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ABSTRACT

In this article, we present new results about the computa-
tion of a general shape of a triangular basis generating the
splitting ideal of an irreducible polynomial given with the
permutation representation of its Galois group G. We pro-
vide some theoretical results and a new general algorithm
based on the study of the non redundant bases of permuta-
tion groups. These new results deeply increase the efficiency
of the computation of the splitting field of a polynomial.

Categories and Subject Descriptors

I.1 [Computing Methodologies]: Symbolic and algebraic
manipulations

General Terms

Algorithms, Theory

Keywords

Galois Theory, Triangular Set, Splitting Field

1. INTRODUCTION
The computation of the splitting field of a polynomial f

plays an important role in Galois theory and more generally
in algorithmic number theory. It is the smallest field where
all the roots of f lie. Thus, providing a suitable represen-
tation of this field which allow symbolic computations with
all the roots of the polynomial is interesting.

Such a representation comes from computer algebra and
more precisely from Gröbner basis theory. Let f be a uni-
variate irreducible and separable polynomial of degree n
with coefficient in a calculable field K and α1, . . . , αn its
roots in an algebraic closure of K, this natural represen-
tation is the quotient algebra

K(α1, . . . , αn) ≃ K[x1, . . . , xn]/M

where M is the kernel of the surjective morphism from
K[x1, . . . , xn] to K(α1, . . . , αn) which maps xi to αi. The
ideal M, called a splitting ideal of f , is zero-dimensional
and maximal. Knowing a Gröbner basis of M allows com-
putations in this quotient algebra by means of linear algebra
operations (see e.g. [5, 2]) and then symbolic operations with
the roots of f .
In [17, 18], new algorithms are proposed for computing

the splitting field of a monic irreducible polynomial f with
coefficient in K = Q (more generally, these methods can
be applied in any global fields). These new algorithms are

based on the relationship between the representation of the
splitting field by a Gröbner basis and the action of the cor-
responding Galois group on this basis. The core of this new
approach, called computation scheme (see section 2), uses
the internal symmetries of the problem in order to speed up
the Gröbner basis computation. This scheme is computed
from the knowledge of a permutation representation of the
Galois group G of f and provides a shape of the Gröbner
basis of the splitting ideal of f . From this shape, these al-
gorithms effectively compute the basis by interpolating its
coefficients (see also [12, 24, 11] and more generally [6] for
interpolation strategies). The efficiency of these algorithms
heavily depends on this computation scheme which is depen-
dent on the choice of representative of the conjugacy class
of G in Sn. Thus, we are interested in finding the repre-
sentative of G in its conjugacy class which gives the best
computation scheme.

In [17] a brute force method based on the analysis of all
the representatives was proposed in order to collect all the
best transitive representatives in a database. But today,
the best implementation of the Galois group computation,
which was implemented by Fieker and Klüners in Magma

[4], does not depend on any database of permutation groups
invariants and can be applied for rational coefficients poly-
nomials of any degree. If one wants to do the same with the
splitting field computation, one should provide non depen-
dent to database too.

To avoid such a brute force strategy or database during
the computation of the splitting field, we first explore the
theoretical insight into computation scheme based on rela-
tion to families of permutation groups. Then we produce
a general algorithm by making good use of this insight. A
first non trivial result is given in [16] where an algorithm is
described for the computation of the splitting ideal of a poly-
nomial with dihedral Galois. In the same way, one can easily
deduce same results for general families like alternating and
symmetric groups (see Section 3). We present, in Section
3.2, a more technical result providing a general construction
of such a good representation in the case where the group G
is a wreath product of transitive permutation groups. This
construction can be seen as a divide and conquer strategy
since the computation takes as input the knowledge of the
computation schemes of two different groups with smaller
degrees. Since we want a general algorithm for computing
the spliting field of a polynomial which can be used for any
transitive permutation group, we finally present a new algo-
rithm which provides the best possible computation scheme
by considering non redundant bases of G (see Section 4).



We prove (see Section 5) that the cost of this algorithm is
polynomial in the size of the group. Thus the total cost of
the splitting field computation using the algorithms devel-
oped in [17, 18] would be now dominated by the algebraic
part (Galois group computation and interpolation) and not
by the combinatorial part (finding efficient computational
scheme). Finally we note that in this paper we present our
new results for irreducible polynomials. But one can easily
modify them for separable polynomials.

2. DEFINITIONS
In this section, we recall some well known facts of Galois

theory and results from [17] related to computation schemes.
We present some constructions of computation schemes in
the case of simple classes of permutation groups. In all this
paper we consider a univariate irreducible monic polynomial
f of degree n with coefficients in the integer ring of a global
field K (we can think of K as Q) and its Galois group G as
a transitive permutation group of Sn. The roots of f in an
algebraic closure of K will be denoted by α1, α2, . . . , αn with
a fixed numbering.

We denote by K[x1, . . . , xn] the ring of multivariate poly-
nomials with coefficients in K. The splitting ideal M ⊂
K[x1, . . . , xn] is defined as the kernel of the surjective mor-
phism from K[x1, . . . , xn] to K(α1, . . . , αn) which maps the
indeterminate xi to αi. This definition depends on the
choice of the numbering of the roots αi.

For the natural group action Ψ of Sn on K[x1, . . . , xn]
which permutes the xi’s by acting on the indexes, the sta-
bilizer of M is the permutation representation of the Galois
group which will be denoted by G:

G = {σ ∈ Sn | ∀g ∈ M, σ.g ∈ M}.

Proposition 2.1. Let σ be a permutation of Sn and let
Gσ = σGσ−1. The ideal σ.M = {σ.f | f ∈ M} is the split-
ting ideal corresponding to the roots σ.α = (ασ.1, . . . , ασ.n)
and the corresponding representation of the Galois group is
Gσ (a conjugate of G).

Thus, if one chooses a permutation representation of the
Galois group, one also chooses some of the possible number-
ings of the roots of f and the corresponding splitting ideal.

Here we start from the knowledge of a permutation repre-
sentation G of the Galois group and we want to deduce a
theoretical form for the Gröbner basis G of M. A first result
coming from classical Galois theory (see for example [24])
shows that this basis is triangular for the lexicographical
order induced by x1 < · · · < xn (see [10]), that is G is given
as a set of n polynomials {f1, . . . , fn} such that fi has a
power of xi as leading term and is separable as a polynomial
in xi. Moreover, we can deduce from G the degree di of the
leading term of each fi. Let E be a subset of {1, . . . , n}, we
denote by StabG(E) the pointwise stabilizer in G of E (that
is the subgroup of G given by {σ ∈ G | σ(e) = e ∀e ∈ E}).
We have the following classical result:

di = | StabG({1, 2, . . . , i− 1}|/| StabG({1, 2, . . . , i})|. (2.1)

Thus, the degrees di of elements in a Gröbner basis (not
necessarily reduced but minimal) G of M can be deduced
only from the known stabilizer G of this ideal.

Computation Scheme: From the knowledge of G we
want to know more about the basis G = {f1, . . . , fn}. We

already know the leading degree di of each polynomial fi,
what we present now are techniques that can give possi-
ble relations between polynomials in G, more precisely from
these relations we will deduce polynomial fj from fi with
j > i. We also present results about the size of the polyno-
mials in G, that is, only from this knowledge, one wants to
know the variables and their maximal degree in the fi’s.
The first technique, called Cauchy technique, is based

on the so called generalized Cauchy modules (see [17]):

Definition 1. Let G = {f1, . . . fn} be a triangular basis of
M and {i = i1 < · · · < ir} the orbit of i under the action of
StabG({1, . . . , i − 1}). The di generalized Cauchy modules
of fi are inductively defined by Ci1(fi) = fi(xi1) and for
k > 2 the polynomial Ci1 , . . . ,ik (fi) is given by the divided
difference

Ci1 , . . . ,ik−1
(fi)(xik )− Ci1,...,ik−1

(fi)(xik−1
)

xik − xik−1

.

From these constructions, we can deduce polynomials of G
from other ones. The following result explain this relation.

Proposition 2.2. The Cauchy module Ci1,...,ik (fi) is a

polynomial of K[x1, . . . , xik ] and its leading term is xdi−k+1
ij

.

Moreover, Ci1 , . . . ,ik (fi) belongs to M. In particular, if
di − k + 1 = dik then

{f1, . . . , fik−1, Ci1,...,ik (fi), fik+1, . . . , fn}

is a triangular basis of M.

Cauchy, in [3, Extrait 108], already proved similar results
(without the knowledge of Gröbner basis theory) when he
studied the application of Ampère’s ¨fonctions interpolaires¨
(what we call now Cauchy modules) for eliminating variables
in symmetric funtions.

We now present some results about the shape of the poly-
nomials in G. For better understandings we do a slight
change of the definition given in [17]. Let i be an integer in
[[1, n]]. A sequence r of couples [(i1, k1), (i2, k2), . . . , (is, ks)]
with {i1 < i2 < . . . < is = i} a part of {1, . . . , i} and kj 6

dij is said to be an i-relation if there exists a polynomial

gi ∈ K[xi1 , . . . , xis ] such that αki+1
i + gi(α1, . . . αi) = 0 with

degxij
(gi) 6 kj (note that we must have ki = kis = di − 1

and kj < dij for j < s). The polynomial gi is called the the
tail polynomial of this i-relation. While we have just defined
i-relation with the roots α1, . . . , αn, i-relations depend only
of the Galois group G:

Proposition 2.3. There exists an i-relation [(i1, k1),

. . . , (is, ks)] as soon as ∀j ∈ [[1, s]], kj =
| StabG({i1,...,ij−1})|

| StabG({i1,...,ij)}|

and
| StabG({i1,...,is−1})|

| StabG({i1,...,is)}|
= di.

For all i we have a trivial i-relation given by [(1, d1 − 1),
. . . , (i, di−1)] but the corresponding polynomial has a lot of
monomials. An important quantity attached to an i-relation
is its size which corresponds to the product ki1 × · · · × kis
and represents the maximal number of monomials of the
corresponding polynomials fi. Thus, in order to minimize
the cost for the real computation of the triangular basis G
by indeterminate coefficients strategy (see [17, 18]), we need
to know the best i-relation possible, that is the one with
minimal size. Such an i-relation is said to be minimal.



Now we will study the natural action of G over the poly-
nomials of G (permutations of the indexes of the variables)
to find relations between these polynomials. These special
permutations are named transporters.

Definition 2. Let [(i1, k1), . . . , (is, ks)] be an i-relation and
j ∈ [[i + 1, n]]. A permutation σ ∈ G is called an (i, j)-
transporter if σ(i) = j and j = max(σ(k) | k ∈ {i1, . . . , is}).

As for Cauchy technique, transporters can be used to pro-
duce polynomials of G from others taken in G:

Proposition 2.4. Let σ be an (i, j)-transporter and gi ∈
K[xi1 , . . . , xis ] the tail polynomial corresponding to fi. If

di = dj then {f1, . . . , fj−1, x
dj
j + σ.gi, fj+1, . . . , fn} is a tri-

angular basis of M.

As one can see, all these techniques and the i-relations
can be deduced only by inspecting the corresponding per-
mutation group G.

Definition 3. The computation scheme of the permuta-
tion group G is defined by the following data:
1. the degree di of the greatest variable in each polynomial
in G;
2. mathematical objects (shape) computed by Cauchy tech-
niques and transportation ;
3. the minimal i-relation of each polynomial in G that can
not be obtained by the preceding techniques.
The c-size of this computation scheme, denoted by c(G), is
defined by the number of monomials over all the i-monomials
in 3.

For a given permutation group G, its computation scheme is
pre-computed from this definition. At the end of the process,
we obtain a scheme of computation for retrieving an actual
triangular basis G of a splitting ideal with Galois group G.
Thus, the c-size c(G) represents the total number of coeffi-
cients to compute in order to retrieve this triangular basis
by interpolation. For different conjugates of a same group
G, their respective computation schemes may have different
c-sizes.

Example 1. Let G1 and G2 be two copies in S8 of the
transitive permutation group [24]S4 given by

G1 = 〈(8, 7, 6, 1)(5, 4, 3, 2), (8, 1)(4, 5), (5, 1)〉

G2 = 〈(2, 1), (8, 6, 4, 1)(7, 5, 3, 2), (8, 1)(7, 2)〉

The two corresponding schemes can be represented by the
following drawings (G1 on the left and G2 on the right).
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On these drawings, the techniques are showed on the left
side of the triangular bases and the integers, on left side,
represents the sizes of the minimal i-relations. Thus, for G1

we have c(G1) = 532 and for G2 we obtain only c(G2) = 8.

Thus, giving the permutation group G as the Galois group
of f , in order to compute the splitting field of f efficiently,
we first find the conjugate of G which gives the computation
scheme with the smallest c-size, this is our principal aim
here.

3. COMPUTATION SCHEMES OF SOME

GROUPS FAMILIES
In this section we present our first results about the con-

struction of computation schemes for families of permuta-
tion groups. The first sub section presents already known
results and the second one presents a new result for the
construction of computation scheme when G is a wreath
product.

3.1 First examples
Symmetric and Alternate Groups: the proposition

2.2 gives a first technique for finding relations between the
polynomials of G. As a first example, we can easily deduce
the Gröbner basis M when G is the symmetric group. Ac-
tually, in this case, we have f1 = f(x1) and fi = C1,...,i(f1),
thus the Gröbner basis G can be deduced from f (see [19], for
example, where this ideal is introduced for resolvent compu-
tations). The same result can be given for alternate groups
(except that polynomial fn−1 must be computed).

Cyclic groups: Assume that the Galois group of a poly-
nomial f ∈ k[x] of degree n is the cyclic group. Up to a num-
bering of the roots of f , its Galois group can be identified
to the subgroup G = 〈σ := (1, 2, . . . , n)〉 of Sn. From G we
can deduce the degrees di of polynomials fi thus a first the-
oretical form for the Gröbner basis is deduced: G = {f1 =
f(x1), f2 = x2 + g2(x1), . . . , fn = xn + gn(x1, . . . , xn−1)}.
This description can be detailed by using results about i-
relations: G = {f1 = f(x1), f2 = x2 + g2(x1), . . . , fn =
xn+gn(x1)}. It can easily be proved that for all i ∈ [[2, n−1]],
the permutation σ is a (i, i + 1)-transporter. Therefore,
M is generated by {f1 = f(x1), f2 = x2 + g2(x1), σ.f2 =
x3 + g2(x2), . . . , σ

n−1.f2 = xn + g2(xn−1)}. So, for polyno-
mial with cyclic Galois group, the computation of the gen-
erating set G of a splitting ideal can be reduced to the one
of the single polynomial f2.

Dihedral groups: From [16] we can easily deduce a
computation scheme for dihedral groups. In this case f1 = f
and f2 is a degree two polynomial in x2 and it depends
on the variable x1, the remaining polynomials in G will be
linear polynomials in their greatest variable. In this case,
from the computation of the polynomial f2 we can deduce a
linear relation by Cauchy technique then we can deduce the
remaining ones by transporters techniques.

All these examples take the specific particularity of each
of these families to produce computation schemes. The next
subsection can be viewed as a divide and conquer strategy
since we study the computation scheme of a family of groups
which are construct from two known ones: wreath product.

3.2 Computation scheme of wreath products
In this section we give one of our new result: the com-

putation scheme of a particular family of groups which are
constructed from two smaller groups, this study can be seen
as a divide and conquer strategy. It is based on the study
of the intrinsic blocks action of permutation groups coming



from wreath-products. Wreath-products are already well
studied in Galois theory since they are intensively used for
computing subfield (see [9, 8] for examples). First, we recall
the definition of a wreath product (see [13] for more details)
then we will present the result and sketch its proof.

Definition 4. Let m and m′ be two positive integers. Let
H < Sm and K̃ < S′

m two permutations groups and Ω =
{1, . . . ,m} × {1, . . . ,m′}. The wreath product H ≀ K̃ is the
permutation group of Ω generated by the groups
- H̄ = H × · · · ×H (direct product of m′ copies of H) act-
ing on Ω by setting, for all (h1, . . . , hm′) ∈ H̄ and, for all
(u, v) ∈ Ω, (h1, . . . , hm′)(u, v) = (hv(u), v);

-K isomorphic to K̃ acting on Ω by the rule ∀t ∈ K, ∀(u, v) ∈
Ω, t(u, v) = (u, t(v)).

When G is isomorphic to a wreath product, we have to
choose a suitable symmetric representation of G to take
benefits of Cauchy and transporters techniques in order to
obtain an efficient computation scheme. Such a represen-
tation is given by the choice of the bijection from Ω to
{1, . . . , n} which gives a representation of G in Sn. By set-
ting the following notations, we fix this choice.
- m and m′ are two integers such that n = mm′;
- K̃ (resp. H) is a transitive subgroup of Sm′ (resp. Sm

identified to the subgroup of Sn acting on {1, . . . ,m});
- ϕ is the bijection from Ω to {1, . . . , n} which maps (u, v)
to (v − 1)m+ u;

- G is the image in Sn induced by ϕ of H ≀ K̃.
Now, from these notations we state the main result which

shows that, ifG is the Galois group of f , a triangular Gröbner
basis G = {f1, f2, . . . , fn} of M can be deduced only from
m+m′−2 polynomials of G by transporters and generalized
Cauchy modules techniques.

Theorem 3.1. Let f a polynomial with Galois group G.
There exists a triangular Gröbner basis G = B1 ∪ . . . ∪ Bm′

of M such that

B1 =







f1 = f(x1)

f2 = xd2
2 + g2(x1, x2)

...

fm = xdm
m + gm(x1, . . . , xm)

and, for all q ∈ [[2,m′ − 1]],

Bq =







fqm+1 = x
dqm+1

qm+1 + gqm+1(x1, . . . , xqm+1)

fqm+2 = xd2
qm+2 + g2(xqm+1, xqm+2)

...

fqm+m = xdm
qm+m + gm(xqm+1, . . . , xqm+m)

Moreover, the degree di of fi in xi is given by

di =

{

m
| Stab

K̃
({1,...,q−1})|

| Stab
K̃

({1,...,q})|
if r = 1

| StabH ({1,...,r−1})|
| StabH ({1,...,r})|

otherwise

where (r, q) = ϕ−1(i).

Proof. Let’s consider a triangular basis {f1, f2, . . . , fn}
of a relations ideal M of f and set, for all i ∈ [[1, n]],

fi = xdi
i + gi(x1, . . . , xi−1).

Assertion about the degrees of fi in xi. Let i be an
integer of {1, . . . , n} and let’s set (r, q) = ϕ−1(i). Since

G is the wreath product H ≀ K̃, we have a bijection from
StabG({1, . . . , i}) onto the cartesian product

StabK({1, . . . , i})× StabH̄({1, . . . , i}).
Denotes (r′, q′) = ϕ−1(i− 1). Equality (2.1) gives then the
degree di of fi in xi :

di =
| StabK̃({1, . . . , q′})|

| StabK̃({1, . . . , q})|
︸ ︷︷ ︸

δ1

×
| StabH̄({1, . . . , i− 1})|

| StabH̄({1, . . . , i})|
︸ ︷︷ ︸

δ2

.

Two cases appear:

1) r = 1. In this first case, we have δ1 =
| Stab

K̃
({1,...,q−1})|

| Stab
K̃

({1,...,q})|

and δ2 = |H|| StabH({1})|−1 = m since h is transitive. This
proves the first equality of the assertion.

2) r 6= 1. In this second case, we have δ2 = | StabH ({1,...,r−1})|
| StabH ({1,...,r})|

and δ1 = 1. This shows the second equality of the assertion.
Assertion about the Gröbner basis G. Let’s fix q ∈
[[2,m′−1]]. For all r ∈ [[2,m]], the previous result shows that
the leading term of fr is xdr

r . Since K is transitive, there
exists a transporter σ ∈ K which maps each r ∈ [[2,m]] on

qm + r, thus fσ
r = xdr

i + gr(xqm+1, . . . , xqm+r). The as-
sertion about the Gröbner basis G is then a consequence of
Proposition 2.4. ✷

Remark 2. The Cauchy technique can be used to produce
polynomials of M each time Proposition 2.2 can be applied.
For example, equality (2.1) implies that the degree of the
leading term of fn (resp. fm(m′−1)+1) is 1 (resp. m). Since
degx1

(f1) = n, fn (resp. fm(m′−1)+1) can be replaced by
C1,...,n(f1) (resp. C1,...,m(m′−1)+1(f1)).

4. FAST COMPUTATION OF COMPUTA

TION SCHEME
In this section we present our new algorithm for com-

puting a conjugate of a given transitive permutation group
with the smallest computation scheme. For a better reading,
we present the different functions in a sequential program-
ming style even that the central structure, the orbits tree,
is recursive.

4.1 Proof of concept and first definitions
As we already explain in Section 1, a trivial brute force

method is proposed in [17] for computing a conjugate of a
permutation group with minimal computation scheme in the
sense of the c-size. In this method, the number of candidates
considered is equal to the index |Sn : NSn(G)| which is can
be closed to (n−1)! when G is small (i.e. for the cyclic group

of degree n, this index is equal to (n−1)!
φ(n)

). Thus the brute

force method is completely useless in this case. In section
3, we showed how to easily construct a computation scheme
for particular types of permutation group. Here we give an
algorithm which can be applied for any type of permutation
group. We present it in its most general form, some tricks
can be used to increase its efficiency but they heavily depend
on the type of the given group.

The concept of our algorithm is based on the correspon-
dence between the sequence of pointwise stabilizer subgroups
orbits of G and the sequence of factors of a polynomial f
with Galois group G in the tower of subfields arising during
the computation of its splitting field (see [14, 15]). More
precisely, when we construct the splitting field of f by suc-
cessive factorization (see [22, 23] and [1] for the algorithmic
point of view) at the first step we factorize the polynomial f
over the algebraic extension K1 of K obtained by adjoining



any one root of f1 = f that we denote α1; at the second
step, we choose f2 among the computed irreducible factors
different from x − α1 and then we consider the factoriza-
tion of f over the algebraic extension of K1 obtained by
adjoining one root of f2 and we continue until we define fn.
The corresponding triangular ideal is generated by the set of
polynomials G = {f1, f2, . . . , fn} but, during the construc-
tion we may have chosen f2 to be a linear factor of f over
K1 different from x− α1 and f3 to be a non linear factor of
f over K1 = K2. In this case, if we exchange the two poly-
nomials f2 and f3 in the set G we will obtain two different
triangular ideals corresponding to two different conjugates
of G and, in terms of the size of their computation scheme, it
is easy to see that they may be not equivalent (for example,
if the non linear factor is a degree n−2 polynomial, we could
apply the Cauchy technique when f3 corresponds to this non
linear factor and we could not for the other choice). In fact,
the two computations schemes techniques and minimal i-
relations depend only on the structure of the different orbits
of the pointwise stabilizers of G which correspond to the
different factors arising during the computation of the split-
ting field by successive factorization. To be clear, let sketch
some Galois theory. The construction of the splitting field
by successive factorizations corresponds to the construction
of a chain of stabilizer for G: At the first step we choose
one element e1 of the unique orbit of G (as it is transitive)
and we construct the stabilizer StabG({e1}) which will cor-
respond to the Galois group of the polynomial f over the
extension K1. At the second step we choose one element e2
of the orbit of StabG({e1}) corresponding to the set of roots
of f2 then we construct StabG({e1, e2}) and so on.

Thus we do not need to inspect all the conjugates of a
group but all the different possible sequences of orbits ap-
pearing during the process of stabilization of the group G.
Then, from all these possibilities we well order the choice of
the orbits to obtain the best conjugate of G in regards of
its computation scheme. In the sequel, we will show how to
compute this representation efficiently. All these possibili-
ties corresponds to a set of different classes of non redundant
bases of G:

Definition 5. Let G be a permutation group of degree
n. A sequence B = (b1, . . . , bk) of different integers from
{1, . . . , n} is called a regular sequence of length k. A
regular sequence B is said to be non redundant with re-
spect to G if

G = G
[1]
B > G

[2]
B > · · · > G

[k+1]
B ,

where, for an easier reading, we denote by G
[i]
B (i > 2) the

pointwise stabilizer StabG({b1, . . . , bi−1}) in G. Moreover,

for a non redundant regular sequence B, if G
[k+1]
B = 1, B is

said to be a non redundant base of G. The largest k such
that there is a non redundant base of length k is called the
depth of G.

Now we introduce an equivalence relation over the set of
non redundant bases of G.

Definition 6. Let B1 = (a1, a2, . . . , al) and B2 = (b1, b2,
. . . , bl) be two non redundant bases of G of the same length.
We say that B1 is G-equivalent to B2 if there exists g ∈ G
such that B2 = (g(a1), g(a2), . . . , g(al))

Clearly, the G-equivalence property is an equivalent rela-
tion over the set of non redundant bases. In a field theory
point of view, two non redundant bases are G-equivalent iff
the towers of fields defined by these bases are isomomorphic
level by level from the ground field K to the splitting field.
From now on, when we will speak about classes of non re-
dundant bases they will be always classes of G-equivalence.

To a base B for G corresponds a generating set SB for G
which verifies

〈SB ∩G
[i]
B 〉 = G

[i]
B , for 1 6 i 6 k + 1

and is named Strong Generating Set (see [20, Chapter 4]).
From now on, we assume that the group G is generated by
such a basis and suppose that the corresponding Schreier
tree is constructed too. We can bound the size of SB by
O(log(|G|) (see [21]). Theses two objects are useful in algo-
rithmic group theory since they provide a data structure for
the group G which lets us compute a lot of operations on
this group efficiently.

As shown before, to a non redundant base B of G cor-
responds different triangular ideals with different computa-
tion schemes. In the section 4.3 we will show how to order
the polynomials in the triangular set G to provide the best
computation scheme corresponding to the base B. For the
moment, we give some theoretical results about the number
of classes of non redundant bases of a given group G.

First we provide some additional notations and properties.
Let C be the set of all classes of non-redundant bases, and
from each class, one is chosen in our search. So, let B be
the set of representatives of classes, that is, C = {BG | B ∈
B}. We write d for the depth of G. Then, as there is a
non redundant base B of length d, thus, since each B in B
is non redundant, we have d ≤ min(n, log2(|G|)) but here,
the group has a moderate size (not more than 10000) thus
we can assume that log2(|G|) < n. We note that, since

|G
[i]
B : G

[i+1]
B | ≥ 2 for each i ≤ d and G

[d+1]
B = 1, we obtain

|G| = |G : G
[d+1]
B | ≥ 2d and d ≤ log2(|G|) (see [20]).

For each regular sequence B, we write BG for its G or-
bit, where G acts naturally on B = (i1, . . . , ik) by g(B) =
(g(i1), . . . , g(ik)) for g ∈ G. So, for a non redundant base
B, BG coincides with the G-equivalent class {g(B) | g ∈ G}
of non redundant bases containing B.

Lemma 4.1. We have

#B ≤ n(n− 1) · · · (n− d+ 1)|G|−1
6 |Sn : G|.

Moreover, as d ≤ log2(|G|),

#B < nlog2(|G|)|G|−1 = |G|log2(n)−1.

Proof. Here we give a brief proof. In order to estimate
the size #B, we consider another set B̂ consisting of regular
sequences of length d constructed as follows: For each B in
B, if the length of B is smaller than d, we extend B to a
regular sequence B̂ of length d by padding certain integers
in {1, 2 . . . , n}. Otherwise, that is, if the length B coincides

with d, we set B̂ = B. Then, it follows that for distinct B1

and B2 in B, B̂G
1 does not intersect B̂G

2 , as BG
1 does not

intersect BG
2 .

Now we count all the regular sequences in ∪B̂∈B̂B̂. We
remark that the number of all regular sequences of length d
is n(n− 1) · · · (n− d+ 1).

Since |B̂G| = |G : StabG(B̂)| and StabG(B̂) 6 StabG(B) =

G
[d+1]
B = 1, we have

∑

B̂∈B̂ |B̂G| =
∑

B∈B |G| 6 n(n −



1) · · · (n− d+ 1). Thus, we obtain #B 6
n(n−1)···(n−d+1)

|G|
6

|Sn : G|.Also, from this inequality and the fact d 6 log2(|G|),

we have #B ≤ nd

|G|
= |G|log2(n)−1. ✷

Example 3. Here we show easy examples. For the cyclic
group Cn, d = 1 and #B = n

|Cn|
= 1. For the dihedral group

Dn, d = 2 and #B = n(n−1)
|Dn|

= n−1
2

. For the symmetric

group Sn, d = n and #B = n!
|Sn|

= 1.

4.2 Orbits tree of G

We now introduce a data structure attached to the per-
mutation group G which let us store all its non redundant
bases and the corresponding orbits of the natural action of
its stabilizer along these different bases. From now on we
say that an orbit is non trivial when it is not reduced to
one element.

Definition 7. The orbit tree T of G is the recursive
structure defined by
1. The root T (0) of T is the orbit G: {1, . . . , n};
2. any other node T (i1 = 1, i2, . . . , is) is the set of or-
bits of the pointwise stabilizer StabG({0, i1, . . . , is}) where
is is the minimal element of a non trivial orbit in the node
T (i1 = 1, i2, . . . , is−1);
3. the construction is stopped as soon as the node contains
only trivial orbits.
Let T (i1, . . . , is) be a node in T . The degree of this node is
the integer defined by the index |G : StabG({0, i1, . . . , is})|.

Clearly, we can retrieve all the non redundant bases of
G up to the G-equivalence as the sequences defining the
leafs of T . Thus, there is a bijective correspondence from
the branches of T to the set B. By using classical orbit
computation and Lemma 5 we deduce the following result.

Proposition 4.2. Let #B be the number of non equiva-
lent non redundant bases of G and d its depth. The time
complexity for constructing T is

O(#Bdn|S|) = O(#Bdn log(|G|)) = O(n|G|log2 n log22(|G|)

We now use this structure in order to efficiently compute
the conjugate of G with minimal computation scheme.

Example 4. Let G be a copy in S7 of the transitive group
F21(7) generated by {(1, 2, 3, 4, 5, 6, 7), (1, 2, 4)(3, 6, 5)}. The
following drawing corresponds to its orbits tree.

(1)(2,5,3)(4,6,7)

(1,2,3,4,5,6,7)

(1)(2)(3)(4)(5)(6)(7) (1)(2)(3)(4)(5)(6)(7)

T (0)

T (0, 1)

T (0, 1, 2) T (0, 1, 4)

4.3 From a Branch to a Computation Scheme
In this subsection we describe the central part of our al-

gorithm which takes as input a branch of the orbits tree of
G and returns the best conjugates of G, in terms of c-size,
with equivalent stabilizers sequence. In this part we sup-
pose the orbits tree T of G accessible. We first present the
Application of the Cauchy technique. Let fj ∈ G be
a generalized Cauchy module of degree dj of a polynomial

fi ∈ G of degree di. Then, from Definition 1 and Proposi-
tion 2.2 we know that the set of roots Sj of fj are included in
the set of roots Si of fi (seen as univariate polynomials over
the extensions defined respectively by the polynomials in G
with indexes less than j and i) and the relative complement
Si\Sj corresponds to roots defined by polynomials with in-
dexes less than j. Thus, in a stabilizer point of view, this
means that the orbit O of the action of StabG({1, . . . , i− 1})
corresponding to the polynomial fi splits in di − dj orbits
of length 1 and one orbit of length dj under the action of
G{1,...,j−1}. This let us give the next result for ordering
the polynomials in G to obtain the best gain of the Cauchy
technique.

Proposition 4.3. Let B be a base of G. A triangular
basis G corresponding to B with the best gain of the Cauchy
technique is obtained by ordering the polynomials following
the principles:
1. Each time a new trivial orbit appears in the branch of T
corresponding to B we add the corresponding linear polyno-
mial in G;
2. The non linear polynomial corresponding to an element
of B is added into G after we added all the preceding linear
polynomials of the principle 1;
3. The correspondence between the element of the orbits and
the indexes of the variables are stored in order to obtain at
the end of the process the conjugate of G stabilizing G.

We can immediately apply this result to the construction
of a first shape for the triangular basis G. Such a shape
constructed following the principles of the proposition 4.3
will be said to be in Cauchy shape. As we state before,
after the application of proposition 4.3 we are in the best
position for the application of the Cauchy techniques. It
only remains to checks if possible Cauchy techniques can be
applied by using the knowledge of the orbits tree. We can
summarize this first step into the following function.
Function CauchyBranch(B)
Input: B = [b1, . . . , bk] a nonredundant base of G
Output: A Cauchy shape of a triangular basis corresponding to
B and its stabilizer.

i = 1; G[i] = [(1, n)]
σ[1] = b1 (The permutation σ is represented as a sequence)
For j = 1 to k − 1 do

For O in T (b1, . . . , bj) \ T (b1, . . . , bj−1) do

The elements in O are now depending of (bj , |Ok| − 1) (∗)
If O is a trivial orbit {e} then

i = i+ 1; G[i] = [(i, 1)] cat Dep(O); σ[i] = e
If Cauchy technique apply then mark G[i] end if

end if

end for

Let Oj+1 be the orbit in T (b1, . . . , bj) containing bj+1

i = i+ 1; G[i] = [(i, |Oj+1|)] cat Dep(Oj+1); σ[i] = bj
If the Cauchy technique apply then mark G[i] end if

end for

Return G, σGσ−1, σ
In the function CauchyBranch, we use the function Dep

which takes as input an orbit O and returns the sequence
of dependent couples attached to each of its elements. This
list is generated on the line marked by (∗) and one of its
elements (i, di) represents the index i of a variable and its
maximal degree di appearing in the i-relation corresponding
to O. At the end, the function returns the shape of the
triangular basis G as a sequence of i-relations. Thus, the
function CauchyBranch already provides a way to construct
sparse i-relations, but may be not the sparsest ones.



One can easily see that all the computations done dur-
ing the process of the CauchyBranch for a base B can be
introduced during the construction of the branches of the
orbits tree corresponding to B. Thus, the complexity of this
function is not so important.
Application of the Transporter technique. We now
study the possibility of finding transporters from the knowl-
edge of a Cauchy shape of a triangular basis G, thus we
assume that we already have the three outputs G, G′,σ of
CauchyBranch(B). All the polynomials non marked in G
have tail only depending of variables indexed, after σ−1 ac-
tion on theses indexes, by elements of the unredundant base
B. Thus, finding a potential transporter from a polynomial
fi to a polynomial fj in G can be done by analyzing the nat-
ural action of G. More precisely, finding this transporter can
be done by checking the existence of an element g ∈ G such

that Bg
i is included in {1, . . . , j}σ

−1

where Bi is the subset
of B corresponding to the tail of fi and σgσ−1(i) = j.

Since an element g of G is uniquely determined by the
images by g of the elements of B, checking the existence
of a transporter in G can be done by sifting procedure
(see [20, Chapter 4]) using the Schreier tree associated to
B. We not give here the detail of this technical procedure
which is a generalization of the one given in the proof of [20,
Lemma 5.2.1] which presents an algorithm constructing, if
there exists one, a permutation g ∈ G with a given image
Bg. From the same lemma we can deduce the next result.

Proposition 4.4. Let G be a Cauchy shape correspond-
ing to a nonredundant base B of B. Checking the existence
and, if there exists, computing an (i, j)-transporter for G

can be realized in O(nt|G
[m]
B |) time where t is the sum of the

depths of the Schreier tree related to B and m is the greatest
integer verifying σ−1(bm) 6 i.

The integer t can be bounded by 2d log(|G|) where d is
the depth of G. Moreover, we can store the successive com-
putations during the construction of the transporters for a
better efficiency. When we theoretically add all these time
complexities over all the computations of transporters for
G we obtain a time complexity depending of |G| which cor-
responds to a brute force procedure and which is very pes-
simistic in comparison with the practical efficiency.

Finding the minimal i-relations. For a polynomial
shape fi of degree di in its greater variable xi in G that is
not marked after application of Cauchy or transporter tech-
niques, we can easily find a minimal i-relation corresponding
to this polynomial by inspecting some node of the orbits tree
T . Actually, we consider the nodes T of degree less than the
size of fi and we check for the existence of an orbit contain-
ing σ−1(i) of cardinal di inside T . If such a node exists, we
obtain a new i-relation with a smaller size than the former.
By repeating this operation over all these nodes we can find
the minimal i-relation G.
Function MinimalRelation(i,σ)
Input: The index of the i-relation and the permutation σ which
carry the element of B in the index of the polynomials of G
Output: Aminimal i-relation for the triangular basis G.

Let r be the i-relation in G
Let s be the size of r and d its degree
For B in all the branches of T do

For T in successive nodes of B do

If the degree of T is less than s then

If ∃O ∈ T such that σ−1(i) ∈ O and |O| = d then

Form the new i-relation r from O

Change the value s to the degree of T .
end if

else break end if

end for

end for

Return r
These function could be modified in order to find the min-

imal relation for each non marked polynomial in G at the
same time. We can benefit of the recursive structure of the
orbits tree in order to efficiently traverse it with recursive
functions. Even in this case, the time complexity estima-
tion would be not tight but it gives some theoretical point
of views about our new algorithm:

Proposition 4.5. Let #B be the number of branches in
T and d the depth of the group G. The time complexity for
finding all the minimal i-relations in G is O(#Bnd).

Remark 5. As bounds in Lemma are for general cases,
and do not seem sharp. Actually, for each group with mod-
erate size, the number #B is much smaller, which implies
certain efficiency of our computation. Also, for the com-
plexity estimation, we have no chance but to use the bound
in Lemma . But, for splitting field computation, algebraic
parts are dominant and we can improve the total efficiency
with smaller computation on group theoretical part.

5. THEORETICAL AND PRACTICAL CON

CLUSIONS
In this section, we conclude by presenting the total theo-

retical cost for computing the conjugate of G giving the best
computation scheme. We also give tricks to avoid the inspec-
tion of some branches of T and we present some practical
results of our implementation done in Magma (see [4]) (this
implementation could also benefit of all the functionalities
of Gap (see [7]) the well known open source CAS).

5.1 Total theoretical cost
From the results of Section 4, we can compute the con-

jugate of the transitive permutation group G with minimal
computation scheme by searching the best branch of the
orbits tree G. Thus, the total cost of our algorithm is dom-
inated by the construction of T and by the application of
the transporter technique which are, for a fixed degree n,
dominated by a polynomial complexity in |G|. In compari-
son with the method proposed in [17] for the computation
of computation scheme, which has a tight cost depending on
|Sn : NSn(G)|, this new algorithm is really more efficient.
Hence, this new algorithm is more efficient when the Galois
group G not too large which is a natural assumption when
we want to compute the splitting field of a polynomial.

5.2 Tricks to avoid branches
During the construction of the orbits tree T , some nodes

can be detected in advance to be not necessary continued:
1. In the node T , all the non trivial orbits are all of the same
cardinal and one of its sons contains only trivial orbits.
2. Each non trivial orbit in the node T are used to defined
a node in a sub branch starting from T .
In these two cases, we not need to construct the complete
subtree starting from T , only one branch is necessary. The
first case is clear: all the sons of T will give nonredundant
bases with same properties in regards of the computation
scheme. The second is coming from the fact that the non



trivial orbits in T correspond to extensions over the field
defined by the node T so that they have not common sub-
field. To take account of this property, we need to make a
slight modification in the function CauchyBranch in order to
produce the best Cauchy shape possible by considering only
one branch from T .

Example 6. The case 1 appears when G is a dihedral
group. Assume that n is odd, from section 3, we know that
T would have the following form (the cardinals of orbits are
indicated between parenthesis).

(n)

(1)(2)...(2)

(1)(1)...(1) ...(1)(1)...(1) (1)(1)...(1)

In this case, we only have to study one branch since they are
all equivalent in a computation scheme point of view.

5.3 Practical results and final conclusion
Usually, when we present practical results of our imple-

mentations we draw some graphics or give some experimen-
tations times tables. In the present case, it would be not
so interesting since we try our implementation (on a Mac-
BookPro 2.16GHz with Magma 32 bits ver. 2.14) over all
the transitive groups of degree up to 25 and order up to
10000 and we obtain an average time less than 1.0 sec-
onds : the different steps take almost the same time and the
difference between timings for different groups is not signif-
icant. As a final conclusion, we can say that our first aim
which was to provide an efficient way to produce the split-
ting field of a polynomial without any database is reached.
Actually, we can use this new algorithm as a link between
the one implemented by Fieker and Klüners in Magma, for
the computation of the action of the Galois group over ap-
proximations of the roots of f , and the ones of [17, 18] for
computing the splitting field from these inputs.
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of Graduate Texts in Mathematics. Springer-Verlag, New
York, 1993. A computational approach to commutative
algebra, In cooperation with Heinz Kredel.
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