
Computation Time Analysis of a Distributed Optimization Algorithm
Applied to Automated Irrigation Networks

Alireza Farhadi, Michael Cantoni, and Peter M. Dower

Abstract— This paper considers the computation time of two
algorithms for solving a structured constrained linear optimal
control problem with finite horizon quadratic cost which arises
in automated irrigation networks. The first is a standard
centralized algorithm based on the interior point method that
does not exploit problem structure. The second is distributed
and based on a consensus algorithm, not specifically tailored to
account for system structure, but devised rather to facilitate the
management of conflicting computational and communication
overheads. It is shown that there is a significant advantage
in terms of computation time in using the second algorithm in
large-scale networks. Specifically, it is shown for a fixed horizon
length that the computation time of the centralized algorithm
grows as O(n4) with the number n of sub-systems. By contrast,
it is observed via a combination of analysis and experiment
that the computation time of the distributed algorithm grows
as O(n) with the number n of sub-systems.

I. INTRODUCTION

A. MOTIVATION and BACKGROUND

Some emerging large-scale systems and networks, such
as automated irrigation networks, have a cascade topology.
The dynamical behavior of such cascade networks can be
modeled by n distributed interacting linear time invariant
sub-systems of the following form (see Appendix):

Si : xi[k + 1] = Aixi[k] +Biui[k] + Fidi[k] + vi[k],

yi[k] = Cixi[k], zi[k] = Dixi[k], (1)

for i = 1, 2, ..., n and k ∈ {0, 1, 2, ..., N − 1}, where N ∈
N+ is the horizon length, vi[k] = Mixi+1[k] represents the
cascade interconnection, xi ∈ Rni is the state variable of
dimension ni ∈ N+, ui ∈ R is the control input, yi ∈ R
and zi ∈ R are variables to be controlled, and di ∈ R is a
known disturbance for the i-th sub-system. For the system
(1) we are interested in solving the following linear-quadratic
(LQ) constrained optimal control problem:

min
u=(u1,...,un)

J(x[0],d, r,u)

subject to (1) and{
yi[k], ui[k] ∈ [Li, Hi]
zi[k] ∈ [Ei, Zi]

}
∀i ∈ [1, n], k ∈ [0, N − 1],

(2)

*This work is supported by an Australian Research Council (ARC)
Linkage Project LP0989497.

The authors thank Rubicon Water Australia for information on the East
Goulburn secondary irrigation channel No. 12 used in this study.

The authors are with the Department of Electrical and Electronic
Engineering, the University of Melbourne, Victoria, Australia. E-mail:
{alireza.farhadi,cantoni,pdower}@unimelb.edu.au

where

J(x[0],d, r,u)

=̇

n∑
i=1

N−1∑
k=0

||yi[k]− ri||2Q + ||ui[k]− ui[k − 1]||2R

+||zi[k]||2P . (3)

Here ||.|| denotes the Euclidean norm (i.e., ||z||2P =̇z′Pz),
x[0] =̇ (x′1[0] . . . x′n[0])

′ is the vector of initial
states, d[k] = (d1[k] . . . dn[k])

′ is a vector of known
disturbances, r = (r1 . . . rn)

′ is the vector of desired
values for yi, and Q,P ≥ 0, R > 0 are weighting matrices.

By expanding the state vector
x[k]=̇ (x′1[k] . . . x′n[k])

′ at time step k in terms
of the initial states, disturbances and controls vectors
and substituting it in the quadratic cost functional (3),
the equality constraint in the optimization problem (2)
vanishes and it is observed that the Quadratic Programming
(QP) problem (2) involves nd = nN decision variables
and nc = 6nN inequality constraints. Algorithms, such
as the generic interior point method [1], involving one
decision maker that is responsible for computing the
controls ui without accounting for system structure are
referred to here as centralized optimization algorithms.
In large-scale systems (i.e. when nN is large), the total
number of constraints and decision variables can be very
large. In many cases this means the computation time of
the centralized optimization algorithms is not practical.
Towards overcoming this computational scalability problem,
in [2] a consensus based distributed optimization algorithm
is proposed that exploits the computational power very
often available at distributed sub-systems. This distributed
algorithm can be used to approximate the solution of the
structured optimal control problem (2). While the approach
does not directly account for system structure, exploiting
the computational power very often available at distributed
sub-systems and the distribution of the computational load
between sub-systems can give rise to significant reduction
in computation time as studied below.

B. PAPER CONTRIBUTIONS

This paper compares the computation time of a central-
ized optimization algorithm, with the computation time of
the aforementioned consensus based distributed optimization
algorithm of [2], for the QP problem (2) subject to inequality
constraints. It is shown for a fixed horizon length that the
computation time of the centralized algorithm grows as
O(n4) with the number n of sub-systems. By contrast, it

1S

2S
nS

1nS −

Fig. 1. A distributed system of n interacting sub-systems. Arrows indicate
interactions between sub-systems dynamics.

is observed via a combination of analysis and experiment
that the computation time of the distributed algorithm grows
as O(n) with the number n of sub-systems. On the other
hand, it is shown for a fixed number of sub-systems that
the computation time of the centralized algorithm grows
as O(N5) with the horizon length N . For a fixed number
of sub-systems it is observed that the computation time of
the distributed algorithm also grows as O(N5) with the
horizon length N . However, on the basis of experiments for
a particular irrigation network of interest to us, it is observed
that the growth of the distributed algorithm computation time
in N is bounded above by that of the centralized algorithm.
In summary, either way there is a significant advantage
in terms of the computation time in using the consensus
based distributed optimization algorithm of [2] in large-
scale irrigation networks by exploiting the computational
power very often available at distributed sub-systems and
the distribution of the computational load between them.

C. PAPER ORGANIZATION

The paper is organized as follows: Section II recalls the
consensus based distributed optimization algorithm of [2].
This is followed by computation time analysis in Section
III. Simulation results are presented in Section IV and the
paper is concluded in Section V.

II. CONSENSUS BASED DISTRIBUTED
OPTIMIZATION ALGORITHM

The consensus based distributed optimization algorithm of
[2] is concerned with n interacting linear sub-systems: S1,
S2, ... , Sn (see Fig. 1) each equipped with a decision maker
with limited available computational power. For the system
of Fig. 1, [2] is concerned with the following optimization
problem via distributed decision makers.

min
u

{
J(g,u), u = (u′i...u

′
n)′, ui ∈ Ui, i ∈ {1, ..., n}

}
,

where g is a collection of known vectors, e.g., g may include
vectors x[0], d, r, ui is the decision variable of sub-system
Si, Ui is the corresponding closed convex constraint set and
J is a finite horizon quadratic cost function of decision
variables.

Remark 2.1: For a given vector x[0] of initial states,
vector d[k] of disturbances and vector r of references,
the cost functional J in (2) is a quadratic function of
the control inputs ui, i ∈ {1, 2, ..., n}. Moreover, since
[Li, Hi], [Ei, Zi] ⊂ R are closed convex sets, and linear
transformations preserve closedness and convexity [1], the
control inputs (i.e. decision variables) in the QP problem (2),
belong to closed convex constraint sets. Hence, the consensus
based distributed optimization algorithm of [2] converges
when applied to the QP (2), see [2].

In [2], decision variables ui, i ∈ {1, ..., n}, are generated
using an algorithm that employs the following two steps.
Note that for the simplicity of presentation in the following
we drop the dependency of the cost function to g and we
present it as J(u) = J(u1, ..., un).

• Initialization: In this step first each decision maker Sj
chooses an arbitrary admissible value u0j ∈ Uj for
its decision variable. Then, the information exchange
between decision makers at inner iterate t = 0 makes
it possible for each sub-system Si to initialize its local
decision variables as u0i , ∀i ∈ {1, ..., n}, where u0i ∈ Ui
are chosen arbitrarily at t = 0.

• Inner Iterate: Then, sub-system Si performs the follow-
ing tasks iteratively:
Sub-system Si first updates its decision variable via

ut+1
i = πiu

∗
i + (1− πi)uti, (4)

where πi is chosen subject to

πi > 0,

n∑
i=1

πi = 1,

and

u∗i =̇ argminui∈UiJ(ut1, ..., ui, ..., u
t
n). (5)

Then, it shares its updated decision variable, ut+1
i with

all other sub-systems.

In [2] the authors proved feasibility (constraints satis-
faction by the approximated solutions), convergence and
optimality of the above algorithm.

Remark 2.2: i) For large-scale systems and networks the
above algorithm induces a large communication overhead
for exchanging information between distributed decision
makers. In order to overcome this drawback, the authors
of [3] proposed a two-level communication architecture and
a three-step algorithm including an extra outer iterate step.
To complete their work a proof feasibility, convergence and
optimality of this three-step algorithm is documented in [4].
A simple algorithm for decomposing large problems into
smaller ones via ‘neighborhoods’ is also documented there.
ii) In this paper we are not concerned with communication
overhead as it can be managed by decomposing the system
into disjoint neighborhoods and using the three-step algo-
rithm.

In order to analyze the computation time of the above con-
sensus based distributed optimization algorithm, throughout
this paper we use the following stopping criterion.

Definition 2.3: For a given ε > 0, the two-step algorithm
of [2] is terminated as soon as the following inequality holds

|J(ut1, ..., u
t
n)− J(ut−11 , ..., ut−1n)| ≤ ε.

Note that for small values for ε, there will be very small
improvement in the approximation of the optimal solution by
the distributed optimization algorithm of [2]; and therefore,
the algorithm can be terminated as soon as the above
inequality holds.

Definition 2.4: (Total Number of Iterations for ε-
Convergence) For a given ε > 0, let Tε be the smallest integer
such that |J(ut1, ..., u

t
n) − J(ut−11 , ..., ut−1n)| ≤ ε, ∀t ≥ Tε.

Then, Tε is referred as the total number of iterations for
ε-convergence.

We refer to J(uTε1 , ..., u
Tε
n) as an approximation of the

optimal cost and the sequence (uTε1 , ..., u
Tε
n) as an approxi-

mation of the optimal solution.

III. COMPUTATION TIME ANALYSIS

The interior point method [1], [5] and the active set method
[5], [6] are the most commonly used approaches for solving
general QP problems. As a benchmark, we employ a generic
interior point method [5] to solve the QP problem (2) using
the centralized optimization algorithm and the distributed
algorithm of [2]. Computation time analysis of the active
set method is under investigation in another paper.

Let nc and nd be the numbers of inequality constraints
and decision variables of a QP problem, respectively. As
stated in [5] at each iteration of the interior point method, the
computing device must solve nc times a system of nd linear
equations. Therefore, if the commonly used techniques, such
as the generic Gauss-Jordan elimination technique or Gaus-
sian elimination technique (which have cubic computational
complexity) is used to solve this system of linear equations,
the optimization computational complexity (i.e., the number
of floating point arithmetic operations required to find the
optimal solution) associated with each iteration of the interior
point method is O(nc × n3d). As pointed out in [5], the
number of iterations required for convergence of the interior
point method to the optimal solution is insensitive to nc and
nd. Therefore, the optimization computational complexity of
the Interior Point Method (IPM) for solving QPs is

IPM ∼ O(nc × n3d). (6)

In this paper we are concerned with computation time
which is the empirical time spent by processors to find
the solution. The computation time for finding the optimal
solution consists of two terms: (i) Optimization time Copt,
which is the empirical time spent by processors to solve
the optimization problem. This complexity term is propor-
tional to the empirical number of floating point arithmetic
operations required for solving the optimization problem.
Therefore, if IPM is used, then

Copt ∼ O(nc × n3d). (7)

(ii) Constraint making time complexity term Ccm which is
the empirical time spent for making constraints to be imple-
mented in solver. This complexity term is also proportional
to the empirical number of required floating point arithmetic
operations.

In this section, the computation time (as described above)
for the centralized algorithm and distributed algorithm are
analyzed for the QP problem (2) for two cases: (i) Fixed N .
(ii) Fixed n.

A. Fixed N , Varying n

In this section it is assumed that the horizon length N
is fixed but the number of sub-systems n varies. It is also
assumed that the distributed decision makers use the interior
point method for their smaller QPs, and at each inner itera-
tion updated decision variables are exchanged only when all
optimizers finish their computation. That is, the distributed
algorithm uses synchronized communication. Under these
assumptions expressions for the computation times of the
centralized algorithm and distributed algorithm in terms of
the number of sub-systems n are presented in this section.

As the centralized optimization technique applied to the
QP problem (2) involves nc = 6nN inequality constraints
and nd = nN decision variables, from (7) it follows that the
optimization time of the centralized algorithm is of order 4,
i.e.,

Copt(n) ∼ O(nc × n3d) ∼ O(n4).

In addition, as the number of inequality constraints is a linear
function of n, the complexity term Ccm is a linear function
of n, i.e., Ccm(n) ∼ O(nc) ∼ O(n). Hence, the computation
time of the centralized algorithm is of order 4, i.e.,

Ccen(n) = Copt(n) + Ccm(n) ∼ O(n4). (8)

When the distributed optimization algorithm of [2] is
applied to the QP problem (2), each decision maker i has a
decision variable ui of dimension N and the horizon length
N determines its number of inequality constraints. Under the
assumption of synchronized communication, the computation
time of the distributed optimization algorithm of [2] in terms
of the number of sub-systems, i.e., Cdis(n), is given by

Cdis(n) =

Tε(n)∑
j=1

Cj(n), (9)

where Tε(n) is the empirical number of required iterations
for ε-convergence and Cj(n) is the computation time of the
decision maker with the largest computation time at iteration
j. This decision maker is referred to here as ‘dominant
decision maker’. As it is assumed that the distributed decision
makers also use the interior point method for their smaller
QPs, their optimization times are determined only by their
number of inequality constraints, as each of them has N
decision variables.

The horizon length N determines the number of inequality
constraints affecting each decision maker. Specifically, if
n <

⌈
N
2

⌉
, then the effect of a change in the decision

variables of each sub-system is seen in all upstream sub-
systems. Therefore, for n <

⌈
N
2

⌉
the number of inequality

constraints required to describe the QP associated with the
sub-system at the end of the cascade (i.e. sub-system Sn) is
nc = 2N(2n+ 1), which is the largest number of inequality
constraints, compared to all other sub-systems. On the other
hand, if n ≥

⌈
N
2

⌉
, then the effect of a change in the

decision variables of each sub-system is seen in only a
subset of the upstream sub-systems. Specifically, it is seen
in the observation signals of

⌈
N
2

⌉
upstream sub-systems

and in the control signals of
⌊
N
2

⌋
upstream sub-systems.

This follows from the cascade topology of the system (1).
Consequently, for n ≥

⌈
N
2

⌉
, the number 2N(2

⌊
N
2

⌋
+ 1)

(for an even N) or 2N(
⌈
N
2

⌉
+
⌊
N
2

⌋
+ 1) (for an odd N)

of inequality constraints in the QPs associated with the last
few sub-systems remains unchanged, even if the number of
upstream sub-systems increases. That is, several downstream
decision makers have the same largest number of inequality
constraints. Either way, the optimization time of the sub-
system at the end of the cascade dominates. Similarly, the
constraint making complexity term of the sub-system at the
end of the cascade dominates. Therefore, the computation
time of the last sub-system Sn dominates. That is, Sn is
the dominant sub-system. Note that at each iteration j, the
dominant computation time consists of two terms: Cj(n) =
Copt,j(n) + Ccm,j(n), where Copt,j(n) is the optimization
time and Ccm,j(n) is the constraint making time complexity
term of the dominant sub-system (i.e., sub-system Sn) at
iteration j.

From above, for a given number of sub-systems n, the
dominant sub-system remains constant for all iterations,
whereby the dominant computation time Cj(n) also remains
constant for j > 1, since there is no change in the number
of inequality constraints associated with the dominant sub-
system for j ≥ 1. Therefore, Cj(n) =̇ C(n) = Copt(n) +
Ccm(n),∀j > 1, where Copt(n) and Ccm(n) are the op-
timization time and constraint making complexity term of
the dominant sub-system. However, for j = 1, it takes some
time that variables to be placed into the cache memory and
therefore

C1(n) ≥ Cj(n) = C(n),∀j > 1.

Hence, applying (9) to the QP problem (2) results in the
following expression for the computation time.

Cdis(n) = C1(n) + (Tε(n)− 1)C(n). (10)

In summary, the maximum number of the inequality
constraints affecting any sub-system is

nc =

2N(2

⌊
N
2

⌋
+ 1), ifn ≥

⌈
N
2

⌉
and N is even,

2N(
⌈
N
2

⌉
+
⌊
N
2

⌋
+ 1), if n ≥

⌈
N
2

⌉
,and N is odd,

2N(2n+ 1), if n <
⌈
N
2

⌉
,

and the number of decision variables of each sub-system is
nd = N . Therefore,

Copt(n) ∼ O(nc × n3d) ∼
{
constant, if n ≥

⌈
N
2

⌉
,

O(n), otherwise,

Ccm(n) ∼ O(nc) ∼
{
constant, if n ≥

⌈
N
2

⌉
,

O(n), otherwise,

C(n) = Copt(n) + Ccm(n)

∼
{
constant, if n ≥

⌈
N
2

⌉
,

O(n), otherwise,

C1(n) ∼ O(nc + nd) ∼
{
constant, if n ≥

⌈
N
2

⌉
,

O(n), otherwise.

In addition, from the experimental results (given in the
next section) it is observed that Tε(n) as a function of n
is approximated and upper bounded by a linear function.
Hence, for the QP problem (2), from (10) it follows that
Cdis(n) has the following expression.

Cdis(n) ∼
{
O(n), if n ≥

⌈
N
2

⌉
,

O(n2), otherwise.
(11)

Remark 3.1: Similar to the centralized optimization algo-
rithm, the distributed optimization algorithm does not exploit
the topology of the network either in its formulation or in the
solutions of smaller QPs (5). The topology of the network
just helped us to determine the dominant sub-system to
analyze the computation time of the distributed optimization
algorithm on cascade systems.

B. Fixed n, Varying N

In this section it is assumed that the number of sub-
systems n is fixed but the horizon length N varies. Similar
to the previous section it is also assumed that the distributed
decision makers use the interior point method and synchro-
nized communication. Under these assumptions expressions
for the computation times in terms of the horizon length N
are presented in this section.

As the centralized optimization algorithm applied to the
QP problem (2) involves nc = 6nN inequality constraints
and nd = nN decision variables, from a similar argument
as we used in previous section, it follows that

Copt(N) ∼ O(N4),

Ccm(N) ∼ O(N).

Hence, the computation time of the centralized optimization
algorithm is of order 4, i.e.,

Ccen(N) = Copt(N) + Ccm(N) ∼ O(N4). (12)

For the distributed algorithm following a similar argument
as we used in the previous section it also follows that

Copt(N) ∼
{
O(N4), if N > 2n,
O(N5), otherwise,

Ccm(N) ∼
{
O(N), if N > 2n,
O(N2), otherwise,

C1(N) ∼
{
O(N), if N > 2n,
O(N2), otherwise.

In addition, from the experimental results (given in the next
section) it is observed that Tε(N) ∼ O(N). Therefore,

Cdis(N)

= C1(N) + (Tε(N)− 1)(Copt(N) + Ccm(N))

∼
{
O(N5), if N > 2n,
O(N6), otherwise. (13)

IV. SIMULATION RESULTS

In this section, the expressions for the computation time
are verified for the automated East Goulburn irrigation dis-
trict No. 12 with a total 42 sub-systems (pools operating
under distributed distant-downstream PI control for water-
level regulation), which is of the form (1) – see Appendix
VI-A. This network of heterogeneous sub-systems represents
a typical irrigation system in Australia and other locations
globally. The computation times of the centralized optimiza-
tion algorithm and consensus based distributed optimization
algorithm of [2] are compared with each other in this section
for two cases: (i) Fixed N and (ii) Fixed n. For the first
case the expressions for the computation time are verified by
increasing the number of upstream sub-systems. In particular,
the centralized optimization algorithm and the consensus
based distributed optimization algorithm of [2] are applied to
the last 6, 12, 18, 24, 30, 36, and 42 sub-systems of the auto-
mated East Goulburn irrigation district No. 12. For the other
case, we fix n to be n = 42 and we verify the expressions for
computation time for N = {24, 44, 64, 74, 84}. Throughout,
it is assumed that the last sub-system of this irrigation district
is subject to d̄42 = 17.8041 m3/min off-take disturbance
and the water levels must be within ±0.25m of the desired
water levels. That is, the lower bounds on the water levels
are set to be Li = ri− 0.25 and the upper bounds are set to
be Hi = ri + 0.25. It is also assumed that the upper bounds
on the input flow rates are Zi = L

3
2
i , the lower bounds are

Ei = 0, πi = 1
n and the weighting matrices Q,R, P in (2)

are identity matrices. u0i are chosen to be the desired water
levels and ε is set to be 0.1. For optimization, the MATLAB
solver quadprog is used, via YALMIP [7], to compute the
solution to QPs numerically. The solver quadprog is set to
use the interior point method [1],[5].

A. Fixed N , Varying n

In this section we fix the horizon length to be N = 84.
Similar to [5] to find the computation time spent for comput-
ing the optimal solution for each n = 6, 12, 18, 24, 30, 36, 42,
the simulation results are repeated several times by choosing
different initial conditions: xi[0] = (gi 0 . . . 0)

′,
where gi = ri−0.2, gi = ri−0.18, ... ,gi = ri, gi = ri+0.02,
..., gi = ri + 0.2. Then, the average of the obtained times
is calculated by excluding those results which are subject to
infeasible optimization solution. This average represents the
computation time for a given n.

Having that, Table I summarizes trade-offs between n,
Ccm(n), Copt(n) and Ccen(n) for the centralized optimiza-
tion algorithm and Fig. 2 and Fig. 3 show the optimization
time and computation time of the centralized technique,

n Ccm(sec.) Copt(sec.) Ccen(sec.)
6 4.15 9.63 13.73
12 7.24 47.46 54.7
18 12.45 150.6 163.05
24 19.25 321.33 340.58
30 28.74 1014.08 1024.82
36 33.98 3543.1 3577.1
42 43.5 5340.3 5383.8

TABLE I
TRADE-OFFS BETWEEN n, Ccm(n), Copt(n) AND Ccen(n).

0 10 20 30 40 50
0

1000

2000

3000

4000

5000

6000

n
C

o
p

t (
se

co
n

d
s)

Fig. 2. Optimization time of the centralized technique versus the number
of sub-systems n for N = 84. Blue dots are experimental data. Red curve
includes the corresponding approximated data obtained by polynomial (14).

respectively, applied to the QP problem (2). As clear from
Fig. 2 and Fig. 3 the optimization time and computation time
in terms of the number of sub-systems are approximated
and upper bounded by the following functions, which are
of order 4 (note that for n > 6, Ccm is approximated and
upper bounded by the following linear function Ccm(n) ≈
1.2087n− 7.264 ∼ O(n)).

Copt(n) ≈ α4n
4 + α3n

3 + α2n
2

+950.68972n− 3348.3 ∼ O(n4), (14)

Ccen(n) = Copt(n) + Ccm(n)

≈ α4n
4 + α3n

3 + α2n
2

+951.8984n− 3355.6 ∼ O(n4). (15)

Here α4 = 0.024924639918, α3 = 2.5072 and α2 =
−79.0405.

Remark 4.1: i) During the experiments it is observed that
for a given n the overheads for different initial conditions
are very close to the corresponding empirical value.
ii) The expressions for Ccm and Copt are obtained by
interpolating a linear function and a function of order 4,
respectively. For Ccm, it is observed that there will be very
little improvement in interpolation error if a higher order
function is used. This is also true for Copt. For Copt, it is also
observed that approximating Copt by a lower order function
results in a significant interpolation error.

Table II summarizes trade-offs between n, C1(n), Ccm(n),
Copt(n), Tε(n) and the distributed algorithm computation
time Cdis(n). From this table it is observed that C1(n),

n C1(sec.) Ccm(sec.) Copt(sec.) Tε Cdis(sec.)
6 6.57 3.67 0.64 10 43.1
12 8.86 4.44 1.19 15 89.6
18 11.3 5.17 1.63 21 144.47
24 12.85 5.81 1.98 32 250.43
30 14.94 6.6 2.26 38 334.79
36 17.02 7.22 2.53 46 462.5
42 19.41 7.95 2.71 54 584.39

TABLE II
TRADE-OFFS BETWEEN n, C1(n), Ccm(n), Copt(n), Tε(n) AND

Cdis(n).

0 10 20 30 40 50
0

1000

2000

3000

4000

5000

6000

n

C
ce

n (
se

co
n

d
s)

Fig. 3. Centralized computation time Ccen(n) versus the number of sub-
systems n for N = 84. Blue dots are experimental data. Red curve includes
the corresponding approximated data obtained by polynomial (15).

Ccm(n) and Tε(n) are approximated and upper bounded by
the following linear functions, respectively.

C1(n) ≈ 0.3379n+ 5.3 ∼ O(n),

Ccm(n) ≈ 0.1192n+ 3.025 ∼ O(n),

Tε(n) ≈ 1.223n+ 2.67 ∼ O(n). (16)

From this table it also follows that the dominant optimization
time Copt(n) is approximated and upper bounded by the
following linear function.

Copt(n) ≈ 0.045n+ 0.91 ∼ O(n). (17)

Consequently, from (10) it follows that Cdis(n) is approx-
imated as follows.

Cdis(n) ≈ 0.2008n2 + 5.4246n+ 11.8714

∼ O(n2). (18)

Fig. 4 compares the experimental data with the approx-
imation given by the above function, which is obtained
from the formula (10). From this figure it follows that the
distributed algorithm computation time is approximated and
upper bounded by the above quadratic function.

Fig. 5 compares the computation times of the central-
ized algorithm and the distributed optimization algorithm
with each other for N = 84. From this figure it follows
that for the irrigation network of interest to us there is a
significant advantage in terms of the computation time in

0 10 20 30 40 50
0

100

200

300

400

500

600

n

C
d

is
(s

ec
o

n
d

s)

Fig. 4. Cdis(n) versus the number of sub-systems for N = 84. Blue dots
are experimental data. Red curve includes the corresponding approximated
data obtained by (18).

0 10 20 30 40 50
0

1000

2000

3000

4000

5000

6000

n

C
ce

n,C
d

is
(s

ec
o

n
d

s)

Fig. 5. Ccen(n) and Cdis(n) versus the number of sub-systems for N =
84. Solid curve indicates Ccen(n) and dashed curve indicates Cdis(n).

using the distributed optimization algorithm. Specifically, the
computation time of the centralized algorithm for n = 42 is
Ccen(42) = 5383.8 seconds which is intractable1, while the
computation time of the distributed optimization algorithm
is Cdis(42) = 584.39 seconds which is tractable. Also, when
nN > 2500 there is a significant reduction in computation
time if the distributed optimization algorithm is used.

B. Fixed n, Varying N

In this section we fix the number of sub-systems to
be n = 42 and vary the horizon length N . Table III
summarizes trade-offs between N = {24, 44, 64, 74, 84},
Ccm(N), Copt(N) and Ccen(N). From this table it follows
that the above complexity terms are approximated and upper
bounded by the following functions.

Ccm(N) ≈ 0.6372N − 9.172 ∼ O(N),

Copt(N) ≈ β4N
4 + β3N

3 + β2N
2

1Roughly speaking the computation must be completed within 0.2×N×
60 = 1008 seconds to have a negligible computational latency in the closed
loop.

N Ccm(sec.) Copt(sec.) Ccen(sec.)
24 5.12 51.75 56.86
44 16.27 244.85 261.12
54 25 353.64 378.64
64 30.31 688.75 719.07
74 35.57 2201.43 2237
84 45.35 5025.9 5070.3

TABLE III
TRADE-OFFS BETWEEN N , Ccm(N), Copt(N) AND Ccen(N).

N C1(sec.) Ccm(sec.) Copt(sec.) Tε Cdis(sec.)
24 1.77 0.79 0.196 18 18.53
44 3.76 1.9 0.48 35 84.44
54 5.89 2.82 0.77 39 140.5
64 8.87 3.99 1.24 44 229.58
74 12.33 5.55 1.69 48 348.99
84 19.41 7.95 2.71 54 584.39

TABLE IV
TRADE-OFFS BETWEEN N , C1(N), Ccm(N), Copt(N), Tε(N) AND

Cdis(N).

+9.488987N − 590.67916 ∼ O(N4),

Ccen(N) = Copt(N) + Ccm(N)

≈ β4N
4 + β3N

3 + β2N
2

+10.126187N − 599.851161 ∼ O(N4).

(19)

Here β4 = 0.000615525, β3 = −0.067118567 and β2 =
1.97799323.

Remark 4.2: During the experiments it is observed that
for a given N the overheads of different initial conditions
are very close to the corresponding empirical value.

Table IV summarizes trade-offs between N , C1(N),
Ccm(N), Copt(N), Tε(N) and Cdis(N). From this table it
follows that the above complexity terms are approximated
and upper bounded by the following functions.

C1(N) ≈ 0.004863N2 − 0.231N + 4.52 ∼ O(N2),

Ccm(N) ≈ 0.001595N2 − 0.053016N + 1.1432

∼ O(N2),

Copt(N) ≈ η5N
5 + η4N

4 + η3N
3 + η2N

2

20 30 40 50 60 70 80 90
0

1000

2000

3000

4000

5000

6000

N

C
ce

n,C
d

is
(s

ec
o

n
d

s)

Fig. 6. Ccen(N) and Cdis(N) versus the horizon length N for n = 42.
Solid curve indicates Ccen(N) and dashed curve indicates Cdis(N).

+η1N + η0 ∼ O(N5),

Tε(N) ≈ 0.475N + 14.1 ∼ O(N),

Cdis(N) = C1(N) + (Tε(N)− 1)(Copt(N) + Ccm(N))

≈ γ6N
6 + γ5N

5 + γ4N
4 + γ3N

3

+γ2N
2 + γ1N + γ0 ∼ O(N6). (20)

Here η5 = 1.6703099 × 10−8, η4 = 3.63306543 × 10−6,
η3 = 2.85851661451 × 10−4, η2 = −9.1807458 × 10−3,
η1 = 0.108077, η0 = 0.011009, γ6 = 7.933972×10−9, γ5 =
−1.5068×10−6, γ4 = 8.81864×10−5, γ3 = 1.4183×10−4,
γ2 = −6.83463× 10−2, γ1 = 1.038541 and γ0 = 19.64014.

Fig. 6 compares the computation times of the centralized
algorithm and the distributed optimization algorithm with
each other for n = 42. From this figure it also follows that
there is a significant advantage in terms of the computation
time in using the distributed algorithm for the irrigation
network of interest to us. That is, while the computation
time of the distributed optimization algorithm is described
by a function of order 6, on the basis of experiments for
the particular system of interest to us, the growth of the
distributed algorithm computation time in N is bounded
above by that of the centralized algorithm. Specifically, when
nN > 2500 there is a significant reduction in computation
time if the distributed optimization algorithm is used.

V. CONCLUSIONS

In this paper we compared the computation time of a cen-
tralized optimization algorithm for solving the QP problem
(2), with the computation time of the distributed optimization
algorithm of [2]. It was assumed that both algorithms use the
interior point method and do not exploit problem structure.
For the QP problem (2), which represents the typical opti-
mization problem arising in automated irrigation networks, it
was illustrated that there is a significant advantage in terms
of computation time in using the distributed optimization
algorithm of [2] for large-scale networks. Specifically, for the
particular network of interest to us (East Goulburn irrigation
district No. 12) it was shown that the centralized optimization
algorithm cannot provide a computationally tractable solu-
tion; and there is a significant reduction in the computation
time when nN > 2500 if the distributed optimization
algorithm of [2] is used. The computation time analysis of
the active set method is currently under investigation and it
will be reported in another paper.

VI. APPENDIX

A. AUTOMATED IRRIGATION NETWORK MODEL

The dynamic of each sub-system (pool) in an irrigation
channel (see [8], Fig. 2) in continuous time domain is

described, as follows [8]:

ẏi(t) = Cini zi(t− τi) + Couti zi+1(t) + Couti di(t),

i = 1, 2, ..., n,

zi =̇ h
3
2
i , hi = yi−1 − pi,

zi+1=̇h
3
2
i+1, hi+1 = yi − pi+1,

di =
d̄i
γi+1

, dn =
d̄n
γn
, (21)

where αi > 0 (measured in meter square - m2) is a
constant which depends on the pool surface area, yi ≥ 0
(measured in meter Above Height Datum - mAHD) is the
downstream water level at the i-th pool (see [8], Fig. 2),
hi ≥ 0 (measured in meter) is the head over upstream
gate (the i-th gate), hi+1 is the head over downstream
gate (the i+1-th gate), pi ≥ 0 (measured in meter) is the
position of the i-th gate, τi (measured in minutes) is the
fixed transport delay, d̄i ≥ 0 (measured in meter cube per
minutes - m3/min) is the off-take flow rate disturbance
taken at the end of pool i by user, and γi = 0.6×

√
9.81 ×

(number of upstream gates) × (upstream gate width)×60 as
well as Cini (measured in m

−1
2 /min) and Couti (measured

in m−
1
2 /min) are constant.

The equation (21) can be written in terms of the storage
(integrator) equation (22) and transport (delay) equation (23),
as follows.

ẏi(t) = Cini z̃i(t) + Couti zi+1(t) + Couti di(t). (22)

z̃i(t) = zi(t− τi). (23)

The storage equation (22) can be directly converted to dis-
crete time model using the zero holder technique; while the
transport equation (23) is converted to discrete time model by
introducing τi

T states as follows, where the sampling period
T is the highest common factor of pools transport delays
(note that xi,1(kT) = yi(kT), k ∈ N).

xi,2(kT) = zi(kT − τi), ... , xi,τi+1(kT) = zi(kT − 1).

Following the above conversions, the equivalent discrete time
model describing the dynamic of the i-th sub-system/pool is
given by the following.{
si[k + 1] = Ǎisi[k] + B̌izi[k] + Ďizi+1[k] + F̌idi[k],

yi[k] = Čisi[k] i = 1, 2, ..., n

In [8] it was shown that the PI controllers zi(s) =
Ci(s)ei(s), Ci(s) = KiTis+Ki

TiFis2+Tis
, ei = ui − yi, where uis

are reference signals, stabilize the above irrigation network
around the predefined reference signals ui. Now, by find-
ing the corresponding discrete time transfer function Ci(z)
and then the corresponding state space representation, we
have the following discrete time representation for the PI
controllers{

qi[k + 1] = Āiqi[k] + B̄iei[k], qi[0] = 0,
zi[k] = C̄iqi[k].

Consequently, by defining the augmented state variable

xi[k] =

(
si[k]
qi[k]

)
, the dynamics of the automated irrigation

network is given by (1).

REFERENCES

[1] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge
University Press, 2004.

[2] B. T. Stewart, A. N. Venkat, J. B. Rawlings, S. J. Wright, and G.
Pannocchia, Cooperative distributed model predictive control, Systems
and Control Letters, vol. 59, pp. 460-469, 2010.

[3] B. T. Stewart, J. B. Rawlings and S. J. Wright, Hierarchical coop-
erative distributed model predictive control, Proceedings of the 2010
American Control Conference, pp. 3963-3968, 2010.

[4] A. Farhadi, M. Cantoni, and P. M. Dower, Performance and infor-
mation pattern trade-off in a consensus based distributed optimization
method, in Proceedings of the Second Australian Control Conference,
Sydney, Australia, pp. 373-380, November 2012.

[5] M. S. K. Lau, S. P. Yua, K. V. Ling, and J. M. Maciejowski,
A comparison of interior point and active set methods for FPGA
implementation of model predictive control, in Proceedings of the
European Control Conference, pp. 157-161, 2009.

[6] K. G. Murty, Linear Complementarity, Linear and Nonlinear Program-
ming, Sigma Series in Applied Mathematics, 1988.

[7] J. Lofberg, Yalmip: a toolbox for modeling and optimization in
MATLAB, in Proceedings of the CACSD Conference, Taipei, Taiwan,
2004. [Online]. Available: http://users.isy.liu.se/johanl/yalmip

[8] M. Cantoni, E. Weyer, Y. Li, S. K. Ooi, I. Mareels, and M. Ryan,
Control of large-scale irrigation networks, Proceedings of the IEEE,
vol. 95, No. 1, pp. 75-91, January 2007.

