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ABSTRACT Due to the high demands of deep neural network (DNN) based applications on computational

capability, it is hard for them to be directly run on mobile devices with limited resources. Computation

offloading technology offers a feasible solution by offloading some computation-intensive tasks of neural

network layers to edges or remote clouds that are equipped with sufficient resources. However, the offloading

process might lead to excessive delays and thus seriously affect the user experience. To address this important

problem, we first regard the average response time of multi-task parallel scheduling as our optimization

goal. Next, the problem of computation offloading and task scheduling for DNN-based applications in

cloud-edge computing is formulated with a scheme evaluation algorithm. Finally, the greedy and genetic

algorithms based methods are proposed to solve the problem. The extensive experiments are conducted to

demonstrate the effectiveness of the proposed methods for scheduling tasks of DNN-based applications in

different cloud-edge environments. The results show that the proposed methods can obtain the near-optimal

scheduling performance, and generate less average response time than traditional scheduling schemes.

Moreover, the genetic algorithm leads to less average response time than the greedy algorithm, but the genetic

algorithm needs more running time.

INDEX TERMS Cloud-edge computing, DNN-based applications, computation offloading, task scheduling,

greedy algorithm, genetic algorithm.

I. INTRODUCTION

With the rapid development of deep learning (DL) [1],

deep neural network (DNN) based applications, such as

personalized recommendation systems [2], face recognition

systems [3], and license plate recognition systems [4], have

become an integral part of people’s daily life. The high

intelligence of DNN-based applications relies on large-scale

and complex DNNs, and thus they commonly require suf-

ficient resources and lead to high energy consumption [5].

However, mobile systems are usually equipped with limited

resources [6], including battery life, network bandwidth,

storage capacity, and processor performance. Thus, complex

The associate editor coordinating the review of this manuscript and
approving it for publication was Shagufta Henna.

DNN-based applications cannot be directly run on mobile

devices. One feasible solution is to offload all or part

of computational tasks to remote clouds with sufficient

resources [7]. More specifically, DNNs are first divided

by the granularity of neural network layers [8]. Next,

some computationally-complex neural network layers are

offloaded to remote clouds for execution, while other tasks

with simpler neural network layers are processed locally.

Finally, the results are returned and integrated on mobile

devices.

However, offloading tasks to remote clouds is signifi-

cantly limited by the distance between users and remote

clouds. Such long-distance leads to huge delays that might

cause applications lagging with frequent user interactions,

and it seriously affects the user experience [9]. Moreover, the
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leakage of user privacy might happen when offloading tasks

to remote clouds. With the rise of edge computing, mobile

edges have become the main platforms for implementing

computation offloading [10]. Compared with remote clouds,

mobile edges are closer to the user data and provide services

nearby. Therefore, they can offer a faster network service

response and meet the basic requirements of users for privacy

protection [11]. However, it is difficult to realize computation

offloading for DNN-based applications, due to the geograph-

ical distribution of mobile edges and the mobility of mobile

devices [12]. To address this problem, in the early work of

this paper, we designed an adaptive offloading framework

for DNN-based applications in mobile edge environments.

Correspondingly, we proposed a design pattern and recon-

struction method to support the computation offloading of

DNN-based applications.

In the process of computation offloading, task scheduling

has become a new challenge [13]–[16], where various types

of delays occur. For example, the data transmission delay

happens when the data is transmitted between different com-

puting nodes. After tasks are offloaded to target nodes, they

might need to wait in queues due to the limited concurrency

capability of nodes, and it results in the waiting delay. If the

total delays of offloading are excessive, the average response

time of tasks will be significantly increased, and thus it

will seriously affect the user experience. Besides, different

DNN-based tasks require various amounts of data transmis-

sion, while the network connections and data transmission

rates between nodes are also diverse. Therefore, different

scheduling schemes might lead to different delays, and it has

become a tough issue to find an optimal scheduling scheme

with the lowest average response time. The traditional com-

putation offloading schemes are to offload all tasks to mobile

edges or remote clouds for execution. However, they result

in huge data transmission time. Therefore, it is necessary

to design an effective scheduling scheme, especially when

multiple tasks are executed concurrently.

To solve these problems, we propose an effective method

for offloading and scheduling DNN-based applications in

cloud-edge environments. The optimization goal is to reduce

the average response time of multi-task parallel scheduling.

Moreover, the proposed method is able to make scheduling

decisions with high-efficiency in response to the mobility

of mobile devices. The main contributions of this paper are

summarized as follows.

• The problem of computation offloading and task

scheduling for DNN-based applications in cloud-edge

computing is formulated. Meanwhile, a scheme

evaluation algorithm is designed to evaluate the

solutions.

• A greedy algorithm based method is first proposed to

address the problem, and it can achieve a near-optimal

scheduling scheme in a short time. Next, a genetic algo-

rithm based method is developed with better scheduling

performance, but it requires more running time than the

greedy algorithm.

• The extensive experiments are conducted to validate the

effectiveness of the proposed methods under different

scenarios of cloud-edge environments. The results show

that the proposed methods achieve less average response

time than traditional scheduling schemes.

The rest of this paper is organized as follows. In Section II,

the related work is analyzed. Section III formulates the prob-

lem of offloading and scheduling for DNN-based applications

in cloud-edge computing, and a scheme evaluation algorithm

is introduced in Section IV. Section V and Section VI discuss

the greedy and genetic algorithms based methods for the

scheduling problem, respectively. In Section VII, the pro-

posed methods are evaluated. Finally, we conclude this paper

and look for future work in Section VIII.

II. RELATED WORK

To relieve the limitation of mobile devices on computational

capability, local tasks can be partially offloaded to remote

clouds by using cloud computing technology. As a new type

of business computingmodel, cloud computing is regarded an

extension of distributed processing, parallel processing, and

grid computing [17], [18]. At the early stages, most of the

researches for computation offloading rely on cloud environ-

ments. Suradkar and Bharati [19] pointed out that offloading

computing-intensive tasks to cloud platforms can improve

battery life and the performance of mobile devices. For exam-

ple, a computation offloading system (Phone2Cloud) was

designed in [20], and it can offload application tasks from

smart-phones to the remote cloud.

However, a lot of delays are generated when offloading

application tasks to remote clouds. Thus, this offloading

scheme is unsuitable for real-time applications. To address

this issue, mobile edge computing (MEC) has emerged as a

promising way to optimize the performance of computation

offloading [21], [22]. With the rapid development of MEC,

the research focus of computation offloading has gradually

developed from clouds to edges. Moreover, Jeong et al. [7]

indicated that machine learning (ML) based applications

(especially using DNNs) consume a large number of com-

putational resources. Therefore, mobile devices with limited

computational capability cannot well support DNN-based

applications. One feasible solution is to offload partial com-

puting tasks of DNNs from mobile devices to nearby edge

servers.

To better perform the computation offloading for

DNNs, Kang et al. [8] designed a lightweight scheduler

(Neurosurgeon) that can automatically divide the computa-

tion of DNNs at the granularity of neural network layers

between clouds and mobile edges. To avoid the high latency

and connection errors caused by offloading all DNNs to

external devices, Saguil and Azim [23] proposed that some

DNNs should be executed locally while the others can be

split and offloaded to different devices. Moreover, many

researchers have contributed to the problems of computation

offloading and task scheduling. For example, Jia et al. [24]

proposed an online heuristic algorithm for task offloading that
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can minimize the completion time of applications on mobile

devices. Based on the Lyapunov optimization, a dynamic

computation offloading algorithm was developed in [25]

to jointly determine offloading decisions and CPU-cycle

frequencies for mobile execution and transmit power.

Liu et al. [26] formulated the problem of delay minimization

with power constraint, and then proposed a one-dimensional

search algorithm to explore the optimal scheme of task

scheduling. Guo et al. [27] provided an energy-efficient

dynamic offloading and scheduling strategy, in order to

reduce energy consumption and shorten the complement time

of applications. Besides, the task scheduling was first mod-

eled as an optimization problem in [28], and then a two-stage

task scheduling cost optimization (TTSCO) algorithm was

proposed to reduce the cost of edge computing systems

by offloading the latency-sensitive tasks of IoT devices to

the edge cloud. Its goal is to minimize the computational

cost and meet the delay requirements of tasks. Moreover,

a novel many-objective optimization algorithm based on

hybrid angles (MaOEA-HA) was proposed in [29] to enhance

the performance of task scheduling in cloud computing.

Rahmani Hosseinabadi et al. [30] studied the selec-

tion of crossover and mutation operators in the genetic

algorithm for addressing the open-shop scheduling prob-

lem (OSSP). To optimize the task scheduling problem,

Keshanchi et al. [31] designed an improved genetic algo-

rithm by integrating the evolutionary genetic algorithm with

heuristics. Similarly, Ahmad et al. [32] improved the genetic

algorithm by involving a heuristic in genetic operators and

developed a hybrid genetic algorithm for scheduling work-

flow applications in heterogeneous computing systems.

Different from the above work, the research objective

of this paper is DNN-based applications. There are some

researches about the computation offloading problem for

DNN-based applications. For example, Qi et al. [33] designed

an adaptive scheduling algorithm for choosing the processing

environments (e.g., clouds or mobile devices) for DNN-based

system models, according to the network condition between

the remote cloud and mobile devices. However, only the

current network condition is considered. If the network con-

dition is good, the models can be offloaded to the remote

cloud. Otherwise, the models should be processed locally.

Therefore, this method cannot be applied to the complex

multi-task scheduling problem proposed in this paper.

III. PROBLEM FORMULATION

A. CLOUD-EDGE ENVIRONMENT

In a cloud-edge environment, there are commonly three

types of computational resources, including mobile devices,

edge nodes, and a remote cloud. In general, these resources

are with different levels of performance, which are mainly

reflected in their computational capability and concurrency.

Assume that there are k computational resources (denoted

by S = {s1, s2, . . . , sk}) in a cloud-edge environment. Among

these resources, there are a mobile devices (denoted by

M = {m1,m2, . . . ,ma}), b edge nodes (denoted by E =

{e1, e2, . . . , eb}), and a remote cloud (denoted by c). For

the clarity of presentation, these computational resources are

regarded as k nodes, and each node is denoted as si (i ∈

[1, k]). More specifically, eachmobile device is denoted asmi
(i ∈ [1, a]), and it corresponds to the node set {s1, s2, . . . , sa}.

For example, the mobile device m1 corresponds to the node

s1, the mobile device m2 corresponds to the node s2, and

so on. Each edge node is denoted as ei (i ∈ [1, b]), and

it corresponds to the node set {sa+1, sa+2, . . . , sa+b}. For

example, the edge node e1 corresponds to the node sa+1,

the edge node e2 corresponds to the node sa+2, and so on.

Moreover, the remote cloud c corresponds to the node sk .

Besides, pi (i ∈ [1, k]) is used to indicate the number of

concurrent lanes of the node si, and it represents the maxi-

mum number of tasks that can be concurrently processed on

the node si. For example, if the number of concurrent lanes of

a node is 3, up to 3 tasks can be simultaneously processed on

the node, where each concurrent lane can be used to process

a task.

Next, the connections between different nodes are repre-

sented by the two-dimensional matrices V and R as

V =







v1,1 · · · v1,k
...

. . .
...

vk,1 · · · vk,k






, R =







r1,1 · · · r1,k
...

. . .
...

rk,1 · · · rk,k






, (1)

where vi,j is the data transmission rate between the nodes

si and sj, and ri,j is the response time between the nodes si
and sj.

Moreover, the values of vi,j and ri,j are defined as

vi,j =











Cv
i,j, si is connected to sj & i 6= j

∞, si is connected to sj & i = j

0, si is not connected to sj,

(2)

ri,j =











Cr
i,j, si is connected to sj & i 6= j

0, si is connected to sj & i = j

∞, si is not connected to sj,

(3)

where Cv
i,j and Cr

i,j are the constant values under different

connection conditions.

B. DESCRIPTION OF DNN-BASED TASKS

In a DNN-based application with m neural network layers,

each layer is regarded as a subtask. Thus, each DNN-based

task consists of m different subtasks. Assume that the

scheduling process is with n tasks, and the task set is denoted

as T = {T1,T2, . . . ,Tn}. Meanwhile, each task can be

denoted as Ti = {ti,1, ti,2, . . . , ti,m}, where ti,j represents the j-

th subtask of the i-th task.Moreover, each task is generated on

a mobile device and arrives with a rate of λi, where i ∈ [1, a].

As each neural network layer in DNNs is processed

orderly, m subtasks of a DNN-based task are also processed

orderly. For example, the subtask ti,j will not be generated

until the subtask ti,j−1 is processed. Similarly, the subtask

ti,j+1 will only be generated after the subtask ti,j is processed.
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Next, timei,j is used to represent the processing time for the

subtask tx,i of the task Tx on the node sj. Thus, the set of

processing time for the subtasks on different nodes is defined

as

Time =







time1,1 · · · time1,k
...

. . .
...

timem,1 · · · timem,k






. (4)

When the same subtask is processed on different nodes,

the nodes with stronger computational capability lead to the

smaller value of timei,j. Similarly, when different subtasks

are processed on the same node, the subtasks with smaller

resource requirements result in the smaller value of timei,j.

Besides, D = {d1, d2, . . . , dm} is used to represent the

set of data transmission volume between different subtasks

of a task, where dj indicates the data transmission volume

between the subtasks ti,j and ti,j+1.

C. FORMAL DEFINITION OF PROBLEM

During the process of task scheduling, ti,j.arrival is used to

indicate the time when the subtask ti,j arrives at the node sy,

and ti,j.begin is used to represent the time when the subtask

ti,j begins to be processed. Therefore, the waiting time of the

subtask ti,j on the node sy is defined as

wi,j(y) = ti,j.begin− ti,j.arrival. (5)

Next, the data transmission time of the subtask ti,j between

the nodes sx and sy is defined as

gi,j(x, y) = max

(

dj

vx,y
, rx,y

)

. (6)

Moreover, the response time of the task Ti is calculated

from its generation to completion, and it is equal to the

sum of the response time of all subtasks. More specifically,

the response time ri,j of the subtask ti,j consists of three

components, including the processing time, data transmission

time, and waiting time, which can be denoted as

ri,j(y) = timej,y + gi,j(x, y)+ wi,j(y). (7)

Therefore, the response time of the task Ti can be calcu-

lated by

fresp(Ti) =

m
∑

j=1

ri,j(y). (8)

Correspondingly, the average response time of n tasks is

defined as

fave(T ) =
1

n

n
∑

i=1

m
∑

j=1

ri,j(y). (9)

Based on the problem formulation, the objective of our

work is to find an optimal scheduling scheme and use it

to schedule the tasks of DNN-based applications, in order

to minimize the average response time fave(T ). Therefore,

the objective function is needed to measure and guide the

potential scheduling schemes for achieving the optimal one

with the lowest value of fave(T ). Meanwhile, the scheduling

scheme can specify the processing node for each subtask and

the processing order of subtasks on different nodes.

To solve this problem, one simple idea is to explore all

possible scheduling schemes and find one with the lowest

average response time. However, this strategy is with expo-

nential complexity while it requires a large amount of running

time. Therefore, it is necessary to design a more efficient

method to solve this complicated problem of task scheduling.

IV. SCHEME EVALUATION

The scheme evaluation algorithm is used to evaluate schedul-

ing schemes, where the average response time of a specific

scheduling scheme is calculated. In general, better scheduling

schemes lead to less average response time. In this paper,

the proposed scheduling algorithms are optimized based on

the results of the scheme evaluation algorithm, where the

scheme evaluation algorithm simulates the scheduling pro-

cess according to a specific scheme. During this process,

the scheme evaluation algorithm first records the arrival and

completion time of each subtask, and then it calculates the

average response time of a scheduling scheme.

More specifically, curTime is first used to indicate the cur-

rent time with an initial value of 0. Next, a scheduling scheme

(denoted by scheme) is represented by a two-dimensional

array with k rows. This array corresponds to k nodes, where

each row orderly records the subtasks that will be pro-

cessed on a node. Moreover, each subtask ti,j is with three

attributes, including ti,j.arrival, ti,j.end , and ti,j.time. These

three attributes indicate the time when the subtask ti,j arrives

at the node, the time when the subtask ti,j is completed, and

the remaining processing time of the subtask ti,j, respectively.

They are initialized as



















ti,j.arrival =

{

0, i = 1 & j = 0

None, other cases

ti,j.end = None

ti,j.time = timei,j

.

The response time of a task is the time elapsed from its

generation to completion. The time when the task Ti is gen-

erated is the time when its first subtask ti,1 arrives (denoted

by ti,1.arrival), while the completion time of the task Ti is

the time when its last subtask ti,m is completed (denoted

by ti,m.end). Therefore, the response time of the task Ti is

defined as

fresp(Ti) = ti,m.end − ti,1.arrival. (10)

Therefore, the average response time can be calculated by

fave(T ) =
1

n

n
∑

i=1

(ti,m.end − ti,1.arrival). (11)

As shown in Algorithm 1, the key steps of calculating the

average response time of a scheduling scheme are as follows.
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Algorithm 1 The Scheme Evaluation

Input: A scheduling scheme (denoted by scheme).

Output: The arrival time of each subtask (denoted by

ti,j.arrival), the completion time of each subtask (denoted by

ti,j.end), and the average response time (denoted by fave(T )).

1: Initialize ti,j.time ← ti,j, curTime ← 0, ti,j.arrival ←

(0orNone), and ti,j.end ← None.

2: slice←∞.

3: # Fill lanes.

4: for sx in S do

5: while sx .empty > 0 do

6: if ti,j.arrival ≤ curTime then

7: Add ti,j into poolx .

8: Remove ti,j from scheme.

9: sx .empty← (sx .empty− 1).

10: end if

11: end while

12: end for

13: # Find the smallest time slice.

14: for sx in S do

15: for ti,j in poolx do

16: if ti,j.time ≤ slice then

17: slice← ti,j.time.

18: end if

19: end for

20: end for

21: curTime← (curTime+ slice).

22: # Calculate the remaining processing time of subtasks.

23: for sx in S do

24: for ti,j in poolx do

25: ti,j.time← (ti,j.time− slice).

26: # Generate the new subtask.

27: if ti,j.time ≤ 0 then

28: ti,j.end ← curTime.

29: Remove ti,j from scheme.

30: sx .empty← (sx .empty+ 1).

31: # Assume that the new subtask is processed

on the node sy.

32: if j 6= m then

33: ti,j+1.arrival ←

(curTime+ gi,j+1(x, y)).

34: end if

35: end if

36: end for

37: end for

38: for ti,j in scheme do

39: if (ti,j.arrival = None) || (ti,j.end = None) then

40: goto line 4.

41: end if

42: end for

43: # Calculate the average response time of scheme.

44: fave(T )←
1
n

∑n
i=1(ti,m.end − ti,1.arrival).

Step 1: Fill lanes. According to scheme, the subtasks on

each node are orderly placed into lanes until there is no

idle lane on the node. More specifically, sx .empty is used

to indicate the number of idle lanes on the node sx , and the

subtasks that have been placed into lanes will be removed

from scheme. The subtask ti,j in a lane needs to meet the

condition (i.e., ti,j.arrival ≤ curTime), which means that this

subtask must have arrived at the node sx . Moreover, poolx is

used to represent the subtasks that have been placed into the

lanes of the node sx .

Step 2: Find the smallest time slice. First, the subtasks in

each lane will be traversed, in order to find the subtask ti,j
with the smallest value of ti,j.time. Next, ti,j.time is regarded

as a time slice (denoted by slice), and curTime is updated by

adding slice.

Step 3: The remaining processing time of subtasks in lanes

is subtracted by slice, which indicates that the subtasks have

been executed for a slice of time. For the subtask ti,j on the

node sx , if ti,j.time ≤ 0, the subtask ti,j has been completed,

and ti,j.end = curTimewill be recorded. Next, the subtask ti,j
will be removed from the lane, and sx .emptywill be increased

by 1. If the subtask ti,j is not of the last neural network layer

(i.e., j 6= m), the following subtask ti,j+1 will be generated.

Thus, the processing node sy for the subtask ti,j+1 needs to be

found, and the data transmission time can be calculated by

ti,j+1.arrival = curTime+ gi,j+1(x, y). (12)

Repeat the above steps until the arrival and completion time

of all subtasks are determined. Finally, the average response

time of scheme can be calculated by using Equation (11).

V. GREEDY ALGORITHM FOR SCHEDULING

The greedy algorithm always makes the current best choice

as it is solving a problem. When it comes to the scheduling

problem, the node with the lowest response time will always

be chosen for processing newly-arriving subtasks. After all

the subtasks are allocated to the processing nodes, a schedul-

ing scheme can thus be generated.

According to Equation (7), the response time ri,j(y) of the

subtask ti,j consists of the processing time, data transmission

time, and waiting time. When the greedy algorithm makes

decisions, it will always choose the node sy that leads to the

smallest ri,j(y).

On each node, the subtasks in waiting are sorted by their

size (the required processing time). Based on the rule of the

shortest job first (SJF), smaller jobs (with less processing

time) will be processed with higher priority. For example,

the processing order of the subtasks ti,j and t
′
i,j on the node

sy is determined by comparing timej,y and time′j,y. Mean-

while, the beginning time of the subtask ti,j (i.e., ti,j.begin)

is also the completion time of the subtask that precedes it

(i.e., ti,j−1.end). Therefore, when calculating the waiting time

wi,j(y) of the subtask ti,j, both ti,j.begin and ti,j.arrival can be

obtained by using Algorithm 1.

As shown in Algorithm 2, the key steps of the greedy

algorithm for scheduling are as follows.

Step 1: Find all reachable nodes sx .avl of the node sx .

If there exists the network connection between two nodes

VOLUME 8, 2020 115541
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Algorithm 2 The Greedy Algorithm for Scheduling

Input: {S,M ,E, c, p,V , R,T ,Time,D, λ, x, k,m, n}.

Output: the processing node of the subtask ti,j (denoted by

minNode).

1: # Find all reachable nodes of the node sx .

2: for sy in S do

3: if vx,y > 0 then

4: Add sy into sx .avl.

5: end if

6: end for

7: # Calculate the response time of each reachable node.

8: for sy in sx .avl do

9: Call Algorithm 1 to calculate ti,j.begin and

ti,j.arrival.

10: wi,j(y)← (ti,j.begin− ti,j.arrival).

11: gi,j(x, y)← max
(

dj
vx,y

, rx,y

)

.

12: ri,j(y)← (timej,y + gi,j(x, y)+ wi,j(y)).

13: end for

14: minNode← sx .

15: # Choose the node with the lowest response time.

16: for sy in sx .avl do

17: if ri,j(y) < ri,j(minNode) then

18: minNode← sy.

19: end if

20: end for

while the data can be transmitted, these two nodes are mutu-

ally reachable.

Step 2: Calculate the waiting time wi,j(y), data transmis-

sion time gi,j(x, y), and response time ri,j(y) for each reach-

able node.

Step 3:Choose the node sy with the lowest ri,j(y) to process

the subtask ti,j.

VI. GENETIC ALGORITHM FOR SCHEDULING

The genetic algorithm is considered as a useful meta-heuristic

algorithm that can offer high-quality solutions to a wide range

of combinatorial optimization problems, including the task

scheduling problem [30]–[32].

In this paper, n tasks are divided into (n ∗ m) subtasks

according to neural network layers. Each subtask corresponds

to a gene loci, and thus there are (n ∗ m) gene loci in total.

The numbering of a gene loci starts from 0, and the i-th gene

loci corresponds to the subtask t i
m+1,i%m+1

. For example,

the 0th gene loci corresponds to the subtask t1,1, the 1st gene

loci corresponds to the subtask t1,2, and the m-th gene loci

corresponds to the subtask t2,1. Moreover, the gene at each

gene loci represents the node sx for processing the subtask

ti,j. For instance, if the subtask t1,1 is processed on the node

s1, the gene of the 0th gene loci is 1. Thus, there are k genes

that correspond to k nodes.

More specifically, each individual ui in the genetic algo-

rithm is regarded as a potential scheduling scheme, where the

average response time (denoted by ui.time) is calculated by

using Algorithm 1. Moreover, the population size is denoted

as size, and the average response time of each generation of

the population (denoted by aveTime) can be calculated by

aveTime =
1

size

size
∑

i=1

ui.time. (13)

Next, the individuals whose average response time is less

than that of the population (i.e., ui.time < aveTime) will

be retained to the next generation. However, the selection

operations reduce the population size. To maintain the ini-

tial population size, crossover operators are used to expand

the offspring population size. For example, the individuals

u1 and u2 are first selected from the remaining individuals

according to the roulette selection method [34]. Next, these

two individuals are used as the parent generation to perform

the single-point crossover [35], and thus their offspring indi-

viduals u′1 and u
′
2 are generated. Finally, the above process is

repeated until the population size reaches the initial value of

size.

Besides, mutation operations are used to change the genes

of the offspring population for increasing diversity. There-

fore, premature convergence can be avoided [36]. More

specifically, a random number (in the range of [0, 0.1]) is

generated with a mutation rate of µ. If the random number

is less than µ, mutation operations will be performed. When

performing the operations, the number of mutated genes

(denoted by num) is first randomly generated. Next, num gene

loci are randomly generated, where the genes will be changed

randomly. Thus, the genetic mutations of organisms in nature

are simulated.

As shown in Algorithm 3, the key steps of the genetic

algorithm for scheduling are as follows.

Step 1: Calculate the average response time of each indi-

vidual (denoted by ui.time) by using Algorithm 1.

Step 2: Find the best individual (denoted by best) with the

minimum value of ui.time.

Step 3: Calculate the average response time of the popula-

tion (denoted by aveTime).

Step 4: Perform selection, crossover, and mutation opera-

tions, respectively.

VII. EXPERIMENTS

In this section, five different scenarios of a cloud-edge envi-

ronment are simulated to evaluate the proposed greedy and

genetic algorithms based offloading and scheduling methods

for DNN-based applications.

A. EXPERIMENTAL SETTINGS

We implement the cloud-edge simulation environments and

the proposed scheduling methods for DNN-based applica-

tions based on Python 3.6, where NumPy is used to provide

massive mathematical function libraries for array and matrix

operations. As shown in Figure 1, we simulate the cloud-edge

environment with different task arrivals. More specifically,

Figure 1(a) depicts the node settings, including 4 mobile
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Algorithm 3 The Genetic Algorithm for Scheduling

Input: {S,M ,E, c, p,V , R,T ,Time,D, λ, x}.

Output: A scheduling scheme (denoted by scheme).

1: Initialize the first generation of the population.

2: Call Algorithm 1 to calculate the average response time

of each individual (denoted by ui.time).

3: best ← u0.

4: # Find the best individual (denoted by best).

5: for i← 1 to size do

6: if ui.time < best.time then

7: best ← ui.

8: end if

9: end for

10: # Calculate the average response time of the population.

11: aveTime← 1
size

∑size
i=1 ui.time.

12: # Selection operations.

13: for i← 1 to size do

14: if ui.time < aveTime then

15: Add ui into newPopulation.

16: end if

17: end for

18: # Crossover operations.

19: while len(newPopulation) < size do

20: Perform the single-point crossover.

21: end while

22: Perform mutation operations.

FIGURE 1. Simulation of cloud-edge environment with different task
arrivals.

devices (i.e., m1, m2, m3 and m4), 2 edge nodes (i.e., e1
and e2), and a remote cloud c. The detailed performance

metrics of the nodes are shown in Table 1. As for the essential

parameters of the proposed methods, we set the population

size as 1000, the maximum number of iterations as 500, and

the mutation rate as 0.05.

TABLE 1. Performance metrics of different nodes.

In the experiments, a DNN-based application with 7 neural

network layers is simulated, where the number of tasks is 12

(numbered from 1 to 12). Thus, there are 84 subtasks in total.

Figure 1(b) shows the tasks generated on mobile devices and

the arrival time of each task. More specifically, the tasks T1,

T5, T9 and T12 are generated on m1, the tasks T2, T6 and T10
are generated on m2, the tasks T3, T7 and T11 are generated

on m3, and the tasks T4 and T8 are generated on m4, respec-

tively. Meanwhile, the tasks on each mobile device arrive at

a uniform speed within 1 second. For example, the 4 tasks

on m1 are with the task arrival rate of 1
4
(one task arrives per

0.25 seconds).Moreover, the data transmission volume (Mb)

between layers is D = {1.2, 0.3, 0.8, 0.2, 0.4, 0.1, 0.05}.

Besides, the processing time (ms) of each neural network

layer on nodes is

Time =





















163 163 163 163 107 81 69

12 112 12 12 10 10 8

219 219 219 219 132 109 92

21 21 21 21 18 16 15

313 313 313 313 231 185 152

25 25 25 25 22 18 14

820 820 820 820 583 394 330





















.

Next, the following five different scenarios of cloud-edge

environments are simulated with the above settings.

Scenario 1: The typical scenario. As shown in Table 2,

the cloud-edge environment contains 2 edge nodes (i.e., e1
and e2) with the concurrent number of 2 (i.e., p = 2), 4mobile

devices (i.e., m1, m2, m3 and m4) with p = 1, and a remote

cloud c with p = 8. c is connected to all mobile devices and

edge nodes with the data transmission rate of 400 Kb/s and

600 Kb/s, respectively. e1 is connected to m2 and m3, and

e2 is connected to m1 and m4, where the data transmission

rate between an edge node and a mobile device is 2 Mb/s.

But there is no connection between different mobile devices,

neither for edge nodes.

Scenario 2: The scenario with limited mobile edges.

As shown in Table 3, only one edge node (i.e., e1) is simulated

with p = 2, where e1 is connected to all mobile devices and

the remote cloud. Moreover, other settings are the same as

Scenario 1.

Scenario 3: The scenario with sufficient mobile edges.

As shown in Table 4, 2 edge nodes (i.e., e1 and e2) are

simulated with p = 3. Moreover, other settings are the same

as Scenario 1.

Scenario 4: The scenario with alternative mobile edges.

As shown in Table 5, 2 edge nodes (i.e., e1 and e2) are

simulated with p = 2 and p = 3, respectively. e1 is
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TABLE 2. The typical scenario.

TABLE 3. The scenario with limited mobile edges.

TABLE 4. The scenario with sufficient mobile edges.

TABLE 5. The scenario with alternative mobile edges.

TABLE 6. The scenario with connected mobile edges.

connected to m2, m3 and m4 with the data transmission rate

of 2 Mb/s, while e2 is connected to m1, m2 and m3 with the

data transmission rate of 1.4 Mb/s. Moreover, other settings

are the same as Scenario 1.

Scenario 5: The scenario with connected mobile edges.

As shown in Table 6, 2 edge nodes (i.e., e1 and e2) are

simulated with p = 2 and p = 3, respectively. Different

from other scenarios, e1 is connected to e2 with the data

transmission rate of 2 Mb/s. Moreover, other settings are the

same as Scenario 1.

B. EXPERIMENTAL RESULTS

Based on the above settings, we evaluate the performance of

the proposed greedy and genetic algorithms based offload-

ing and scheduling methods for DNN-based applications.

As shown in Figure 2, the proposed methods are compared

with traditional scheduling schemes, including the load bal-

ancing scheme (all tasks are evenly offloaded to the remote

cloud and nearby edge nodes), edge scheme (all tasks are

offloaded to nearby edge nodes), and cloud scheme (all tasks

are offloaded to the remote cloud).

As shown in Table 7, we compare the average response

time generated by using the proposed methods with the opti-

mal results under different scenarios.

TABLE 7. Comparison of the average response time with the optimal
results under different scenarios.

The above results show that the highest average response

time is generated in Scenario 2 with only one edge node.

Thus, task congestion happens. In Scenario 3, edge nodes

are with more concurrent numbers. Thus, task congestion

is greatly relieved, and it leads to less average response

time than the typical cloud-edge environment (Scenario 1).

In Scenario 4, m2 and m3 are connected to the edge nodes

with different performance. During the scheduling process,

tasks tend to be processed on the edge node with better

performance, where the task congestion happens. Thus, more
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FIGURE 2. Comparison of the average response time among different scheduling schemes under various scenarios.

FIGURE 3. Influence of the total number of tasks on the running time of the greedy and genetic algorithms.

average response time is generated (only less than

Scenario 2). In Scenario 5, edge nodes are connected, where

the concurrent number of e1 is less than e2. Therefore, tasks

tend to be processed on e2. But tasks can be scheduled

to e1 when the task congestion occurs on e2. Therefore, the

congestion can be relieved, and the average response time

generated in Scenario 5 is less than Scenario 4. However,

more average response time is still generated in Scenario 5

than Scenario 1 due to the data transmission delay between

edge nodes.

In each scenario, the average response time generated by

using the proposed methods is close to the optimal result, and

they outperform other scheduling schemes.More specifically,

the edge and cloud schemes result in much data transmission

delay and task queuing, and thus their average response time

is much larger than other schemes. As edge nodes are close to

users, the average response time generated by using the edge

scheme is less than the cloud scheme. In Scenario 2, there

is only one edge node with limited computational capability,

and thus more average response time is generated by using

the edge scheme. In Scenario 3, there are two edge nodes

with better performance, and thus the average response time

generated by using the edge scheme is much less than the

cloud scheme. Compared with the load balancing scheme,

the proposed methods achieve less average response time.

This is because that the load balancing scheme does not

TABLE 8. Comparison of the running time between the greedy and
genetic algorithms under different scenarios.

consider the data transmission delay. If the data transmission

time is more than the waiting time, the response time gen-

erated by using this scheme will be increased. By contrast,

the proposed methods consider the processing time, data

transmission time, and waiting time. Therefore, the response

time of offloading and scheduling for DNN-based applica-

tions in cloud-edge environments can be effectively reduced.

As shown in Table 8, we compare the running time between

the genetic and greedy algorithms under different scenarios.

Although the average response time generated by using the

genetic algorithm is less than the greedy algorithm (as shown

in Table 7), the running time of the genetic algorithm is

much more than the greedy algorithm. Moreover, when the

total number of tasks is constant, there is almost no change

in the running time of these two algorithms under different

scenarios.

Furthermore, the running time of the greedy and genetic

algorithms is evaluated by changing the total number of tasks

in Scenario 1. As shown in Figure 3, the running time of the
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algorithms has a linear relationship with the total number of

tasks.

In general, these two algorithms have their pros and cons.

The greedy algorithm needs less running time, while the

genetic algorithm offers better scheduling results. Moreover,

the cloud-edge environment might change with the mobility

of mobile devices. In an unstable environment, the greedy

algorithm will be regarded as a better choice than using the

genetic algorithm, because the greedy algorithm can provide

faster decision-making speed.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we first formulate the problem of computation

offloading and task scheduling for DNN-based applications

in cloud-edge environments and design a scheme evalua-

tion mechanism. Next, the greedy and genetic algorithms

based methods are proposed to efficiently explore the suit-

able schemes. The extensive experiments are conducted to

verify the effectiveness of the proposed methods in different

scenarios of cloud-edge environments. The results show that

the genetic algorithm leads to less average response time than

other scheduling schemes but needs more running time than

the greedy algorithm. Therefore, these two proposed algo-

rithms are suitable for different scenarios with diverse objec-

tives. For example, the genetic algorithm is more suitable for

offline tasks, since these tasks are not sensitive to the training

time while the genetic algorithm can promise better applica-

tion performance. By contrast, the genetic algorithm would

be a better choice when dealing with online tasks, because

these tasks require fast decision-making ability, which is

also the advantage of the greedy algorithm. In the future,

we will continue the research by using the learning-based

methods, such as reinforcement learning, for better balancing

the performance and overheads of algorithms.
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