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Abstract

Computational Advertising, popularly known as online advertising or
Web advertising, refers to finding the most relevant ads matching a
particular context on the Web. The context depends on the type of
advertising and could mean – content where the ad is shown, the user
who is viewing the ad or the social network of the user. Computational
Advertising (CA) is a scientific sub-discipline at the intersection of
information retrieval, statistical modeling, machine learning, optimiza-
tion, large scale search and text analysis. The core problem addressed
in Computational Advertising is of match-making between the ads and
the context.

CA is prevalent in three major forms on the Web. One of the forms
involves showing textual ads relevant to a query on the search page,
known as Sponsored Search. On the other hand, showing textual ads
relevant to a third party webpage content is known as Contextual Ad-
vertising. The third form of advertising also deals with the placement
of ads on third party webpages, but the ads in this form are rich mul-
timedia ads – image, video, audio, flash. The business model with rich
media ads is slightly different from the ones with textual ads. These
ads are also called banner ads, and this form of advertising is known
as Display Advertising.

Both Sponsored Search and Contextual Advertising involve retriev-
ing relevant ads for different types of content (query and Web page). As
ads are short and are mainly written to attract the user, retrieval of ads
pose challenges like vocabulary mismatch between the query/content
and the ad. Also, as the user’s probability of examining an ad decreases
with the position of the ad in the ranked list, it is imperative to keep the
best ads at the top positions. Display Advertising poses several chal-
lenges including modeling user behaviour and noisy page content and
bid optimization on the advertiser’s side. Additionally, online advertis-
ing faces challenges like false bidding, click spam and ad spam. These
challenges are prevalent in all forms of advertising. There has been a lot
of research work published in different areas of CA in the last one and
a half decade. The focus of this survey is to discuss the problems and
solutions pertaining to the information retrieval, machine learning and
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statistics domain of CA. This survey covers techniques and approaches
that deal with several issues mentioned above.

Research in Computational Advertising has evolved over time and
currently continues both in traditional areas (vocabulary mismatch,
query rewriting, click prediction) and recently identified areas (user
targeting, mobile advertising, social advertising). In this study, we pre-
dominantly focus on the problems and solutions proposed in traditional
areas in detail and briefly cover the emerging areas in the latter half
of the survey. To facilitate future research, a discussion of available re-
sources, list of public benchmark datasets and future directions of work
is also provided in the end.

K. Dave and V. Varma. Computational Advertising: Techniques for Targeting
Relevant Ads. Foundations and Trends R© in Information Retrieval, vol. 8, no. 4-5,
pp. 263–418, 2014.
DOI: 10.1561/1500000045.



1
Introduction

Advertising plays a vital role in supporting free websites and smart-
phone apps. Most of the popular websites like Google, Bing, YouTube,
Yahoo!, Facebook, LinkedIn have a major share of their revenue com-
ing through some form of advertising. Even small sites like blogs, home
pages, forums are mostly supported by ads. The recent surge of interest
in the research communities (industry and academia) is a testimonial
of the huge promise the science of CA has on offer.

Computational Advertising, a term recently coined, is about us-
ing various computational methodologies to do contextually targeted
advertising Broder [2008]. The central problem addressed in CA is: tar-
geting ads that best match the context. The context involves content
(query, Web page content), user information and location information.
Instances of content based targeting include Sponsored Search and Con-
textual Advertising. Sponsored Search (SS) refers to the placement of
ads on search results page. In SS, the context is the query issued by
the user and the problem is to retrieve top relevant ads that seman-
tically matches the query. Contextual Advertising (ConAd) deals with
the placement of ads on third-party Web pages. It is similar to SS, with
the ads being matched to the complete Web page text as opposed to

3



4 Introduction

a query. Display Advertising involves showing rich media ads (image,
flash, video and audio) based on the page context, user information
and/or location.

Placing contextually relevant ads has a two-fold advantage. First,
the user’s immediate interest in the topic can be exploited, which in
turn increases the chance of users exploring the ads. More relevant the
ads, higher are the chances of user viewing/clicking the ad and better
are the chances of increase in the revenue generated Kirmani and Yi
[1991], YI [1990], Wang et al. [2002]. Second, it leads to a better user
experience. On the other hand, randomly placing ads may lead to a
poor user experience Wang et al. [2002].

1.1 Introduction to Computational Advertising

The core problem addressed in Computational Advertising is to find the
best matching ads for a given context. Based on the targeting scheme,
the context involves a combination of the content (Web content/query),
user profile, demographics and other contextual aspects. Based on the
form of advertising, one or more of the contextual factors may be lever-
aged to get relevant ads. Ad targeting in Sponsored Search and Contex-
tual Advertising is different on many levels than Display Advertising.
One of the primary differences is that Display Advertising deals with
rich media ads (also known as banner/display ads) as compared to
the other two forms which deal with textual ads. Also, the underly-
ing business model for display ads is different from the textual ads.
The challenges faced in textual ads and banner ads however are sim-
ilar as all three forms of ads look at putting the best ads matching
the context. In this survey, we mostly look at the challenges from the
information retrieval and modeling perspective. Hence, most part of
the survey is focussed on presenting techniques dealing with textual
ads. Having said that, some of the techniques presented in this study
also apply to Display Advertising as the science involved is similar. In
the latter part of the second half, we discuss the business model and
the recently evolved Real-Time bidding process in Display Advertis-
ing Wang and Yuan [2013], Pandey [2013], iPinYou [2014], Yuan et al.
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[2013], Chen et al. [2011], Weinan Zhang [2014]. In the first half of the
survey, we discuss techniques from the perspective of textual ads. Also,
we refer to textual ads as ads unless otherwise mentioned. Displaying

Ads

Content
(query/

 web page/
microblogs)

Match Ads
For query,
 user

Retrieved Ads
for query Q, user U

Click Prediction
p(c|Q,A,U)

Ranked Ads

User
behavior
/profile

Figure 1.1: A typical ad system for Sponsored Search and Contextual Advertising:
Once the ads are retrieved, they are ranked based on the probability of a click given
the query, ad and the user

textual ads is typically done through a two-step process. The first step
is to retrieve the relevant ads, as shown in Figure 1.1. The retrieved ads
are then ranked based on the relevance and the ad value (bid amount).
The retrieval and ranking of ads are separate stages in the overall ad
placement process for the following reasons: 1. The retrieval of ads is
done based on relevance only while the ranking needs to be done based
on the value of the ad (bid amount) along with the relevance of the ad
to the context. Hence, the criteria for both the processes are different.
2. Ad engines typically have billions of ads registered with it, and it is
infeasible to rank a billion ads for a given query/content. Instead, first
retrieving top-k relevant ads and ranking them based on the monetary
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Ad Title
Display URL

Description

Original URL
(Not visible)

http://www.samsung.com/us/register/galaxy-phone/

Bid Phrase: Samsung phone
Bid amount: $0.4
(Not Visible To User)

Figure 1.2: Structure of a typical textual Ad

value and relevance is more feasible and reasonable. Figure 1.1 shows
a typical ad retrieval process. First, the top-k ads are retrieved. Next,
they are ranked based on the click-through rate of the ad and the bid
amount for the ad.

As content targeting deals with textual ads, we start with the de-
scription of a typical textual ad. Next, we describe how different types
of content targeted advertising work. A sample ad is as shown in Figure
1.2.

1.1.1 Anatomy of a Textual Ad

A typical textual ad contains following fields Bendersky et al. [2010]:

• Bid term/phrase: The term bid by the advertiser for the ad.
This is invisible to the user, and it is used to indicate what content
the ad should be shown against. For each bid term bid by the
advertiser, they have to pay the bid amount.

• Bid amount: The amount bid by the advertiser for the bid
phrase. This too is invisible to the user.

• Title: This is the title of the ad.

• Description/Creative: The description is the text displayed
below the title. It typically consists of a short description of the
ad and is usually written to attract the user. It is also known as
creative.
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Figure 1.3: Landing page for the ad shown in Figure 1.2 (Notice the origi-
nal/landing page URL is different from the display URL)

• Display URL: The URL displayed in the ad. To improve the
presentation of ads and to reduce the space, the display URL
is usually different from that of the original/landing page URL.
The landing page for an ad is the page where a user lands after
clicking on an ad as shown in Figure 1.3.

1.1.2 Matching Strategies and Pricing

Typically ad placement engines allow two different matching strategies
for advertisers – Exact match and Broad/Advance match Choi et al.
[2010]. Regardless of the matching strategy, every advertiser has to bid
some amount on their bid phrase as shown in Figure 1.2. Next, the
advertiser needs to choose the matching strategy. In the case of exact
match, an ad is retrieved only if there is an exact match between the
bid phrase of the ad and the text (query or Web page). In this scenario,
the advertiser has knowledge of the keywords that are relevant to their
business and makes a bid accordingly. Traditional information retrieval
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algorithms1 like vector space model are usually employed for exact
match systems.

Broad match allow advertisers to choose initial bid phrase, and the
ad placement engine takes care of finding relevant content for the ad
even if there is no exact match. This relaxes the constraint of com-
ing up with all relevant bid phrases for the exact match involved in
the previous case. Advertisers still have to bid on their ad. This bid-
ding is real time, and as we will see later on in Chapter 6, the bid
amount plays an important role in the position at which the ad is
shown. With broad/advance match the ad placement engines employ
sophisticated techniques to retrieve ads that are outside the syntax of
the bid phrase of an ad. Due to the ease and the coverage involved
with the broad/advance match, a majority of advertisers opt for ad-
vance match.

In an online advertising ecosystem, one of the following pricing
schemes is adopted: Pay-per-Click (PPC), Pay-per-Impression (PPI),
and Pay-per-Transaction (PPT) Broder et al. [2007]. In PPC model,
the advertiser pays some amount each time a user clicks their ad. In PPI
model, the advertiser pays every time their ad is displayed against the
content. While in a PPT model the advertiser has to pay only when
a user does a transaction after clicking on the ad. Sponsored Search
and Contextual Advertising typically follow PPC model Broder et al.
[2007, 2008b], Radlinski et al. [2008]. Display Advertising follows the
PPI model Shen [2002], Li and Jhang-Li [2009].

Earlier, ad engines used to rank ads solely based on the amount bid
by the advertiser. This, intuitively, was the most obvious way of maxi-
mizing revenue. However, ad engines soon realized that not all the top
bid ads are relevant to the content. Irrelevant ads can result in user dis-
satisfaction Wang et al. [2002]. Hence, ad engines started ranking ads
as a function of both relevance and expected revenue Richardson et al.
[2007]. Displaying ads against the content is typically done through a
two-step process. First, the top k ads are fetched from the ad database
based on the extent to which they match the content. Fetching the ini-

1For a timeline on IR techniques, readers are advised to refer to Sanderson and
Croft [2012]
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tial top-k ads based on the content ensures that the ads to be displayed
are relevant to the content. Once these top ads are retrieved they are
ranked so as to maximize the overall expected revenue. Ranking in such
a two-step fashion caters to the need of all the four parties involved –
User, Advertiser, Publisher and Ad engine.

1.1.3 Scenarios in Online Advertising

In this section, we present the three most prevalent advertising scenar-
ios in online advertising – Contextual Advertising, Sponsored Search
and Display Advertising.

Contextual Advertising

A typical Contextual Advertising scenario is as shown in Figure 1.4. To-
day, many of the non-transactional websites rely at least to some extent
on advertising revenue. Content targeting involves targeting websites
ranging from blogs, forums, news pages, home pages to products sites
and beyond. A user’s visit on a page typically indicates their implicit
interest in Web page’s topic Broder et al. [2007]. This implicit interest
can be exploited by placing relevant ads next to the content as there is
a higher chance of user visiting the ad if it is relevant to the content.
As shown in Figure 1.4, the content is about ‘Fishing tips’ and hence
the relevant ads on fishing equipments and places for fishing.

Contextual Advertising can be seen as an interaction between the
publisher, advertiser, ad placement engine, and the user. The publisher
is the owner of content/Web page being targeted. The advertiser seeks
to place their ad on the Web page. The ad placement engine acts as
a mediator between the publisher and the advertiser. The ad place-
ment engine decides which advertisement to be shown to which user.
The user visits a Web page and is served the advertisements. Many
research papers discuss work on Contextual Advertising Ribeiro Neto
et al. [2005], Broder et al. [2007], Yih et al. [2006], Chakrabarti et al.
[2008].
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Figure 1.4: A typical Contextual Advertising scenario. Permission to use the image
taken from the source: http://www.ezmoneyon.net/wp-content/uploads/2008/01.

Figure 1.5: A typical Sponsored Search scenario
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Figure 1.6: Showing Display Advertising scenario

Sponsored Search

In Sponsored Search, relevant advertisements are shown in response
to a search query. A typical Sponsored Search scenario is illustrated in
Figure 1.5. As can be seen, various relevant ads are shown for the query
‘Astrology’. With Sponsored Search, user explicitly mentions their in-
terest in the topic by issuing a query related to the topic. This explicit
interest is exploited in Sponsored Search.

Sponsored Search can be seen as an interaction between three par-
ties - search engine, user and the advertiser. The user issues a query to
search engine related to the topic on which he/she seeks information.
Advertisers and search engines try to exploit the immediate interest
of the user in the topic by displaying ads relevant to the query topic.
In a typical setting, advertisers bid on certain keywords known as bid
terms and choose either advance or broad match. The advertiser’s ad
may get displayed based on the match between ad’s bid term and the
search query and the amount bid by the advertiser. Search engines try
to rank the ads in a way that maximizes their revenue. For an excellent
history of Sponsored Search please refer to Fain and Pedersen [2006],
Jansen and Mullen [2008].
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Display Advertising

Figure 1.6 shows the Yahoo! page with two display advertisements.
Display Advertising is different from Contextual Advertising and Spon-
sored Search in many ways. Display ads (also called banner ads) usually
come in a rich multimedia form – image, video, flash and audio. Li and
Jhang-Li [2009], Barford et al. [2014]. In addition to direct response,
display ads are also used for brand building Li and Jhang-Li [2009].
Also unlike Sponsored Search and Contextual Advertising, display ads
are charged on a per impression basis Ghosh et al. [2009]. Almost 90%
of the ads are billed on PPI basis in Display Advertising Shen [2002].
Publishers allot some space on their pages to show ads (could be a text
ad or a banner ad). Display ads are usually targeted based on page
content and user information. Barford et al. [2014] show that around
80% of display ads are targeted on profiles. Barford et al. [2014] give
an excellent overview of the whole display ad landscape – they study
different types of display ads prevalent in online advertising, analyse
the dynamics of display ads.

As in the PPI model, bidding in Display Advertising happens on
a per impression basis. Predominantly, the sale of the impression slots
on the publisherâĂŹs page can happen in two ways – (a) Bulk sale
of impressions and (b) Auction individual impressions in real time. In
the case of bulk sale of impressions, the advertiser buys n number of
impressions on the publisherâĂŹs page. The ad is shown on the page
until the advertiserâĂŹs budget is exhausted. In a bulk sale, all the
impressions are bought at a flat price. In the second type, the impres-
sions are auctioned similar to a share market. For each impression, a
separate auction takes place where a variety of advertisers bid for the
impression slot. This entire process of auction happens in real time –
the user visits a site, the publisher raises a bid request for the ad slot,
the advertisers bid for the impression and the winner of the auction
is allowed to display their ad on the page. This real time auction of
impressions is commonly known as Real-Time Bidding (RTB). More
details on RTB are given in Chapter 9.
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1.2 Issues and Challenges

Content level targeting, at heart, is a combination of retrieval and
ranking problem. However, unlike document retrieval, the ads are short
and noisy. Hence, apart from the challenges faced in organic search,
ad retrieval involve additional challenges. Based on the content to be
targeted, following are the impediments and challenges in CA:

• Short Ad text:
Ad text is short and is intended to attract the user, hence it
contains short non-grammatical English phrases. This poses a
lot of challenges in content level targeting Choi et al. [2010],
Ribeiro Neto et al. [2005], Broder et al. [2007]. Traditional re-
trieval algorithms are not mainly designed to handle short text.

• Sparse queries (Vocabulary mismatch):
In case of Sponsored Search, the query is issued by the user and
ads are submitted by the advertiser and both are short, this of-
ten induces a problem called vocabulary mis-match Ribeiro Neto
et al. [2005] between the ads and the queries Radlinski et al.
[2008], Raghavan and Iyer [2010], Jones et al. [2006]. As the name
suggests, vocabulary mismatch implies that the ad and query are
semantically related but there is no syntactic similarity (word
overlap) between them. For example, a query ‘Camera’ should
also retrieve ads bidding on terms like ‘Sony Cyber-shot’ or ‘Sony
EOS’.

• Noisy Web content:
Web pages usually contain noisy data. The application of tradi-
tional information retrieval algorithm to retrieve ads from such
noisy pages may lead to irrelevant ads. Therefore, the noisy con-
tent of the Web page needs to be dealt with in a more sophisti-
cated manner Yih et al. [2006], Dave and Varma [2010a], Wu and
Bolivar [2008].

• No Page Rank!: Unlike Web search, there is no link structure
among the documents (ads) that can be exploited to apply algo-
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rithms like Page Rank or HITS to serve authoritative and relevant
ads.

• Ad Spam and Click Spam: Advertisers bid on false keywords
or highly frequent keywords that are not related to their business.
Identifying such spam ads is one of the biggest challenges. Click
spam is the fraudulent spam by the user with no real intention of
exploring the ad. If such clicks are not detected, advertisers can
get falsely billed for such clicks Dave et al. [2012b].

• Opinionated Content:
Some of the Web page content like forums and in particular mi-
croblogs are highly opinionated. Targeting ads on opinionated
posts involves dealing with negative sentiments. Negative senti-
ments demand a separate treatment. Intuitively, targeting ads on
negative sentiments may defeat the intended purpose of advertis-
ing. Imagine an ad for a fast food product, on a Web page talking
about health concerns caused by fast food Fan and Chang [2009],
Liu et al. [2008].

• Dealing with new Ads in Ranking:
In order to maximize the expected revenue, the search engine
must predict the probability of a click on an ad, more commonly
known as click-through rate (CTR) of an ad. Historical click-
through log is the most obvious proxy for estimating the CTR
of the ads. However, for new ads entering into the system and
infrequent/rare ads, it is very difficult to estimate the CTR as
there is a very little or no information available through the click-
through logs Dave and Varma [2010b], Richardson et al. [2007],
Shaparenko et al. [2009], Regelson and Fain [2006], Ashkan et al.
[2009], Debmbsczynski et al. [2008].

• How much can behavioral targeting help online adver-
tising? : One big question in the case of content level target-
ing is whether user behavior can also be incorporated to retrieve
more relevant ads. If incorporating user behavior helps, it evokes
second-order questions, what kind of data should be used to pro-
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file the user behavior and what should be the time frame from
which the data is considered for user modeling Yan et al. [2009],
Cheng and Cantú-Paz [2010b], Ahmed et al. [2011]. Display Ad-
vertising leverage user behavioral information for showing their
ads. Hence modeling user information is critical to Display Ad-
vertising.

• What to consider while targeting users?:
In the case of user level targeting, one of the challenges is to profile
the user for targeting them. Advertisers gather information about
the user from the cookies. User modeling is more challenging than
content modeling, as unlike the content, the user behavior changes
with time. In the case of user targeting based on their social circle,
formulating a user’s influence on their contacts for various actions
(like clicking on ads) is a big challenge Cheng and Cantú-Paz
[2010b], Dave et al. [2011], Kempe et al. [2003], Hartline et al.
[2008].

1.3 Scope of the Survey

Computational Advertising is a vast area encompassing different sci-
ences in itself. It requires borrowing methodologies from information
retrieval, machine learning, statistical modeling, microeconomics and
game theory. Specifically, one needs information retrieval techniques to
efficiently retrieve ads in real time and semantic matching of ads with
the text. Machine learning techniques are used for tasks such as learning
the ranking of ads and prediction of parameters. Tasks like modeling
the user, recommending ads based on history and finding similar ads
require statistical expertise, while microeconomics and game theory are
involved in ad auctioning and bid economics.

In this study, we restrict ourselves to problems and techniques from
the field of information retrieval, machine learning and statistical mod-
eling. Modeling the auction process and the various problems and the
solutions pertaining to bid optimization during auctions is outside the
scope of this survey.
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For a good read on various bid algorithms and the auction theory
associated with them, readers are encouraged to refer to the Compu-
tational Advertising course mentioned in Section Section §11.3.

1.4 Organization of the Survey

In the coming chapters, we look at various research work done to over-
come the issues and challenges mentioned in Section §1.2. In the first
part till Chapter 5, we look at retrieving ads for different content types
– Webpage content and search queries. In Chapter 2, we look at the
problem of reducing noise from the Web page content to facilitate the
matching of ads to the content. As ads are short, retrieving them re-
quires certain preprocessing to overcome the shortness, like expanding
the ad content or transforming the ads to other dimension. This is ex-
plained in Chapter 3. Queries are shorter than ads, and they need to be
expanded before retrieving ads for them. Chapter 4 looks at the query
treatment problem with respect to retrieving relevant ads in Sponsored
Search. Click spam and false bidding are significant challenges in the
retrieval of ads. Chapter 5 explains the work on determining the ad
quality. Once ads are retrieved they need to be ranked based on the
probability of a click. Chapter 6 and Chapter 7 describe the work on
ranking ads in Sponsored Search and Contextual Advertising respec-
tively. Chapter 8 describes work on user behavioral modeling and tar-
geting part. Chapter 9 discusses Display Advertising and the recently
evolved Real-Time Bidding process that lets advertisers micromanage
their budget. We discuss some of the emerging advertising trends like
Mobile Advertising, Advertising in Social news-feed. in Chapter 10. To
facilitate future research work in CA, we enlist some publicly available
datasets and mention some of the relevant conferences/journals and
workshops to publish and/or find further relevant work in Chapter 11.
We conclude in Chapter 12.
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