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Abstract: We demonstrate how a tightly-focused coherent TEMmn

laser beam can be computed in the finite-difference time-domain (FDTD)

method. The electromagnetic field around the focus is decomposed into

a plane-wave spectrum, and approximated by a finite number of plane

waves injected into the FDTD grid using the total-field/scattered-field

(TF/SF) method. We provide an error analysis, and guidelines for the

discrete approximation. We analyze the scattering of the beam from layered

spaces and individual scatterers. The described method should be useful

for the simulation of confocal microscopy and optical data storage. An

implementation of the method can be found in our free and open source

FDTD software (“Angora”).
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1. Introduction

The finite-difference time-domain (FDTD) numerical electromagnetic method [1] is gaining

increasing popularity for solving nano-photonics problems [2–5]. In the FDTD method, the

electromagnetic field is defined at a finite number of discrete spatial positions, and calculated

at consecutive discrete time instants using an explicit leapfrogging algorithm. The simplest

illumination modality in the FDTD method is the plane wave, which is now a standard feature in

most FDTD implementations. However, in many optical situations one needs to simulate a more

complicated illumination beam. In this paper, we describe how a transverse-electric-magnetic

(TEM) laser mode of order (m,n) focused by a lens can be simulated in the FDTD method.

The basis of our technique is the decomposition of the beam around the focus into a plane-

wave spectrum, and the representation of this infinite sum by a finite number of plane waves

with suitable amplitude factors. Each plane wave is introduced into the FDTD computational

grid using the total-field/scattered-field (TF/SF) method, which is well-studied in the literature.

The traditional TF/SF approach for injecting a plane wave into the FDTD grid, explained in

detail in [1], has since been refined by numerous authors. Two notable improvements to the

TF/SF method are the matched-numerical-dispersion method [6] and the perfectly-matched

plane-wave source method [7].

The approach described in this paper is similar to that followed in our previous work [3], with

the following improvements: (i) The range of beams that can be introduced into the FDTD grid

is significantly expanded. The results in [3] merely correspond to the (0,0) mode with f0 = ∞
within the context of the present paper. (ii) The focused beam is computed in spaces with planar

layers and inhomogeneities. A microscopy example is given to demonstrate the possibility for

simulating a confocal imaging scenario. (iii) The error analysis performed in the present paper is

much more comprehensive and general. (iv) The results described here have been implemented
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in an open-source FDTD software (Angora), which can be freely downloaded under the GNU

Public License.

The rest of the paper is organized as follows. In Section 2, the theory of the focused laser

beam is explained. In Section 3, the FDTD computation of the theoretical results in Section

2 are given. In Section 4, a comparative error analysis is presented for various approximation

schemes. In Section 5, planar layered spaces and scatterers are discussed, and the capability for

simulating confocal microscopy is demonstrated. In Section 6, future directions are discussed.

In Section 7, our free, open-source FDTD software (Angora) is briefly introduced. The paper is

concluded by final remarks in Section 8.

2. Focusing of laser beams

The transverse-electric-magnetic laser mode of order (m,n) (also called a Hermite-Gaussian

mode, or a TEMmn mode) is a solution of the paraxial wave equation [8], which assumes that

the energy in the beam propagates mainly in a single direction along parallel rays. The electric

field of a TEMmn mode at the beam waist, which is assumed to lie in the (x,y) plane, is given

by the following expression:

Einc(x,y; t) = ê ψ(t)γmn(x,y) = ê ψ(t)Hm(
√

2x/w0)Hn(
√

2y/w0)e
−(x2+y2)/w2

0 , (1)

where ê is the constant transverse unit vector in the (x,y) plane that determines the uniform po-

larization, ψ(t) is the time waveform of the beam, w0 is the beam width, and Hn(x) are the nth-

order Hermite polynomials [9]. The first two Hermite polynomials are H0(x) = 1, H1(x) = 2x.

The intensity maps of the the time-independent parts of the (0,0), (0,1), (1,0), and (1,1)
modes on the beam waist are shown in Fig. 1(a). In real situations, the time dependence ψ(t)
is a randomly-fluctuating waveform; which can be assumed statistically stationary in time [8].

This random process will have a wavelength spectrum, which might consist merely of a very

narrow wavelength band for a traditional laser, or span a wide range of wavelengths for a su-

percontinuum laser. If the entire optical system (including the illuminated object) is linear and

time invariant, all second-order coherence properties at the output (e.g., power-spectral density

at a point, mutual coherence function between two points, etc.) are completely determined by

the second-order coherence properties of the input waveform and the deterministic spectral re-

sponse of the system [8,10,11]. The latter can be obtained by sending a deterministic time pulse

with a finite duration and a predefined spectral content through the system. The parameters of

a modulated Gaussian waveform, for example, can easily be adjusted to manipulate its spectral

content; since the cutoff wavelengths of this waveform are expressible in closed form. This is a

suitable approach for a deterministic numerical method such as FDTD that operates directly in

time domain.

If the maximum appreciable free-space wavelength λmax present in the spectrum of ψ(t) is

much smaller than the beam waist w0, the paraxial approximation becomes valid, and the rays in

the beam stay mostly parallel to the z axis beyond the beam waist for many beam widths [12].

We assume that such a highly-paraxial beam is incident on the entrance pupil of a positive

(convergent) optical system, as shown in Fig. 1(b). The focusing system is assumed to be free

of spherical aberration and obeying the Abbe sine condition. In other words, all parallel rays

entering the entrance pupil are focused at the back focal point F , and a = f sinθill; where a

is the radius of the pupil, f is the back focal length of the system, and θill is the illumination

aperture angle. A portion of the Gaussian reference sphere around F is shown shaded in Fig.

1(b). The object and image spaces of the focusing system are non-magnetic (µ1=µ2=1) with

refractive indices n1 and n2, respectively. An example ray converging toward F is shown in Fig.

1(b). The ray makes an angle θ with the optical axis at F . In the geometrical optics regime, the
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(a) (b)

Fig. 1. (a) Intensity maps of several TEMmn modes on the beam waist. (b) The geometry

of the incidence and focusing of the beam.

electric field E∞ on the ray is in the form

E∞(r,θ ,φ , t) = â(θ ,φ) E∞(θ ,φ , t +n2 r/c)/r , (2)

where â is the unit vector specifying the polarization, and E∞(θ ,φ , t) is the strength factor of

the ray [13]. The combined electric field around the focus F due to all the incoming rays is

given by the Debye-Wolf diffraction integral [13]:

E(r′, t) =
n2

2π c

∫∫

Ωill

â(θ ,φ)Ė∞(θ ,φ , t −n2 ŝ · r′/c)dΩ , (3)

in which

ŝ = (sx,sy,sz) = (−sinθ cosφ ,−sinθ sinφ ,cosθ) (4)

r′ = (x′,y′,z′) (5)

are the incidence unit vector and the position vector in the image space, Ωill is the conical

solid angle bounded by θill, and dΩ =sinθdθdφ =dsxdsy/cosθ . The dot above E∞ denotes the

derivative with respect to time. The strength factor E∞(θ ,φ , t) can be related to the Hermite-

Gaussian beam on the entrance pupil using geometrical optics principles [12–14]:

E∞(θ ,φ , t) = (n1/n2)
1/2 f cos1/2(θ)ψ(t − tc)γmn(x,y) , (6)

where γmn(x,y) is the Hermite-Gaussian beam profile defined in Eq. (1). The delay tc in

the time waveform ψ(t) represents the time of propagation for any ray from the entrance

pupil to F . Since all wavefronts converge at F , this delay is independent of θ and φ ; so the

definition of ψ(t) can be time-advanced to cancel tc. The relationship between the coordi-

nates (x,y) and (θ ,φ) in the object and image spaces follows from the Abbe sine condition:

(x,y) = ( f sinθ cosφ , f sinθ sinφ). For small incidence angles at each refracting surface, the

angle that â makes with the meridional plane (one defined by the ray and the optical axis) will

be the same as that of ê [13,15]. Therefore we have â ·nθ = ê ·nρ and â ·nφ = ê ·nφ , where the

unit vectors nθ , nρ , nφ are as shown in Fig. 1(b).
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We assume that the entrance pupil of the optical system not overfilled; namely, the beam

width w0 is sufficiently smaller than the pupil radius a so that the beam is contained within the

pupil. Following [12], we define the filling factor as the following ratio:

f0 = w0/a = w0/( f sinθill) (7)

In the remainder of this analysis, we assume that the filling factor f0 is less than 0.6. Increas-

ing f0 beyond this number causes the focal fields to have a more oscillatory behavior, which

makes the approximation methods introduced here less accurate. A more uniform method of

approximation that is valid for all values of f0 is the subject of future study.

The results in Eqs. (1)–(6) express the electromagnetic field around the focus F for a paraxial

incoming beam Einc at the entrance pupil. In the following section, we will show how this

formulation can be discretized and adapted to the FDTD numerical method.

3. FDTD implementation using the TF/SF method

Upon inspection, it is seen that the diffraction integral in Eq. (3) is an infinite summation of

plane waves, each traveling in a different direction determined by ŝ. Let’s write the integral in

Eq. (3) as a Riemann sum over a finite collection of plane waves:

Ẽ(r′, t) =
n2

2π c
∑
n

αn â(θn,φn)Ė
∞(θn,φn, t −n2 ŝn · r′/c) , (8)

in which the index n is used to enumerate the individual plane waves. The spherical incidence

angles are θn and φn, and the incidence directions ŝn are

ŝn = (sxn ,syn ,szn) = (−sinθn cosφn,−sinθn sinφn,cosθn) . (9)

The weight αn replaces the differential dΩ in Eq. (3). The above form is not necessarily the

optimal solution for the approximation of the focal fields, since the choice of ŝn and αn are

independent of the image-space position r′ and the time t. However, this arrangement has the

advantage that the beam is expressed as a sum of plane waves, each of which can be introduced

into the FDTD grid using well-documented approaches such as the scattered-field (SF) or the

total-field/scattered-field (TF/SF) methods [1]. We have chosen the TF/SF method for our im-

plementation, mainly because its computational cost is proportional to the surface area of the

TF/SF boundary. The cost of the SF method is usually much higher, since it is proportional to

the volume of the region over which the beam is calculated.

The Debye-Wolf diffraction integral in Eq. (3) is basically a two-dimensional integral over

the direction cosines sx, sy inside the unit disk s2
x + s2

y < sin2 θill. The choice of the incidence

directions ŝn and the weights αn in Eq. (8) for the optimal approximation of Debye-Wolf diffrac-

tion integral in Eq. (3) is the subject of two-dimensional cubature [17–19]. In this paper, we

consider three different approaches to this problem. These are explained in the following sub-

sections.

3.1. Equally-spaced sx,sy

The most straightforward way of placing the plane wave directions ŝn inside the unit disk s2
x +

s2
y < sin2 θill is an equally-spaced Cartesian arrangement shown in Fig. 2(a). The (sx,sy) points

are spaced Δsx and Δsy apart in the sx and sy directions, respectively; with equal cubature weight

αn = ΔsxΔsy for each point. In addition to the simplicity of this arrangement, useful guidelines

can be derived for the spacings Δsx and Δsy. These guidelines rely on the Whittaker-Shannon

sampling theorem [20]. The principle behind this is best explained if harmonic time dependence

#177620 - $15.00 USD Received 8 Oct 2012; revised 2 Dec 2012; accepted 3 Dec 2012; published 2 Jan 2013
(C) 2013 OSA 14 January 2013 / Vol. 21,  No. 1 / OPTICS EXPRESS  91



 s
x

 s
y

Positions

−1 0 1
0

0.01

0.02

0.03

0.04

0.05
Weights

(a)

 s
x

 s
y

Positions

−1 0 1
0

0.05

0.1

0.15

0.2
Weights

(b)

 s
x

 s
y

Positions

−1 0 1
0

0.02

0.04

0.06

0.08

0.1
Weights

(c)

Fig. 2. Cubature rules for the approximation in Eq. (8) for the 2D integral in Eq. (3). The

top graphs show the placement of the quadrature points in the unit disk. The bottom graphs

show the weights along sy=0. (a) 188 points on an equally-spaced Cartesian grid of (sx,sy)
positions inside the illumination cone. (b) Separation of the 2D integral on the (sx,sy) plane

into two 1D integrals over the radial coordinates (s,φ). The s integral is evaluated using

Gauss-Legendre quadrature, and the φ integral is evaluated using the midpoint rule. A total

of 20×8=160 quadrature points are used. (c) A custom 127-point quadrature rule for the

unit disk [16], exact for polynomials si
xs

j
y where i+ j < 25.

exp(−iωt) is assumed in the diffraction integral in Eq. (3):

E(r′) =
−ik′

2π

∫∫ ∞

−∞
P(sx,sy)â(ŝ)E

∞(ŝ)eik′ ŝ·r′dsx dsy/cosθ , (10)

in which k′ = n2ω/c is the wavenumber in the object space, and P(sx,sy) is equal to 1 for

s2
x + s2

y < sin2 θill, and zero otherwise. For a fixed z′, the observation coordinate r′ depends only

on x′ and y′. The integral in Eq. (10) is then in the form of a two-dimensional Fourier transform

from the (sx,sy) domain to the (x′,y′) domain. Since the center of the beam is usually the

region of interest, we can proceed by taking z′ = 0. The Whittaker-Shannon sampling theorem

says that, if the integral in Eq. (10) is approximated by a finite sum at a Cartesian grid of

(sx,sy) points as shown in Fig. 2(a), the result is an infinitely replicated (or aliased) version of

E(r′) [20]. Assuming Δsx=Δsy=Δ, the period of this replication is given by

D =
2π

k′Δ
(11)

If the fields on the focal plane (z′ = 0) can be contained in a square region of dimensions

W0 ×W0, an overlap can be avoided with D > W0. From vectorial diffraction theory, we know
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that the focal fields decay in the lateral direction at a distance scale of d0 = λ/(n2 f0 sinθill)
around the focus [12]. This holds as long as f0 is inside our range of interest 0 < f0 < 0.6.

Our extensive numerical experiments suggest that the beam is always well contained within

5d0 −6d0 of the focus. In our implementation, we choose W0 to be 5.2d0. Another length scale

to be taken into account is the lateral size of the TF/SF boundary. If the TF/SF boundary is

too wide, the beam may be replicated inside the boundary. If the lateral diagonal length of the

TF/SF boundary is T0, D should be larger than T0 to avoid this replication. In summary, the

condition on the spacing Δ is

Δ <
2π

k′ max{W0,T0}
. (12)

In the following, we will denote this quadrature scheme by the acronym EQ.

3.2. Gauss-Legendre quadrature

The integral in Eq. (3) can be reduced into two nested one-dimensional integrals, and approxi-

mated using more familiar quadrature rules. First, the variables are changed from the Cartesian

coordinates (sx,sy) into the radial coordinates (s,φ), where s = (s2
x + s2

y)
1/2 and φ is the angle

between the sx axis and the vector (sx,sy):

E(r′, t) =
1

2π c

π∫

φ=0

dφ

sinθill∫

s=−sinθill

sds√
1− s2

â(s,φ)Ė∞(s,φ , t −n2 ŝ · r′/c) (13)

Note that the limits for the usual radial coordinates are modified such that s ranges from −sinθill

to sinθill, and φ ranges from 0 to π . In this way, the integral over the unit disk is transformed

into an integral over the rectangular region {|s| < sinθill,0 < φ < π} [16]. The integral over s

can be approximated using Gauss-Legendre quadrature [21]. The φ integral can be approx-

imated trivially by the midpoint rule, since the integrand becomes periodic with period π
once the s dependence is integrated out. For periodic functions, the midpoint rule is similar

to the Gauss-Legendre quadrature in terms of accuracy [21]. In the following, we will denote

this two-dimensional cubature rule by the acronym GL. An example GL quadrature rule with

20×8=160 total points is shown in Fig. 2(b).

3.3. Custom cubature rules

There are more sophisticated alternatives to the approaches in the previous subsections for ap-

proximating two-dimensional integrals over special two-dimensional domains. A good review

of the known rules tailored for the unit disk can be found in [16]. These rules require fewer

cubature points than the EQ and GL rules for the same level of accuracy; thus reducing the

number of plane waves in Eq. (8). The downside of these rules is that they have limited avail-

ability, with no readily available software for computing them. One has to to resort to tabulated

values for the positions and weights for the cubature points, such as R. Cools’ online encyclo-

pedia of cubature formulas [22]. For demonstrating the qualities of these specialized cubature

formulas, we have considered the 127-point quadrature rule of degree 25. The degree d of a

quadrature rule is the maximum total degree of the two-dimensional polynomials for which

the cubature formula is exact. In the following, we will label the results obtained using this

cubature rule by the acronym CC. The positions and weights for the 127-point quadrature are

shown in Fig. 2(c).

It should be pointed out that the cubature rules in Fig. 2 are given for the standard unit disk

s2
x + s2

y < 1. Since the integration domain in Eq. (3) is s2
x + s2

y < sin2 θill, the coordinates of the

cubature points in Fig. 2 should be multiplied by sinθill, and the weights by sin2 θill. In the

following, we will present an error analysis for the cubature rules shown in Fig. 2.
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4. Error analysis

In order to perform an error analysis, the theoretical electric field Exth
(r′, t) around the focus

should be computed to a high degree of accuracy. For this purpose, we use previous results from

Novotny & Hecht [12, Eq. (3.66)–(3.68)], except a sign change [23] and an extra
√

2 factor for

the (1,0) and (0,1) modes due to a difference between their definitions and ours. Suppressing

the harmonic time dependence exp(−iωt), Exth
(ρ ,φ ,z, t) is given by

Exth
(ρ ,φ ,z) =

−ik f

2

√
n1

n2

(
I00 + I02 cos2φ

)
[(0,0) mode] (14)

Exth
(ρ ,φ ,z) =

−ik f 2

√
2w0

√
n1

n2

(
i I11 cosφ + i I14 cos3φ

)
[(1,0) mode] (15)

Exth
(ρ ,φ ,z) =

−ik f 2

√
2w0

√
n1

n2

(
i(I11 +2I12)sinφ + i I14 sin3φ

)
[(0,1) mode] (16)

in which Exth
(r′) is expressed in cylindrical coordinates (ρ ,φ ,z). The ρ and z dependencies are

contained entirely in the functions I00, I02, I11, I12, and I14; which are given by [12]

I00(ρ ,z) =
∫ θill

0
e
− 1

f 2
0

sin2 θ
sin2 θill cos

1
2 θ sinθ(1+ cosθ)J0(kρ sinθ)eikzcosθ dθ (17)

I02(ρ ,z) =
∫ θill

0
e
− 1

f 2
0

sin2 θ
sin2 θill cos

1
2 θ sinθ(1− cosθ)J2(kρ sinθ)eikzcosθ dθ (18)

I11(ρ ,z) =
∫ θill

0
e
− 1

f 2
0

sin2 θ
sin2 θill cos

1
2 θ sin2 θ(1+3cosθ)J1(kρ sinθ)eikzcosθ dθ (19)

I12(ρ ,z) =
∫ θill

0
e
− 1

f 2
0

sin2 θ
sin2 θill cos

1
2 θ sin2 θ(1− cosθ)J1(kρ sinθ)eikzcosθ dθ (20)

I14(ρ ,z) =
∫ θill

0
e
− 1

f 2
0

sin2 θ
sin2 θill cos

1
2 θ sin2 θ(1− cosθ)J3(kρ sinθ)eikzcosθ dθ . (21)

Here, Jn(·) is the nth order Bessel function. For the error analysis, these integrals are evaluated

with very high accuracy using an adaptive Gauss-Kronrod quadrature rule. A general time

dependence in ψ(t) is handled by multiplying Eqs. (14)–(16) by the temporal spectrum of

ψ(t), and taking the inverse temporal Fourier transform.

The error in the approximation in Eq. (8) can be quantified in various ways. Here, we consider

two measures of error that quantify the difference between the computed focused beam and the

theoretical focused beam over a surface A, such as the one shown in Fig. 3:

ε2 =

(∫
dt

∫∫
A dr′|Ẽx(r

′, t)−Exth
(r′, t)|2

)1/2

(∫
dt

∫∫
A dr′|Exth

(r′, t)|2
)1/2

(22)

εinf =
maxA,t |Ẽx(r

′, t)−Exth
(r′, t)|

maxA,t |Exth
(r′, t)| (23)

where r′ is the position variable on the surface A. The normalized Euclidean-norm error ε2 is a

measure of the root-mean-square (rms) average of the error on A compared to the rms average

of the theoretical field Exth
(r′, t) on the same surface. The normalized ∞-norm error εinf is a

measure of the maximum error on A compared to the maximum amplitude of the theoretical

field Exth
(r′, t) on the same surface. We assume in the examples to follow that the incident beam
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Fig. 3. An example surface A over which the computed and theoretical beams are compared.

The error ε in Eq. (22) is calculated over this area.

is x-polarized [i.e., ê=x̂ in Eq. (1)], and we only compare the dominant (x̂) components Ẽx(r
′, t)

and Exth
(r′, t) of the computed and theoretical electric fields. Our numerical experiments have

shown that the comparison of the dominant components provides a very reliable estimate of

the accuracy of the entire beam. Furthermore, we have found that the error calculated over any

vertical plane of the beam (as long as the beam does not vanish on the plane, e.g., the yz plane

for the (1,0) mode) is highly representative of the total error in the beam.

In our simulations, we considered an FDTD grid with the following parameters: grid spacing

Δx=Δy=Δz=Δ=6.59 nm, Δt=(0.98/
√

3)Δ/c, grid size 1.713 µm×1.713 µm×3.295 µm, no

absorbing boundary. The grid was filled with a lossless, non-dispersive, non-magnetic dielectric

material representing immersion oil (n2 = 1.518). The focused laser beam was assumed to be x-

polarized, and propagating in the +z direction. The aperture half angle θill was 68.96◦, resulting

in a numerical aperture of 1.4. The total-field/scattered-field (TF/SF) surface was located 5

cells away from the grid boundaries. The waveform ψ(t) of the paraxial beam incident on

the entrance pupil of the focusing system [see Eq. (1)] was a modulated Gaussian function

ψ(t) = sin(2π f0t)exp(−t2/(2τ2)) with τ=3 fs and f0=5.889×1014 Hz. This waveform has a

Gaussian temporal spectrum that falls to 1% of its maximum amplitude (0.01% of its maximum

power) at free-space wavelengths 400 nm and 700 nm. In order to reduce the errors caused by

the inherent grid anisotropy and grid dispersion, the grid spacing was chosen to be 1/40th of

the wavelength in the immersion oil at 400 nm. This is much stricter than the usual λ/20-λ/15

rule-of-thumb for the grid spacing. From Eqs. (14)–(21), it follows that the back focal length f

of the lens is merely a constant scaling factor in all resulting field values, as long as the filling

factor f0 is kept constant. We have used the somewhat arbitrary value of 0.1 m for the back focal

length. The x component of the electric field is shown in Fig. 4 at several time instants for a

filling factor of f0 = 0.4. Figs. 4(a)–4(c) are for the (0,0), (1,0), and (2,0) beams, respectively.

The surface A in Fig. 3 over which the error is calculated was the xz plane. We recorded the

x component of the electric field in the FDTD grid over a rectangular grid on the xz plane, with

a spacing of 12 cells in the z dimension and 8 cells in the x dimension. This amounts to a total

of 1271 recording points. The normalized errors in Eqs. (22)–(23) were then approximated as

a sum over these recording points. The results for a range of filling factors [see Eq. (7)] and

for EQ, GL, and CC cubature rules are tabulated in Table 1 and Table 2. Table 1 is for the

normalized Euclidean-norm error ε2, while Table 2 is for the normalized ∞-norm error εinf.
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(a)

(b)

(c)

Fig. 4. Snapshots of the electric field amplitude from FDTD simulations for focused laser

beams traveling in the +z direction. The x component of the electric field on the xz plane is

plotted linearly in grayscale at 4.975 fs intervals from left to right. The maximum brightness

corresponds to 1.059×105 V/m. (a) (0,0) mode. [Media 1] (b) (1,0) mode. [Media 2] (c)

(2,0) mode. [Media 3]
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The positions and weights of the cubature points are shown in Fig. 2. The EQ rule has the

best performance for small f0 values, while this performance deteriorates much faster than

GL and CC as f0 increases. The normalized errors are generally higher for the (1,0) mode,

with the exception of the Euclidean error ε2 for the GL rule. The GL rule is also seen to

have superior performance for high f0. The overall performance of the CC rule is particularly

noteworthy. Although it has 30%-40% less number of points than the EQ and GL rules, it

results in comparable error for the (0,0) mode. On the negative side, the performance of the

CC rule deteriorates much faster than the others as the focal fields are evaluated farther away

from the focus. Controlling the lateral dimensions of the TF/SF boundary is therefore much

more important for the CC rule. The normalized ∞-norm error εinf resulting from the CC rule

is also significantly higher for the (1,0) mode. A quick comparison of Table 1 and Table 2

shows that the two measures of error in Eqs. (22) and (23) are not drastically different from

each other. One notable exception is the significantly increased error in the rightmost column

in Table 2. The contribution to this error comes mainly from the corners of the measurement

plane, as seen in Fig. 5(b). Although not shown here, it was observed that the error is distributed

in a similar way regardless of the cubature rule employed. This reaffirms the importance of the

limits of the TF/SF boundary in the approximation in Eq. (8).

Table 1. Normalized Euclidean-norm error ε2 [given by Eq. (22)] over the xz plane for the

approximation in Eq. (8).

f0

Cubature rules

Equally-spaced sx,sy (EQ) 20×8 Gauss-Legendre (GL) 127-point cubature (CC)

(0,0) mode (1,0) mode (0,0) mode (1,0) mode (0,0) mode (1,0) mode

0.4 0.96% 1.07% 3.72% 0.92% 1.62% 3.70%

0.5 1.58% 2.83% 3.01% 1.16% 1.89% 4.02%

0.6 3.38% 5.78% 2.68% 1.86% 2.88% 5.30%

Table 2. Normalized ∞-norm error εinf [given by Eq. (23)] over the xz plane for the approx-

imation in Eq. (8).

f0

Cubature rules

Equally-spaced sx,sy (EQ) 20×8 Gauss-Legendre (GL) 127-point cubature (CC)

(0,0) mode (1,0) mode (0,0) mode (1,0) mode (0,0) mode (1,0) mode

0.4 0.91% 1.32% 2.04% 0.83% 3.37% 9.64%

0.5 1.35% 3.17% 1.51% 1.80% 2.80% 7.24%

0.6 2.65% 5.27% 1.73% 3.02% 3.99% 6.90%

It was mentioned above that the grid spacing was chosen to be 1/40th of the wavelength in the

immersion oil at 400 nm, which is much stricter than usual. Normally, a grid spacing of ≈ λ/20

would be enough for most purposes [1]. As the grid spacing is made larger, inherent FDTD

errors caused by grid anisotropy and grid dispersion become more prominent. These effects are

demonstrated in Table 3, in which the normalized Euclidean-norm error (Eq. (22)) is shown for
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(a) (b)

Fig. 5. The distribution of the error on the measurement (xz) plane for the FDTD parameters

in the rightmost column of Table 2. (a) The ∞-norm of the theoretical incident field. (b) The

∞-norm of the error. The grayscale upper limit is 1/10th of that in (a) for accentuation. The

error is seen to be concentrated at the corners of the plane.

Table 3. The normalized Euclidean-norm error (Eq. (22)) for different grid spacings. The

middle and right columns show the error with and without dispersion correction, respec-

tively.

Grid spacing Dispersion correction No dispersion correction

λ/40 0.96% 1.93%

λ/30 1.68% 3.43%

λ/20 3.77% 7.75%

λ/10 15.2% 31.2%

grid spacings ranging from λ/40 to λ/10. The wavelength λ is taken to be 400 nm, which is the

lower −40-dB wavelength of the excitation waveform in the immersion oil. Each of the plane

waves in Eq. (8) suffer from grid anisotropy and dispersion while propagating from the TF/SF

surface toward the center of the grid. If no correction is applied to these plane waves, the errors

increase significantly, as seen in the right column of Table 3. In our FDTD implementation

(see Section 7), we have used a dispersion-correction algorithm called the matched-numerical-

dispersion method [6]. The middle column in Table 3 shows that the error is drastically reduced

by this dispersion correction algorithm.

The FDTD simulations were run in parallel on 96 processors on the Quest system (see Ac-

knowledgments). The TF/SF focused beam calculations accounted for 77%, 75%, and 70% of

the total simulation times for the EQ, GL, and CC rules, respectively. The additional memory

requirements for the focused beams in our FDTD simulations were not significant, thanks to

the low storage requirements of TF/SF sources. Because of the low spatial step (λ/40) used,

the simulations took much longer than necessary (7-10 minutes). At λ/20, the simulation took

about 3 minutes on the same number of processors.

#177620 - $15.00 USD Received 8 Oct 2012; revised 2 Dec 2012; accepted 3 Dec 2012; published 2 Jan 2013
(C) 2013 OSA 14 January 2013 / Vol. 21,  No. 1 / OPTICS EXPRESS  98



5. Inhomogeneous spaces

Until now, the focused laser beams were computed in homogeneous media. It would be of

interest to observe the behavior of the beam when injected into an inhomogeneous medium;

considering that almost any simulation will involve some inhomogeneity from which the beam

will scatter. We will first consider a planar stratified medium with two layers, and then introduce

a scatterer inside one of the layers. We will also show the synthetic microscope images of the

scatterer in the latter case.

5.1. Two-layered space

If the beam is incident on an interface between two media, and the beam width is much smaller

than the radius of curvature of the interface, the two media can be approximated as infinite

half spaces. In our FDTD implementation (see Section 7), a plane wave can be simulated in

the presence of arbitrary layered media [24]. Since the focused beam is constructed as a finite

combination of plane waves, it can also be injected into layered spaces. As an example, we

repeat the simulation for the (0,0) beam described in Section 4, except the following changes:

The lower half space from which the beam is incident is air instead of immersion oil, and

the upper half space has a refractive index of 1.5, which could represent glass or resin. The

evolution of the electric field is shown in several time instants in Fig. 6. The reflection from

the planar interface is seen clearly in the fourth snapshot. The beam is seen to be transmitted

into the optically denser upper half space with a smaller wavelength. The TF/SF boundary

was deliberately made narrower, to show more clearly the containment of the beam in both

half spaces. The absence of leakage outside the TF/SF boundary indicates the accuracy of the

plane-wave injection algorithm in the two-layered space.

5.2. Numerical microscope image of a scatterer

The complexity of the incidence geometry can be further increased by inserting scatterers in-

side the TF/SF boundary. The scattered electromagnetic field can then be collected outside the

TF/SF boundary (e.g. using a near-field-to-far-field transform for multilayered spaces [25]) and

processed suitably to yield a wealth of information. In this subsection, we will numerically

calculate the microscope image of a scatterer under focused-beam illumination. This could rep-

resent one of the scanning positions in a confocal microscopy scenario, wherein a focused beam

is scanned over the sample to obtain a complete image. The physical and FDTD parameters of

the simulation are the same as those in Section 5.1, except the following changes: Two rect-

angular blocks of refractive index 1.38 and dimensions 150 nm×600 nm×600 nm are buried

symmetrically just above the material interface, and the grid is terminated by a 5-cell thick

convolution perfectly-matched layer to absorb the scattered field [26]. The electric field at dif-

ferent time instants is shown in Fig. 7. Using the scattered field outside the TF/SF boundary,

and propagating it to the far (Fraunhofer) zone using a multilayer NFFFT [25], a numerical

microscope image of the scatterer can be synthesized [27]. In Fig. 8(a), the cross section of the

scatterers is shown at z = 300 nm. In Figs. 8(b)–8(c), two microscope images of the scatterers

are shown under different microscope modalities. Both images are synthesized at wavelength

λ = 509 nm using the light scattered into the lower half space, which amounts to epi (or re-

flectance) microscopy. The bright-field microscope image, shown in Fig. 8(b), is obtained by

integrating the reflectance spectrum at each pixel over the excitation spectrum. The image is

saturated because the grayscale limits are chosen to be the same as in Fig. 8(c), which shows

the image obtained when the reflection from the planar interface is removed, leaving only the

reflection from the scatterers. This is closely analogous to the procedure followed in dark-field

microscopy. As a result of the weak scattering from the two blocks, the image in Fig. 8(c) is
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Fig. 6. Snapshots of the electric field amplitude for a focused laser beam traveling in the

+z direction in a two-layered space. The x component of the electric field on the xz plane is

plotted linearly in grayscale at 4.975 fs intervals from left to right. The maximum brightness

corresponds to 5×104 V/m. [Media 4]

Fig. 7. Snapshots of the electric field amplitude for a focused laser beam traveling in the

+z direction in a two-layered space containing rectangular scatterers. The x component of

the electric field on the xz plane is plotted linearly in grayscale at 4.975 fs intervals from

left to right. The maximum brightness corresponds to 5×104 V/m. [Media 5]

much dimmer than the total bright-field image in Fig. 8(b). The overlap of the images of the

two blocks is a consequence of the diffraction limit at λ = 509 nm.

6. Future work

The error analysis presented here is by no means exhaustive. It is only meant to demonstrate the

proof-of-concept for the viability of the plane-wave summation method explained in Section 3.

Many improvements and innovations could be the subject of future work. For example, reliable

guidelines for choosing the number of cubature points for the GL and CC rules for an arbitrary

FDTD setting would be very useful. One could also seek alternatives to expressing the Debye-

Wolf diffraction integral in Eq. (3) as a fixed sum of plane waves as in Eq. (8). Any method of

computing Eq. (3) efficiently and accurately on the TF/SF boundary for an arbitrary ψ(t) in Eq.

(1) could be a good alternative to the method described in this paper. The computational cost of

such a method would still be inherently proportional to the surface area of the TF/SF boundary,

rather than its volume.
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Fig. 8. Numerical microscope images of two rectangular scatterers buried inside the up-

per half space, under focused-beam illumination. (a) Refractive index map of the xy cross

section at z = 300 nm. (b) The bright-field image of the structure, dominated by the light

reflected from the interface. (c) The image with the reflection from the interface removed.

This resembles the procedure followed in dark-field microscopy.

7. FDTD implementation: Angora

The focused-beam creation method described in this paper has been incorporated into our free,

open-source FDTD software, Angora [28,29]. Angora is currently available for the GNU/Linux

operating system. It supports full parallelization in all three dimensions, allowing it to be run

easily on high-performance computing systems. Angora operates by reading a text-based con-

figuration file that specifies all details of the simulation. The Angora binaries and configuration

files used to generate the results in this paper can be found on the Angora website [30]. Please

consult the README file in that directory for details.

8. Summary

In this paper, we described a method to synthesize a laser beam focused tightly into a focal

area by an aplanatic converging optical system. The synthesis method is especially geared to-

ward the finite-difference time-domain (FDTD) method. We expressed the focused beam as an

infinite summation of plane waves, and used a finite combination of them to approximate the

beam. This approach has the advantage that the plane-wave creation methods in FDTD are well

researched and documented. For our implementation, we chose the total-field/scattered-field

(TF/SF) method for creating a plane wave [1]. We discussed three different methods for approx-

imating the beam as a finite sum of plane waves, and presented a comparative error analysis for

these methods. We showed that good accuracy can be obtained with acceptable computational

cost. We investigated the behavior of the focused beam in a two-layered space, and computed

the numerical microscope images of weakly-scattering objects under focused-beam illumina-

tion. We also discussed possibilities for future improvement. Finally, we introduced our free,

open-source FDTD software (Angora), which features the method described in this paper. The

binaries and configuration files used for the examples in this paper have been made available

on the Angora website [30].
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