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ABSTRACT

Imprecision in spatial data arises from the granularity or resolution at which

observations of phenomena are made, and from the limitations imposed by

computational representations, processing and presentational media. Precision is an

important component of spatial data quality, and a key to appropriate integration of

collections of data sets. Previous work of the author provides a theoretical foundation

for imprecision of spatial data resulting from finite granularities, and gives the

beginnings of an approach to reasoning with such data using methods similar to rough

set theory. This paper develops the theory further, and extends the work to a model

that includes both spatial and semantic components. Notions such as observation,

schema, frame of discernment and vagueness are examined and formalised. 

Keywords: GIS, imprecision, vagueness, resolution, spatial reasoning, data quality,

uncertainty.
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1. INTRODUCTION

We now live in a world of distributed systems, where the data that are needed to serve

particular applications may be scattered globally and distributed through many

systems. Absolutely fundamental to effective distributed computation is the notion of

data integration; we must be able to bring data sets together and provide appropriate

levels of interoperability between nodes of a globally distributed network. For

interoperability to succeed, appropriate attention needs to be paid to the characteristics

of each data set, described for example in terms of its data model and quality

indicators. However, a major obstacle to achieving effective data integration lies in

the various data sources being semantically heterogeneous, lacking uniformity in the

‘meaning, interpretation or intended use’ of the data in the distributed multi-database

collection (Sheth and Larsen, 1990).

The primary motivation for this work is the need (Goodchild 1993) for a well-founded

theory of data quality that is applicable to distributed collections of geospatial data.

Imprecision is clearly a major dimension of spatial data quality, arising from the

granularity or resolution at which observations of phenomena are made, and from

limitations imposed by computational representation, processing and presentation.

Imprecision here is to be distinguished from inaccuracy, in the sense of error or

deviation from some notional real world value. Also, we exclude from consideration

in this paper imprecision resulting from inherent vagueness in the geographic

phenomena themselves. Scope is limited to discussion of imprecision resulting from

limitations imposed by the contexts of observations of the phenomena.

An approach is needed that will provide robust measures of imprecision associated

with geospatial data sets that can be used with both single data sets and distributed

heterogeneous collections. Indeed, given such a collection, each with its own data

model and associated levels of imprecision, the challenge is to determine what can be

known about the integrated product. In order to meet this challenge, we must

understand the components of imprecision in individual geospatial data sets, and how

they work in combination; we must be able to make inferences about the integrated

whole from knowledge of properties of its parts. Imprecision leads to vagueness, and

part of the work concerns the link between these two concepts, and the ways in which
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reasoning with vague geospatial entities may be approached. Previous work of the

author (Worboys 1998) provides the beginnings of a theoretical foundation for

reasoning with uncertain information due to spatial imprecision. This paper continues

to develop a general theory of spatial imprecision and multi-resolution, concentrating

on incorporation of semantic and geometric components. 

The process of generalization is closely connected with these concerns, and may be

thought of as applying transformations that effect integration between finer and

coarser levels of detail. In this way, generalization will provide special cases for

consideration below. Cartographic generalization has been the subject of a great deal

of research by the cartographic and GIS communities, particularly on the geometric

aspects of the generalization process (see for example Buttenfield and McMaster

1991, Müller et al. 1995). It has been recognised (Müller et al. 1995) that there are at

least two dimensions of geospatial data generalization, described in (Dettori and

Puppo 1996) as cartographic and model-oriented. In the work that follows, we shall

make a similar dichotomy between spatial and semantic components of imprecision in

a geospatial data set. Previous work on multi-resolution spatial data models includes

that of Puppo and Dettori (1995), and Rigaux and Scholl (1995).

2. OBSERVATIONS, CONTEXTS AND SCHEMATA

The starting point for our work is the notion of an observation of a phenomenon in a

source domain. The term ‘observation’ is intended to be interpreted by the reader in a

rather general setting, certainly including more than just the data collection phase.

Observations may or may not change the phenomena that are being observed. The

source domain might be the domain of application, in which case an observation

might be an on-site measurement or data collection for input to the computer. The

target domain could be within the computational system and an observation could be

data manipulation, data retrieval, or visualization of results of a computational

analysis.

An observation always takes place in a context, which provides the framework within

which the phenomenon is observed. It is the limitation placed on the observation by

association with its context that leads to imprecision. A context is represented in this

work by a schema, and we will be particularly concerned with schemata representing
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spatial and semantic contexts. A context may be determined by the observer’s location

in space-time and the nature of the observation process; and schemata provide

specifications of contexts. Figure 1 shows the various categories of schemata that will

be discussed. Spatial data models are traditionally divided into field-based and object-

based approaches (Couclelis 1992). Field-based approaches consider a spatial

phenomenon as a collection of variations of attributes over a spatial framework. The

object-based approach applies equally to spatial and non-spatial dimensions, and the

phenomenon is viewed as a collection of related elements (objects) with spatial and

non-spatial properties. There are two aspects of a schema that have a direct effect

upon the precision of the associated operation, namely extent and granularity.

Figure 1: Categories of schemata for observations of geographic phenomena

The extent of a schema is the totality of elements expressible in the schema. For

example, in the case of a semantic schema, its extent would include the collection of

taxonomic constructs in the model, maybe expressed as a collection of object types.

The semantic extent provides the ‘vocabulary’ in which the observation may be

expressed. For a spatial context, the extent will be the total area spanned by the

observation, maybe a country, road network or the domain of a remotely sensed

image. The spatial extent specifies the global spatial ‘world’ (usually a region) in

which the phenomenon is placed. Aspects of the phenomenon outside the boundaries

of that world will not be visible to the observer. Incompleteness arises when pertinent

data is missed by an observation due to the limitations of the extent of its schema. For

a simple example, a census would miss the (hypothetical) trend of young people to

move out of cities if there was no question about age on the census form. In this case,

the semantic schema does not include attribute age of class person in its extent.

Spatial incompleteness arises in a rather obvious similar manner, as it is clear that an

observation will not include information about a location outside the spatial extent of
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its context. A survey of English soccer teams will provide no direct information about

soccer teams in Scotland.

The granularity of a schema specifies the levels of detail obtainable for an

observation using that schema. For the object-based semantic component of a context,

the granularity may be expressed as the level of detail provided by the object classes

available in the object inheritance hierarchy. In a spatial context, the granularity might

relate to the resolution provided by the spatial framework, below which spatial

elements become indistinguishable, one from another. Imprecision in an observation

thus arises from limitations on the granularity of the schema under which the

observation is made. For example, an object-based topographical data model whose

only object classes for dwellings are house and cottage would not be able to

distinguish a terraced house from a detached house. Or, a quadtree representing data

to a certain granularity would not be able to be used to distinguish two elements

contained within the finest grain.

So, speaking loosely, the extent of a schema specifies the size of the window on the

observation - which classes of entities are visible, while the granularity determines the

level of detail observable through the window - which entities are distinguishable

from one another. Limitations in the extent and granularity of a schema lead to

incompleteness and imprecision respectively in the observation made with respect to

the schema. The next few sections will develop these themes further and more

formally, with special emphasis on the semantic and spatial dimensions. In particular,

we will develop a formal theory of imprecision (and to some degree incompleteness)

based upon the extent and granularity of schemata that provide contexts for

observation of geographic phenomena. The temporal dimensions of geographic space

will not be considered in this paper.

Before leaving this section we make the important point that a phenomenon may itself

be an observation of another phenomenon. This relativist position allows us to

dispense with the notion of an absolute ‘real world’ with respect to which all

observations are made, and to provide a framework in which all observations are

relative having varying degrees of associated precision.
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3. FRAMES OF DISCERNMENT

The key formal concept that provides a suitable framework for discussion of the

imprecision inherent in an observation is that of indiscernibility. Intuitively, a finite

collection1 of elements is indiscernible with respect to a particular observation if any

pair of elements in the collection cannot be distinguished from each other by the

observation. So, for example, in a remotely sensed image of a region, any two

locations on the ground which fall within the same pixel cannot be distinguished in

characteristics by the observation. 

Let us assume that we make an observation � of a particular collection S of elements.

Indiscernibility of elements is dependent upon �, for it is clear that two elements

which are distinguishable under one observation may not be distinguishable under

another. As stated earlier, it is the context in which the observations are made that is

crucial, and it is the nature of the indiscernibility relation that gives some idea of the

precision of � and its associated context. Given an observation � of set S, we can

treat indiscernibility as a binary relation �� on set S, where t �� s can be read as ‘t is

indiscernible from s by observation �’. If no ambiguity results, we omit the subscript

and refer to the indiscernibility relation as �. 

The relation � will have certain natural properties, based upon our intuitive

understanding of what it means for entities to be indiscernible. Relation � may be

assumed to be reflexive, as from the meaning of the concept it is difficult to imagine

an entity not being indiscernible from itself. It will in most cases be symmetric, in that

if t is indiscernible from s, then it will usually be correct to treat s as indiscernible

from t under the same observation. However, there are examples of observations

whose associated indiscernibility relation is not symmetric, particularly when

indiscernibility takes on characteristics of ‘similarity’. For example, we might want to

say that a figure is indiscernible from its ground, but that the ground is not

indiscernible from the figure. Asymmetric indiscernibility relations are discussed by

Slowinski and Vanderpooten (1995, 1996), and are not considered further here.

It will not always be the case that relation � is transitive, where if u is indiscernible

from t and t is indiscernible from s then u is indiscernible from s. For example, when

                                                          
1 All sets considered in this paper are assumed to be finite.
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indiscernibility is thought of as being related to ‘nearness’, if u is near to t and t is near

to s then u may not be near to s. However, transitivity will be assured when

indiscernibility is induced by a partition of the underlying set S, for example in the

pixellation of a image, and transitivity will be assumed in much of what follows.

An indiscernibility relation � on set S with respect to observation � leads to a

collection of subsets of S, R�(S) = {R�(s) | s � S} (or just R(S) if there is no

ambiguity), where each element R�(s) is defined by R�(s) = {t � S | t �� s}.The set

R�(S) is termed the frame of discernment of S with respect to �, following the usage

in Shafer (1976). This term indicates an epistemological dimension to the concept,

and this is quite appropriate as an observer of a phenomenon can only represent

propositions concerning it within the frame of discernment: any finer detail would not

be discernible within the observation �. In the case when indiscernibility is reflexive,

symmetric and transitive, that is an equivalence relation, then the frame of

discernment provides a partition of the set of elements of the phenomenon under

observation.

So, given a phenomenon under observation, the granularity of the observation’s

schema induces a mapping (in the mathematical sense) of subsets of a source set

(being the collection of constituents of the phenomenon) into a finite target set, where

elements that are indiscernible by observation are identified in the target set. We may

note that in general a single constituent of the phenomenon may belong to more than

one element of the frame of discernment, when indiscernibility is an equivalence

relation, the frame of discernment provides a partition of the source set.

3.1 SEMANTIC FRAMES OF DISCERNMENT

This section shows how semantic data models provide contexts for observations of

phenomena. As with all contexts, imprecision is introduced and is describable using

an indiscernibility relation and frame of discernment.

The semantic context of an observation is provided by the semantic data models that

the observation is made with respect to. A semantic data model provides an

implementation-independent representation of the structure of the information

comprising the phenomenon under observation. The are several types of such model -

see Peckham and Maryanski (1988) for a review - but maybe the one in most common
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use is the so-called entity-relationship (ER) model (Chen 1976). In the ER approach,

the structure of the information space is seen as composed of entities, each of which

has an independent and uniquely identifiable existence in the application domain.

Entities are describable by means of their attributes (for example, the name, boundary

and population of a country), and have explicit relationships with other entities.

Entities are grouped into entity types or classes, where members of the same class

have the same attribute and relationship structure.

Imprecision will arise if the granularity of the semantic data model does not match the

semantic detail of the phenomenon under observation. For example, if the

phenomenon being studied consisted of flows on a heterogeneous transportation

network (road and rail, say), and the model had only the single entity class road, then

only total flows on roads could be observed, even if in the underlying phenomenon

there were important distinctions between flows on major trunk roads, minor roads

and inner-city roads. Such a level of detail just could not be captured, due to the

imprecision imposed by the semantic model.

Reasoning with imprecision in semantic schemata is an important aspect of geospatial

uncertainty management. It is only when imprecision in different schemata structuring

distinct observations of the same phenomenon is understood can we be confident

about the results of integration and generalisation. A simple example of semantic

integration is shown in figure 2, where two small entity-relationship diagrams have

been integrated into a larger diagram. In order to perform this integration, we would

need to know that class car in the left-hand schema is a subclass of class vehicle in

the right-hand schema, and that road and rail are both subclasses of class transport

medium. Such additional information would be provided by an integration schema

maintained in a metasystem.
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Figure 2: Integration of semantic data models specified by ER diagrams

There is a large body of work on mechanisms for integration of schemata of this kind

and we will not pursue the subject further here. For an early review of schema

integration methods, see Batini et al. 1986. Baader et al. (1997) contains several

papers on formal approaches, include use of logics, for information integration. 

In order to address the question of the degrees of imprecision introduced by semantic

schemata, we consider a special category of semantic schemata, namely inheritance

hierarchies related to taxonomies, and develop a formal theory of semantic

imprecision in this case. Inheritance hierarchies (Smith and Smith 1977) are an

important component of almost all contemporary semantic data modelling

methodologies. Classes are arranged in a hierarchy, with classes lower in the hierarchy

modelling finer details of the taxonomic classification of objects in the information

space. The details modelled at each stage depend on the category of semantic model

being used. In the case of the (enhanced) entity-relationship model, properties

inherited by subclasses from superclasses might be attributes and relationships to

other classes. In an object-oriented model (Worboys et al. 1990, Worboys 1994),

subclasses might also inherit behaviour in the form of operations from superclasses. In

the case of multiple inheritance, where a subclass can inherit from more than one

superclass, some form of conflict resolution is required if inherited properties conflict.

An inheritance hierarchy as a first approximation may be modelled as a partially

ordered set (poset) < S, � >, where S is a set of classes and for classes s, s´ � S, s � s´

expresses the fact that class s is a subclass of class s´. We can assume that the partially

ordered set has a top element, representing the most general class, called here feature.

The definitions above allow the hierarchy to have both single and multiple
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inheritances. An example of such a hierarchy is shown in figure 3.  It should be noted

that the formal model of an inheritance hierarchy developed here is simplified in the

following ways:

� Only inheritance of attributes is considered; inheritance of methods, as found in an

object-oriented data model, is not accounted for here.

� No constraints are placed on multiple inheritance. For example, it would be natural

to specify that an observed entity might simultaneously be of types artificial

feature and water-related feature, but could not be of types canal and dwelling

at the same time. These constraints are not expressible in the simplified model.

Figure 3: Semantic data model as a taxonomic inheritance hierarchy

Taxonomic imprecision is introduced when an observation of a phenomenon (which

remember may itself be an observation) is made in a context whose semantic schema

contains a taxonomy that is coarser than the taxonomy inherent in the phenomena

itself. The notion of coarser and finer taxonomies may be formally expressed using the

concept of an upper set, whose definition is now given.

An upper subset U of a partially ordered set S is a subset of S with the property that

for all elements u of U and s of S, if u � s, then s is an element of U.
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Figure 4 shows two upper subsets of the inheritance hierarchy in figure 3. There is

clearly a sense in which these hierarchies are less precise than the original. The set of

all upper subsets of a partially ordered set is closed with respect to set union and

intersection. An upper subset of a hierarchy is itself a hierarchy (that is why we use

upper subsets), and the space of all upper subsets of a hierarchy models all coarser

subhierarchies of a given hierarchy.

Figure 4: Two subhierarchies of the hierarchy in figure 3

The next step is to show that a coarsening of a hierarchy leads to a partitioning of the

original classes forming the semantic entities of the phenomenon. To show this

formally, let s be an element of partially ordered set S, and for upper subset U of S and

element s of S, define U(s) = {u � U | u � s}. We note that U(s) is itself an upper

subset of U. Now use U to define an indiscernibility relation on S as follows:

For all s, s´ � S, s �U s´ if and only if U(s) = U(s´)

This indiscernibility relation �U is an equivalence relation that induces a partition

PU(S) of S, whose blocks, [s]U, where s � S, consist of subsets of elements all

equivalent to each other (and to s). The partition is referred to as a semantic frame of

discernment, and is an expression of the taxonomic imprecision introduced into the

observation of the phenomenon by the subhierarchy U. 

It can be observed that each block of PU(S) contains at most one member of U, for

suppose that u, u´ � U, and u and u´ are in the same block of PU(S). Then

U(u) = U(u´), u � u´ and u´ � u, so u = u´.
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To continue with our example, the two subhierarchies shown in figure 4 induce

partitions of the classes shown in figure 5. Subhierarchy-1, whose elements are shown

in thick-edged boxes in the left-hand part of the figure, partitions the set of classes

into the blocks: {feature}, {water-related feature, river}, {canal, lighthouse},

{artificial feature, dwelling, road, cottage}. Subhierarchy-2, whose elements are

shown in thick-edged boxes in the right-hand part of the figure, partitions the same set

of classes into the blocks: {feature, artificial feature, dwelling, road, cottage},

{water-related feature, lighthouse} {river}, {canal}. The next section discusses

relationships between and operations on partitions in more detail, and the examples

shown here will be used to illustrate the ideas for semantic schemata.

Figure 5: Partition frames induced by the two subhierarchies in figure 4

3.2 SPATIAL FRAMES OF DISCERNMENT

The spatial granularity associated with an observation relates to the level of spatial or

geometric detail at which the phenomenon may be observed, and may be variable over

the spatial extent. Spatial granularity used to be closely coupled with scale in the

representation of geographic detail, but digital spatial data make this relationship

rather more indirect (Goodchild and Proctor 1997). Any observation of data that are

referenced to spatial locations, whether point, line or area, has associated with it a

degree of geometric imprecision dependent upon the context in which it is made. This

spatial context is determined by several factors:

� The nature of the geographic phenomenon (e.g., the context for a collection of

administrative areas would be different from a context for a road network).
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� The nature of the data collection mechanism (e.g. determined by a surveyor’s

measurement device or based on a framework of pixels of radiation received by a

remote sensing device.

� The form of computational modelling paradigm (e.g. field-based or object-based).

� The form of computational representation and spatial data structure

� The medium in which results are presented and visualised.

The combination of one or more of these factors will result in an indiscernibility

relation between elements of the source domain, as before induced by the schema of

the context in which the observation is taking place. As with the earlier cases, the

indiscernibility relation induces a spatial frame of discernment on the collection of

spatial elements of the geographic phenomenon.

Imprecision is a property of an observation that leads to uncertainty, an

epistemological property, in the observer. Clearly, imprecision and uncertainty are

related notions. Couclelis (1996) provides a summary of the nature of uncertainty and

imprecision in a spatial setting. There is a considerable body of related previous work

on spatial imprecision. A computer-based representations of geographic phenomena

are, by the nature of the paradigm, discrete. Examples of explicit discrete spatial data

representations include the notion of a ‘realm’ (Güting and Schneider 1993),

hierarchical spatial data structures (for example, Samet 1989), and hierarchical terrain

models of De Floriani and her colleagues (1994).

Another approach to spatial uncertainty has been through fuzzy spatial objects. The

fuzzy approach to geographic regional boundaries (and thus to the regions themselves)

has been researched by several authors, for example, Davis and Keller (1997), Mark

and Csillag (1989), Wang and Brent Hall (1996). The essence of the approach is that

uncertainty of membership of a location in a region is indicated by a real number

between 0 and 1, where a membership value of 0 indicates that the location is

definitely not in the region, a value of 1 that the location definitely is in the region,

and the magnitude of an intermediate value indicating a level of certainty that the

location is in the region.

Related to the fuzzy formalism is the notion of vagueness  in geographic phenomena.

This is distinguished from the work using fuzzy approaches by the qualitative nature
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of the reasoning methods. Recent examples of literature using this approach are Cohn

and Gotts (1996), Erwig, and Schneider (1997), Fisher (1997) and Worboys (1998).

In a sense, spatial imprecision is easier to formalise than semantic precision, at least if

we assume a simple model of the underlying space. In this paper, we assume that the

spatial frame of discernment partitions the space in which the phenomenon occurs into

a finite set of connected subregions. This type of spatial frame is very common in

many types of observations of geospatial phenomena. For example, a remotely-sensed

image will partition the extent of the observed space into a set of pixels. It is easy to

see that in these cases, elements of the phenomenon within the same pixel are

indiscernible from each other, indiscernibility is an equivalence relation, and the

associated spatial frame of discernment is just the resulting partition. However, it is

possible to imagine richer kinds of indiscernibility relation, for example resulting

from topological generalization, and these would lead to wider classes of spatial

frames.

4. FRAME SPACES

We have seen that semantic inheritance hierarchies and spatial schemata both lead to

an indiscernibility relation that is an equivalence relation. In this case, the frame of

discernment forms a partition P of S, called a partition frame of discernment, and as

this is clearly an important subcase, we now examine it in further detail.

When we come to consider data integration and generalisation, it will be important to

move between schemata that in general will have different associated frames of

discernment. Assume that the data sets all arise from observations of the same

geographic phenomenon, that is, the source set S is the same in each case. We now

consider the space P = P(S) of all partition frames of discernment over S.

The space P is a lattice, when a partial order � on P is defined as follows. For P1 and

P2 belonging to P, P1 � P2 if and only if �x � P1, 	y � P2 such that x 
 y (Grätzer

1978). The idea behind this definition is that a partition frame is less than another in

the partial ordering if it provides a finer granularity. For any two partition frames P1

and P2 of S, it is always possible to form their greatest lower bound P1 � P2 and least

upper bound P1 � P2 (see figure 6 for an example).
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Figure 6: Meet and join of two partition frames

The greatest lower bound �P of any finite set P = {P1, …, Pn} of partition frames is

given by:

�P = {x1  …  xn | x1 � P1, …, xn � Pn and x1  …  xn � �}

The construction for the upper bound �P of any finite set P = {P1, …, Pn} of

partitions is a little more complicated, and may be better described using the

equivalence relations �1, …, �n that induce the partition frames P1, …, Pn,

respectively. Construct a new equivalence relation � as with the following definition:

For all u, v � S, u � v if and only 	 w1, …, wm � S such that

u �0 w1, w1 �1 w2, …, wm �m v

where �i � {�1, …, �n} for 0 � i �m.

The partition frame �P induced from � can be shown to be the least upper bound of

the finite set P = {P1, …, Pn} of partition frames (Grätzer 1978).
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Thus, P is a lattice. Furthermore, P has top and bottom elements, the top element T

being the partition frame consisting of the single block S, and the bottom element �

the partition whose blocks are the singleton sets {s} for each s � S. 

Any subset of P with a top element the same as the top element of P, and that is

closed under partition meets will be termed a frame space.

4.1 SPATIAL AND SEMANTIC FRAME SPACES 

Spatial frames of discernment are discussed in a companion paper [34] and will not be

considered further in this section. With regard to semantic frames, in the special case

that the schema is based upon semantic hierarchical data model, semantic frames of

discernment have been shown in section 3.1 to arise from subhierarchies of taxonomic

inheritance hierarchies. Clearly, not every partition of the set of semantic classes

arises from a subhierarchy of the set, so in general the subset of frames of discernment

based upon subhierarchies of a given semantic hierarchy is a proper subset of the full

set of partitions. The question arises whether this subset is a frame space. This is

indeed the case, and to show this all we need is the following theorem.

Theorem

Let < S, � > be a poset and U and V be upper subsets of S. Then, the following

equality holds:

PU(S) � PV(S) = PU � V(S)

Proof

The following chain of equalities provides a brief indication why the equality holds.

PU(S) � PV(S) = {[s]U  [t]V | s,t � S, [s]U  [t]V � �}

= {[s]U  [s]V | s � S}

= {[s]U � V | s � S}

= PU � V(S).

■
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Figure 7: Partition induced by the join of the upper subsets in figure 5

The example in figure 7 illustrates this result using the subhierarchy-1 and

subhierarchy-2 from figure 5. The upper set of nodes (call it U) of subhierarchy-1 is

{feature, water-related feature, artificial feature}, and the upper set of nodes (call

it V) of subhierarchy-2 is {feature, water-related feature, river, canal}. In this

example, U � V = {feature, water-related feature, artificial feature, river, canal},

as shown as the collection of thick-edged boxes in figure 7, and it can be checked that

the induced partition frame of discernment consists of blocks {feature}, {water-

related feature}, {river}, {lighthouse}, {canal}, {artificial feature, dwelling,

road, cottage}. It can be checked further that this partition is the meet of the partition

frames of U and V.

Suppose we are given two partition frames of discernment PU(S) and PV(S) over a

given source set S, induced by subhierarchies represented by upper sets U and V. Then

the above theorem shows that their meet is given by the partition PU � V(S). Therefore,

PU � V(S) is itself a partition frame of discernment over S, induced by the subhierarchy

represented by the upper set U  V. Thus, partition frames of discernment induced by

subhierarchies of a fixed hierarchy are closed under partition meet, and so form a

frame space.
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We may note in passing that the corresponding equality concerned with partition joins

does not hold, for in general PU(S) � PV(S) � PU � V(S). However, it is possible to

show the weaker result that PU(S) � PV(S) � PU � V(S).

5. THEORY OF IMPRECISE OBSERVATIONS

We are at last in a position to formally define an observation with respect to an

imprecise context specified by a schema. The given schema, whether semantic or

spatial will consist of a collection of schema elements, partitioned by the

indiscernibility (equivalence) relation. In the case of a spatial schema, the elements

will be blocks in a partition of the underlying spatial framework for the observation;

and in the case of the inheritance hierarchy that provides an example of a semantic

schema, the elements will be blocks of a partition of the poset of semantic classes. As

above, we will call partitions of the set of schema elements induced by an

indiscernibility relation, frames of discernment.

An observation of a phenomenon with respect to a schema is an assignment of values

from the truth set T = {yes, maybe, no} to the frame of discernment F. The meaning

of this assignment is that for each element f � F, the observation does one of the

following:

1. Observes the phenomenon as definitely instantiated at f � F.

2. Observes the phenomenon as possibly instantiated at f � F.

3. Observes the phenomenon as definitely not instantiated at f � F.

In the case of spatial frames, the instantiation indicates that the phenomenon is

definitely, maybe, or definitely not located at that element of the spatial framework. In

the case of semantic frames, the instantiation indicates that the phenomenon is

definitely, maybe, or definitely not an instance of the class or collection of classes in

the inheritance hierarchy. In general the observation is not totally unconstrained. For

example, if the spatial extent of a phenomenon is known to be a connected region,

then the blocks of the spatial schema must be contiguous. We will return to this

question for semantic schemata shortly.

Given an observation �, we may define the following two subsets of the frame of

discernment F.
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L�(F) = {f � F | �(f) = yes}

U�(F) = {f � F | �(f) = yes or �(f) = maybe}

L�(F) is called the lower approximation for the observation �, and contains all those

frame elements which are definitely involved with the phenomenon, while U�(F) is

called the upper approximation for the observation �, and contains all those frame

elements which are possibly involved with the phenomenon. This approach is

reminiscent of the theory of rough sets (Pawlak 1982, 1991, 1993), which is a formal

approach to reasoning under conditions of imprecise information. The sets L�(F) and

U�(F) may be thought of as providing respectively pessimistic and optimistic

approximations to properties of the phenomenon under observation, given the

imperfect granularity provided by the frame. In general L�(F) 
 U�(F). It may be

noted that L�(F) = U�(F) if and only if the relevant properties of the phenomenon are

observed with total precision (crisply).

An observation thus results in a pair <L, U> of sets, where L 
 U 
 F, and called an

F-granular object (granular object). We are thinking here of the frame F as a

granulation of a finer set S (granularity being imposed by the imprecision of the

observation). To the degree of precision admitted by the frame, <L, U> may represent

any subset X of F such that �L 
 X 
 �U. It will often be useful to think of <L, U>

as actually being the set of all possible such subsets of S. For an example of a vague

spatial region, figure 8 shows on the left a vague granular object (definite area in

darker grey and possible area in lighter grey) and on the right the boundaries of three

of the regions that it might represent.
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Figure 8: Example of a granular object and some of the regions it might represent

5.1 OBSERVATIONS WITH SEMANTIC FRAMES

This section considers observations with respect to semantic schemata. We have

already noted that the assignment that defines an observation is not unconstrained. For

example, an observation that notes a phenomenon as a possible instance of a class

cannot at the same time note the phenomenon as definitely not an instance of a

superclass (an observation cannot both note something as possibly a house but

definitely not a building, because assuming the usual definitions of these classes, a

house is a building). 

Assume we are given a semantic schema provided by an inheritance hierarchy

represented by the poset S. If we place an ordering relation on T as no � maybe � yes,

then we can formally define a semantic observation as an order preserving function �

from S to T. That is, � : S � T such that for all s, s´ � S, s � s´ implies that

�(s) � �(s´).

In the case when the observation is imprecise with respect to the original schema, the

observation is an assignment �U of values of T to elements of an upper subset U of S.
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This assignment can be propagated in a unique way to all nodes in S as follows.

Define �U(s) = inf {�(u) | u � U(s)}, where, for X 
 T, inf(X) is the unique minimum

element of X if X is non-empty, and inf(�) = yes. It is clear that elements in the same

block of the partition PU(S) will have the same assignment, so �U induces a function

(overloaded with the same name) on the partition frame of discernment PU(S).

Figure 9: Observation based upon a subhierarchy from figure 4

Figure 9 shows an observation �U, based upon the subhierarchy U = {feature, water-

related feature, artificial feature} of our usual example hierarchy (see figures 3 and

4). In this case:

�U(feature)  = yes 

�U(water-related feature)  = maybe 

�U(artificial feature)  = yes 

We can notice that �U is order preserving, and use the above construction to lift to

function �U on the frame, with our theory necessitating the following assignments:

�U({feature})  = yes 

�U({water-related feature, river})  = maybe 

�U({artificial feature, dwelling, road, cottage})  = yes 

�U({canal, lighthouse})  = maybe 
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5.2 OBSERVATIONS WITH SPATIAL FRAMES

In this paper, we are assuming that the spatial frame of discernment partitions the

space in which the phenomenon occurs into a finite set of connected subregions. The

topology of the underlying space induces a topology on the spatial frame. In general,

an observation with respect to a spatial frame is the assignment of any elements of set

T to elements of the frame. However, extra information will constrain the assignment.

For example, if the location of the geographic phenomena is known to be connected,

then L�(F) and U�(F) are not completely unconstrained. Figure 10 shows several

observations of an areal extent, and if further question arises as to whether the areal

extent is connected, then we can reason that

� Observation A cannot be of a connected region

� Observation B can only be of a connected region if the right-hand ‘maybe’ area is

definitely not part of the region.

� Observation C can be of a connected region, but the region is wholly contained in

either the right-hand or left-hand ‘maybe’ area, but not both.

� Observation D can be of a connected region.

A

C D

B

Figure 10: Spatial observations
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Further work on the topology of imprecise spatial extents is required to formalise

reasoning of this kind. 

5.3 INTEGRATING IMPRECISE OBSERVATIONS

The work so far has provided a formal framework for the treatment of single

observations of a geographic phenomenon. This section discusses how more than one

observation may be amalgamated. A general question that will also be considered is

how an observation made with respect to one schema may be represented with respect

to another schema (see figure 11). In general, we use the term transport for this

movement between schemata; in the case when the second schema is more imprecise

than the first, then transport becomes generalization.  

Figure 11: Transport between schemata

We begin with some more fundamental considerations. Assume an underlying fixed

semantic or spatial partition frame space P relating to observations of a phenomenon

with source set S. The first step is to provide a partial order on the frame space, that

expresses the idea that one observation may be more precise than a second. In order to

make comparisons between observations, we need some way of relating them across

their corresponding frames. This is done by using the underlying common source set

S, and an embedding function emb that assigns to each entity in the partition space the

subset of the set S that it occupies. 

Formally, let P � P be a partition frame with source set S, and p  � P. Then define the

embedding of p in S by emb(p) = �p. Further, define the embedding of the P-granular

object O = <L, U> as:

emb(O) = <emb(L), emb(U)>.

Different granular objects, with different granularities, may have the same

embeddings when the entities that they represent occupy the same portion of the
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source set S. This is expressed formally by defining relation � on the set of all

observations in the frame space P as follows. Let O1 = <L1, U1> be a P1-granular

object, and O2 = <L2, U2> be a P2-granular object, where P1 and P2 are partitions in P.

Then O1 � O2 if and only if emb(O1) = emb(O2). It is immediate that � is an

equivalence relation. The set of equivalence classes is called the embedded object

space. Now, define an ordering in the embedded object space. Let T1 and T2 be

elements of the embedded object space. Let T1 = [ O1 ] and T2 = [ O2 ], where P1--

granular object O1 = <L1, U1> and P2--granular object O2 = <L2, U2> are

representatives of equivalence classes of resolution objects in the embedded object

space. 

Define T1 � T2 if and only if emb(L1) � emb(L2) and emb(U1) 
 emb(U2). It can be

shown that � is well-defined in the embedded object space, and in that space � is a

partial ordering. The intuition behind this ordering is that T1 � T2 expresses the fact

that T1 is a more precise observation than T2.

We now address the transport question: if we know the representation of an object at

one granularity, what is its representation at a second granularity? Let O = <L, U> be a

P-granular object and let a second partition P� be given. Then, define the P�-granular

object O� = <L�, U�> to give the best possible representation of the same entity, in the

following way. For x � P�:

x � L� if and only if emb(x) 
 emb(L)

x � U� if and only if emb(x)  emb(U) � �

We note that O � O� , and this accords with intuition, as we would not expect to gain

precision by transferring the observation of a geographic phenomenon from one frame

of discernment to another, without additional information being provided. Figure 12

shows an example, where observation O1 is represented as observation O2 in a

different frame.
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O 1 O 2

Figure 12: Transport of an observation to a different frame

In order that a set of observations of an object in different frames may be

amalgamated, they may need to be compatible. For example, if the observations all

purport to be spatial observations of the same underlying spatial region, then it cannot

be the case that in one frame a particular location is definitely part of the region while

in another frame the same location is definitely not part of the region. The notion of

observation compatibility is discussed in (Worboys 1998) for the case of spatial

frames. The most important point is that several compatible observations of the same

phenomenon may be amalgamated so as to improve precision. Figure 13 shows an

example of this for an amalgamation of two compatible spatial observations (shown

on the left) of a region into a region shown on the right. It can be noted that the

amalgamated region is a more precise observation than either of its constituents,

having a larger definite area and smaller possible area. Further formal details may be

found in (Worboys 1998).
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Figure 13: Amalgamation of two compatible spatial observations

6. CONCLUSIONS

The phenomena that this paper has discussed have their extents in geographic space.

There has been discussion of the nature of geographic space (Egenhofer and Mark

1995, Montello 1992), and it can at least be agreed that its components include

geometric (metric and topological space) and temporal dimensions, as well as

domains of attributes. This paper has provided a formal framework in which we can

reason about imprecision introduced by observations of the spatial and attribute

components of geographic phenomena. In the context of geographic phenomena, the

paper has formalized the notions of imprecision, indiscernibility, frame of

discernment and imprecise observation. We have also provided the beginnings of a

treatment in which observations of the same or different phenomena may be

integrated, and the imprecision of the integrated product discussed. Further work is

needed on:

� Incorporation of temporal contexts.

� Elaboration of semantic schemata to move beyond simple taxonomic hierarchies.

� Elaboration of spatial schemata to include examples of topological generalization,

and a theory of imprecise topological reasoning.

� A fuller theory of observation amalgamation.
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� Integration of semantic, spatial and temporal schemata into a seamless theory of

imprecision of geographic information.

� Resulting theory of reasoning with vague geographic information.
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