑M
i=1 ci

~Φi to obtain the perturbed

equilibrium by ~ξ(ψ, θ, ϕ) =
∑M

i=1 ci
~ξi(ψ, θ, ϕ). Each ac-

tual flux ~Φi is associated with a plasma displacement ~ξi

through Eq. (3) and ~b = ∇× (~ξ × ~B).

B. Magnetic scalar potentials and surface currents

Magnetic scalar potentials are used to compute the ex-
ternal surface current potential κx and the vacuum sur-
face current potential κv. When dealing with the vacuum
outside and inside the plasma boundary, magnetic scalar
potentials obviously exist. For the sake of clarity, we
write them as

∇χ(vi) = ~b(vi) (9a)

∇χ(vo) = ~b(vo). (9b)

The jump condition µ0
~Kv = n̂ ×~b(vo) − n̂ ×~b(vi) gives

µ0κ
v = χ(vi) − χ(vo). (10)

The VACUUM code [10], which is part of DCON package
of codes, routinely solves χ(vo) for each of the M neigh-
boring equilibria, and the inner vacuum potential, χ(vi),
is related with the outer vacuum potential by

χ(vi)(~x)

χ(vo)(~x)
= −1 +

∫

c
d2~x′n̂ · ∇′G(~x, ~x′)χ(vo)(~x′)

∫

c
d2~x′n̂ · ∇′G(~x, ~x′)χ(vi)(~x′)

, (11)

where the Green function is given by G(~x, ~x
′

) = 1/|~x−~x
′

|
on the boundary.

When computing the external surface current poten-
tial κx, one can define a plasma magnetic scalar potential
χ(p) for the tangential field since a jump condition gives
the relation, χ(p) = µ0κ

x +χ(vo). The necessary and suf-
ficient conditions for the existence of the κx are ~j ·∇ψ = 0
and ∇ · ~j = 0. It is trivial to prove that the perturbed
equilibrium with zero-edge equilibrium pressure and cur-
rent has these two properties. With non-zero edge equi-
librium current, the perturbed current still can satisfy
the two conditions, ~j · ∇ψ = 0 and ∇ · ~j = 0, if one in-

troduces an effective perturbed magnetic field ~B to deal

with ~J 6= 0 on the boundary.
The effective perturbed magnetic field is defined as

~B ≡ ~b + (~ξ · n̂)(µ0
~J × n̂), (12)

which has the property ∇×~B·∇ψ = 0 for δW minimizing
perturbations, as described in the section V. C. 1 of Ref.
[16]. Defining ~j on the control surface by

~j ≡ ∇× ~B/µ0, (13)

the two conditions, ~j ·∇ψ = 0 and ∇·~j = 0, are satisfied.

Since ~B = ~b outside plasma, surface current or surface
current potential given by ~j is unique for an external
perturbation. The surface current can be represented by
a surface current potential as in Eq. (4). Combining Eq.
(13) and Eq. (4),

µ0∇κx = [~B], (14)

where [ ] denotes the jump of the quantity at the control

surface, which is the tangential part of ~B. This implies

n̂ ×∇χ(p) = n̂ × ~B(p) (15)

and the surface current potential is given by

µ0κ
x = χ(p) − χ(vo). (16)

For the numerical examples of this paper, a zero-edge
equilibrium current and pressure were used for simplicity.

Each of the described magnetic scalar potentials is ex-
panded in the same way as the surface current,

χ(θ, ϕ) = Re

(

∑

m

Xmei(mθ−nϕ)

)

. (17)

The magnetic scalar potential for the plasma is given by

X (p)
m =

(~B(p) · (∂~x/∂θ))m

im
= −

(~B(p) · (∂~x/∂ϕ))m

in
(18)

from Eq. (15). The equality of the two forms for X
(p)
m

are checked during the computation. The magnetic scalar
potential for the vacuum inside the plasma boundary is
given by

~X (vi) = −(I
↔
−

↔
K)−1 · (I

↔
+

↔
K) · ~X (vo), (19)
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where I
↔

is the identity matrix and the components of the

kernel matrix
↔
K is given by

Kmm′ = −
1

2π

∫∫

cc′
dθdϕdθ′dϕ′∇′ψ · ∇′G(θ, ϕ; θ′, ϕ′)

×ei(mθ−m′θ′)e−i(mϕ−m′ϕ). (20)

This is the matrix representation of Eq. (11). The sur-
face currents in Eq. (10) and (16) are represented in the
functional space by

µ0
~Ix

i = ~X
(p)
i − ~X

(vo)
i (21a)

µ0
~Iv

i = ~X
(vi)
i − ~X

(vo)
i . (21b)

Each set of magnetic scalar potentials, ~X
(p)
i , ~X

(vo)
i and

~X
(vi)
i is used to compute the associated surface currents

for the M neighboring equilibria.

III. THEORETICAL CONSIDERATIONS

The methodology described in the previous sections

gives the external surface current ~Kx on the control sur-
face that represents the externally produced magnetic

field ~bx, which is specified on the boundary. Since an
external perturbation comes from the externally driven
current, all the perturbed energy δW should come from
the external current, or equivalently the surface current
~Kx on the control surface. This section will show this by
considering the perturbation theory of MHD.

A. Perturbed energy

The perturbed potential energy of plasma is given by

δWpot = −
1

2

∫

p

~ξ · ~F (~ξ)d3x, (22)

where the ideal MHD force operator ~F is

~F = ~J ×~b +~j × ~B −∇p (23)

in ideal MHD. The perturbed quantities are magnetic

field ~b, current ~j and pressure p. Assuming that equilib-
rium pressure P goes to zero before the plasma edge is

reached, an integration by parts of the term ~ξ · (~j × ~B)
allows us to write the total potential energy as [6]

δWpot = δWp +

∫

o

|~b|2

2µ0
d3x −

∫

o

1

2
~j · ~ad3x, (24)

where ~a ≡ ~ξ × ~B is a perturbed vector potential. The
integral over the plasma volume, δWp, has various equiv-
alent forms [17]. The subscript o on the integrals denotes
an integration over the region outside the plasma.

Since the external surface current on the control sur-
face is the only current outside the plasma, Eq. (24) can
be rewritten as

δWpot = δWp +

∫

o

|~b|2

2µ0
d3x −

∫

c

1

2
κx~b · d~s, (25)

where the subscript c on the last integral denotes a sur-
face integral on the control surface. Energy conserva-
tion implies that δWtot = δWk + δWpot = 0 when δWk

is the kinetic energy associated with the perturbation.
However, δWk is negligible on the time scale of external
control, so the perturbed potential energy δWpot = 0, so

∫

c

1

2
κx~b · d~s = δWp +

∫

o

|~b|2

2µ0
d3x. (26)

We can see that the external surface current must sup-
ply the required energy to perturb the plasma and the
vacuum, so the perturbed energy is

δW ≡

∫

c

1

2
κx~b · d~s. (27)

The perturbed energy δW can be divided into plasma
and vacuum parts using each magnetic scalar potential
defined in Sec. III B. Using Eq. (16), Eq. (26) can be
rewritten as

δWp =

∫

c

1

2µ0
χ(p)~b · d~s (28a)

∫

o

|~b|2

2µ0
d3x = −

∫

c

1

2µ0
χ(vo)~b · d~s, (28b)

where Eq. (28b) for vacuum part is obvious by integrat-
ing by parts, but Eq. (28a) for plasma part is an implicit
result of the described energy conservation. The left hand
sides of Eq. (28a) and (28b) are found using DCON and
the right hand sides can be obtained using IPEC. The
equations in Eq. (28) provide an important check on the
accuracy of the computation.

B. Verification of accuracy

Equations in (28) can be verified for each perturbed
energy of the M neighboring equilibria to a given plasma
state. For the computational example, a strongly shaped
stable plasma was chosen and analyzed. This particular
NSTX (National Spherical Torus eXperiment) [18] equi-
librium and the specifics of the analysis are explained in
detail in Sec. IV.

To check Eq. (28), note that the perturbation energy
associated with each DCON mode is

δWi =
1

4
(~Ix†

i · ~Φi + ~Φ†
i ·

~Ix
i ), (29)

which is a real quantity. Equations (28a) and (28b) are

δWpi =
1

4µ0
( ~X

(p)†
i · ~Φi + ~Φ†

i ·
~X

(p)
i ) (30a)

∫

o

|~bi|
2

2µ0
d3x = −

1

4µ0
( ~X

(vo)†
i · ~Φi + ~Φ†

i ·
~X

(vo)
i )(30b)
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FIG. 1: (Color online) The left hand side (×) of Eq. (30a)
is compared with the right hand side (¤) for the thirty 1 ≤
i ≤ 30 least stable perturbed equilibria. A given equilibrium
in Fig. 4(a) is stable, so all the perturbed plasma energies
should be positive.
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FIG. 2: (Color online) The left hand side (×) of Eq. (30b)
is compared with the right hand side (¤) for the thirty 1 ≤
i ≤ 30 least stable perturbed equilibria. A given equilibrium
in Fig. 4(a) is used. The perturbed vacuum energies of any
equilibria should be greater than zero.

in the functional space.

Figures 1 and 2 give the energies for the left hand sides
(×) and the right hand sides (¤) of Eq. (30a) and Eq.
(30b), respectively, for the first thirty modes 1 ≤ i ≤ 30
of the given equilibrium.

As shown, the left and right hand sides of Eq. (30)
agree and verify that the surface current carries all the
perturbed energy with fairly good accuracies. Difficulties
occur for the higher eigenmodes because these modes are
not well represented by the fixed M poloidal harmonics
retained in the DCON calculation.

Another way to check the numerical accuracy can be

given by computing the effective plasma inductance Λ
↔

in
two different ways. The equation (29) can be expressed

0 5 10 15 20 25 30

0.0

1.0x10-4

2.0x10-4

3.0x10-4

 eigenvalues of '
 eigenvalues of 

Ei
ge

nv
al

ue
s 
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 in

du
ct
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s(
H

)

Mode number of inductance eigenvalues

FIG. 3: (Color online) The first thirty eigenvalues of plasma

inductances Λ
↔

for a given equilibrium in Fig. 4(a). Two
different ways to compute the plasma inductance show a good
agreement in their eigenvalues. Equations (32) and (33) are

used for calculation of ~Λ′ and Λ
↔

, respectively.

as

δW =
1

2
~Φ† · Λ

↔
−1 · ~Φ, (31)

so the Λ
↔

−1 can be obtained from the energy eigenvalues,
without considering the perturbed surface current [19].
So we have

(Λ−1)mm′ = 2
∑

i

(Φ−1)miǫi((Φ
−1)†)im′ , (32)

where ǫi is the eigenenergy value of each of the M neigh-

boring equilibria. The Λ
↔

can also be calculated using the
perturbed surface current as

Λmm′ = Re(
∑

i

Φmi(I
−1)im′). (33)

Figure 3 shows good agreement of the first thirty eigen-
values of the inductance calculated by Eq. (32) and Eq.
(33) and indicates that each perturbed quantity such as
~ξ, ~b and ~K are computed from each other with sufficient
accuracy.

IV. COMPUTATIONAL EXAMPLE

In this paper, a strongly shaped and stable plasma
equilibrium of spherical torus is analyzed as an example
of IPEC computation. The accuracy of the computation
of the surface current and inductance for this case was
verified in the previous figures 1 to 3. The NSTX con-
figuration that was studied is shown in Fig. 4(a). It
has very high qedge = 12.3 at the normalized ψ = 0.99,
which is taken to the boundary surface, and a strong
shaping with aspect ratio a = 1.3, elongation κe = 2.2
and triangularity δup = 0.39, δdown = 0.43. The plasma



7

0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0.5 1.0 1.5

(a) Equilbrium

Z(
m
)

R(m)
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FIG. 4: (a) A given NSTX equilibrium for the computational
examples in this paper. It has a strong shaping with aspect
ratio a = 1.3, elongation κe = 2.2 and triangularity δup =
0.39, δdown = 0.43 with βN = 2.0 and BT0 = 0.95T . The
boundary is taken at the normalized ψ = 0.99, where qedge =
12.3. (b) A perturbed equilibrium in a toroidal section, ϕ = 0,
for the given NSTX equilibrium with an m = 15 external

perturbation, ~bx · n̂ = (15 Gauss) × ei(15θ−ϕ). The m = 15
external perturbation is the most amplified one among single
poloidal m perturbations as explained Sec. IV A.

is stable with βN = 2.0 and BT0 = 0.95T . The analysis
is done only for n = 1 toroidal harmonics and by keeping
M = 41 numbers of poloidal harmonics in the DCON
calculation. Figure 4(b) shows the example of the per-
turbed flux surfaces for the unperturbed equilibrium in
Fig. 4(a) when m = 15 external perturbation with 15G
peak amplitude is applied on the boundary. Namely,
the external perturbation on the boundary is specified

by ~bx · n̂ = (15 Gauss) × ei(15θ−ϕ), where 15 Gauss am-
plitude is especially used only for this example compared
with 1Gauss for the rest of examples. As explained later,
this m = 15 external perturbation is strongly amplified
by the plasma, so one can see the apparent changes in
the flux surfaces for this small magnetic perturbation,

|~bx/ ~B| ≈ 10−3. Note that the perturbed flux surfaces
preserve the original magnetic topology of the unper-
turbed magnetic surfaces and there are no magnetic is-
land structures in ideal MHD equations.

A. Important perturbed quantities

If one specifies an external magnetic perturbation~bx ·n̂,

or equivalently ~Φx on the boundary, the actual mag-

netic field or flux ~Φ on the boundary can be obtained
through the permeability, Eq. (8). In this section, we

choose an m = 2 external magnetic field with ~bx · n̂ =
(1 Gauss) × ei(2θ−ϕ) on the boundary for the computa-
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FIG. 5: The magnitude of m = 2, 3 contravariant normal

perturbed magnetic field~b·∇ψ as a function of the normalized
ψ. Only the cosine parts, cos(2, 3θ)cos(ϕ), are shown. The
q profile is also provided. The each component crosses zero
at the corresponding rational surface as indicated by dotted
lines and has a jump of the derivative.
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FIG. 6: The |∆mn| quantity at the q = 2, 3 surface as a
function of the distance from each rational surface. The dis-
tance is measured by normalized ψ. The region between two
dot lines has a quasi-asymtotic value of |∆mn| that has very
small change down to ψ = ±10−5 through a wide range of log
scale.

tional examples. Since the corresponding actual field on
the boundary is similar to the external perturbation as
shown in Fig. 8(a), one can see the effect of plasma
on inner perturbed structure with this example. Know-
ing the actual magnetic field on the boundary, one can
obtain all the inner perturbed quantities by combining
each of the M neighboring equilibria. Figure 5 shows the
magnitude of m = 2, 3 contravariant normal perturbed

magnetic field ~b · ∇ψ as a function of ψ. Only the cosine
parts, cos(2, 3θ)cos(ϕ), are shown in the figure.

The important feature of these (~b · ∇ψ)mn functions
is the jumps of their derivatives when they cross zero at
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FIG. 7: (Color online) The perturbed magnetic field magni-

tude |~b| averaged on unperturbed magnetic surfaces for the
m = 2 external perturbation. Note that the inner profile of
the actual field is apparently different from that of vacuum
field even in this weakly amplifying perturbation.
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FIG. 8: (Color online) (a) The m = 2 external perturbation
and the corresponding actual field on the boundary. The ac-
tual field is similar to the external perturbation with a small
modulation. (b) The m = 15 external perturbation and the
corresponding actual field on the boundary. General ampli-
tude of the actual field is amplified.

their resonant surfaces. The jumps can be represented by
the dimensionless quantity ∆mn of Eq. (1). ∆mn is pro-
portional to the singular current required in ideal MHD
to prevent an island from opening. If this singular cur-
rent were dissipated, an island would open with a width
proportional to

√

|∆|mn.

The critical issue in the computation of ∆mn is how to
define the distance from the rational surface, over which
∆mn is to be calculated. Ideal DCON starts to inte-
grate the Euler-Lagrangian equation from the magnetic
axis and crosses each rational surface by eliminating each

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

Vacuum  field

Actual field for m=15 perturbation

Su
rf

ac
e 

av
er

ag
ed

 |b
| m

ag
ni

tu
de

(G
)

Normalized 

FIG. 9: (Color online) The perturbed magnetic field magni-

tude |~b| averaged on unperturbed magnetic surfaces for the
m = 15 external perturbation. The relative magnitude of the
actual field to the vacuum field for this case is much larger
than that for the m = 2 perturbation in Fig. 7 throughout
the whole plasma.

large solution component in the ideal limit. This approx-

imation assumes the equilibrium equation ∇P = ~J × ~B
holds on arbitrarily small scale. Figure 6 shows |∆21|
and |∆31| as a function of the half-width distance from
the q = 2 and q = 3 surface, at which the jump is eval-
uated. As the rational surface is approached, |∆mn| has
a quasi-asymtotic value that has very small change down
to ψ = ±10−5 through a wide range of log scale. As is
illustrated in Fig. 6, the ideal approximation leads to the
large changes in ∆mn, and therefore the surface current,
when regions around the rational surface of a few times
10−6 of the plasma radius are resolved. This is due to
the Pfirsch-Schlüter current associated with the Glasser
effect. Since MHD dose not hold on scales smaller than
a gyroradius, MHD cannot be used on scales less than
10−2 to 10−3 of the plasma radius. So the strong effects
of the Pfirsch-Schlüter current on the 10−5 to 10−6 scale
are ignored in our analysis.

The inner profile of the |~b| for the m = 2 external
perturbation is shown in Fig. 7 . Even with this weakly
amplifying perturbation, the inner profile of the actual
field is different from that of the vacuum field, which is
often used to approximate the perturbed magnetic field.
A strongly amplified case is provided in the next section.

B. Amplification

The notion of amplification can be used for a number of
perturbed quantities. Figure 8 shows the comparisons of

actual field ~b · n̂ for (a) m = 2 external perturbation with
~bx · n̂ = (1Gauss) × Re(ei(2θ−ϕ)) and (b) m = 15 exter-

nal perturbation with ~bx · n̂ = (1 Gauss)×Re(ei(15θ−ϕ)).
Compared with the m = 2 perturbation, the actual field
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FIG. 10: (Color online) Each |∆mn| taken at the distance of
normalized ψ = ±10−3 from the corresponding rational sur-
face as a function of poloidal harmonic number m of external

perturbations with ~bx · n̂ = (1 Gauss) × Re(ei(mθ−ϕ)). The
m = 15 has the largest amplification effect and there is a
broad poloidal harmonic coupling around the peak. The shift
to the higher m side of the peak and a broad poloidal coupling
are typical and can be seen on other magnetic surfaces and in
other equilibria as well.

from the m = 15 perturbation is very different and has
amplified amplitudes on the boundary surface. The ac-

tual |~b| versus the vacuum |~bx| for the m = 15 external
perturbation, Fig. 9, illustrates the amplified perturbed
quantities inside the plasma. This strong amplification
and different inner profile of perturbed magnetic field can
make a large difference in several applications such as in
the calculation of plasma rotation damping [20].

The amplification effect can be clearly seen in |∆mn|.
The half width of the inner layer is taken to be ψ =
±10−3 of the plasma radius for estimating the value of
|∆21| and |∆31|, in order to neglect the effect of unphysi-
cal Pfirsch-Schlüter current. Figure 10 shows each |∆mn|
at the corresponding rational surfaces as a function of
poloidal harmonic number m of external perturbations

with ~bx · n̂ = (1 Gauss) × Re(ei(mθ−ϕ)). As shown in
the figure, m = 15 has the largest amplification effect
and there is a broad harmonic coupling around the peak.
The external perturbations are specified on the bound-
ary so that one might think that the largest amplification
effect would occur when m is close to the edge resonant
harmonic number, which is m = 12 with the qedge = 12.3.
However, the shift to the higher m side of the peak and
a broad poloidal coupling are typical computational re-
sults in IPEC and can be seen on other magnetic sur-
faces and in other equilibria as well. This implies that
the poloidal spectrum of the actual field is very different
from that of the external field in a toroidal configura-
tion, so one can not merely use the specified external
field to explain physical quantities without solving the
actual field in plasma. This is in contrast to cyliderical
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FIG. 11: The two singular structures of external magnetic

field ~bx · n̂ on the boundary to make a large ∆mn. (a) is the
most singular one and (b) is the next one. Their singular
eigenvalues in the SVD analysis is d1 = 2.17× 10−2 and d2 =
2.02 × 10−3, respectively, so that the (a) structure should be
considered as a dominant driving structure of the magnetic
island opening by the factor d1/d2 ∼ 10.

configuration, where there is no poloidal harmonic cou-
pling.

C. Magnetic island control

The poloidal coupling spectrum in Fig. 10 can be used
for controlling the opening of magnetic islands [7]. The
usual error field spectrum on the boundary in many ex-
perimental devices has large amplitudes in low m num-
bers. Convoluting the poloidal coupling and the field
spectrum will identify important m harmonic numbers
to control magnetic islands. Another way to approach
this problem is to create other functional bases by a
SVD(Singular Value Decomposition) analysis to obtain a
clear picture of the most dangerous magnetic field distri-
bution for magnetic islands. A matrix Dmm′ between the
∆m at the resonant surfaces and the Φx

m on the boundary
with n = 1 toroidal harmonic can be defined by

~∆ =
↔
D · ~Φx. (34)

Considering |∆21| and |∆31| as in Fig. 10, one can find
the two most singular structures on the boundary surface

by using the SVD analysis for the matrix
↔
D. Figure 11

shows the two singular external field distributions ~bx · n̂.
The importance of the singular distributions can be seen
by comparing their singular eigenvalues d1,2, d1 = 2.17×
10−2 and d2 = 2.02 × 10−3, so that the first singular
distribution is dominant by the factor d1/d2 ∼ 10.
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V. SUMMARY

The IPEC has been developed for computation of three
dimensional tokamak and spherical torus, based on the
DCON and VACUUM codes coupled using the theory of
perturbed equilibria. The ideal plasma response to ex-
ternal magnetic perturbation can be computed in high
accuracy by the code, which constructs a relevant in-
terface between the actual field and the external field
on the control surface. The computational examples
of NSTX plasma show that the actual field containing
plasma response can be amplified and coupled with dif-
ferent poloidal harmonics. The difference between the
actual field and the external field implies that one should

use different components of external field from what one
would expect without plasma effect, in design and control
of perturbed equilibria.
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