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Computational Aeroacoustics: Issues and Methods
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Computational fluid dynamics (CFD) has made tremendous progress especially in aerodynamics and aircraft
design over the past 20 years. An obvious question to ask is “why not use CFD methods to solve aeroacoustics
problems?”’ Most aerodynamics problems are time independent, whereas aeroacoustics problems are, by definition,
time dependent. The nature, characteristics, and objectives of aeroacoustics problems are also quite different from
the commonly encountered CFD problems. There are computational issues that are unique to aeroacoustics.
For these reasons computational aeroacoustics requires somewhat independent thinking and development. The
objectives of this paper are twofold. First, issues pertinent to aeroacoustics that may or may not be relevant to
computational aerodynamics are discussed. The second objective is to review computational methods developed
recently that are designed especially for computational aeroacoustics applications. Some of the computational
methods to be reviewed are quite different from traditional CFD methods. They should be of interest to the CFD

and fluid dynamics communities.

Nomenclature
ay = speed of sound
D = jetdiameter at nozzle exit
e, = unit vector in the r direction
€y = unit vector in the 6 direction
f = frequency
L = core length of a jet
p = pressure
u = velocity component
uj = jetexit velocity
o = wave number
a = wave number of a finite difference scheme
B = wave number in the y direction
At = time step
Ax = size of spatial mesh
8 = thickness of mixing layer
A = acoustic wave length
v, = artificial kinematic viscosity
0 = density
w = angular frequency
@ = angular frequency of a finite difference scheme
w; = imaginary part of the angular frequency

I. Introduction

T is no exaggeration to say that computational fluid dynamics

(CFD) has made impressive progress during the last 20 years,
especially in aerodynamics computation. In the hands of competent
engineers, CFD has become not only an indispensable method for
aircraft load prediction but also a reliable design tool. It is incon-
ceivable that future aircraft would be designed without CFD.

Needless to say, CFD methods have been very successful for
the class of problems for which they were invented. An obvious
question to ask is “why not use CFD methods to solve aeroacous-
tics problems?” To answer this question, one must recognize that
the nature, characteristics, and objectives of aeroacoustics prob-
lems are distinctly different from those commonly encountered in
aerodynamics. Aerodynamics problems are, generally, time inde-
pendent, whereas aeroacoustics problems are, by definition, time
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dependent. In most aircraft noise problems, the frequencies are very
high. Because of these reasons, there are computational issues that
are relevant and unique to aeroacoustics. To resolve these issues,
computational aeroacoustics (CAA) requires independent thinking
and development.

An important point needs to be made at this stage. Computational
aeroacoustics is not computational methods alone. If so, it would
be called computational mathematics. The application of compu-
tational methods to aeroacoustics problems for the purpose of un-
derstanding the physics of noise generation and propagation, or for
community noise prediction and aircraft certification, is the most
important part of CAA. The problem area may be in jet noise, air-
frame noise, fan and turbomachinery noise, propeller and helicopter
noise, duct acoustics, interior noise, sonic boom, or other subfields
of aeroacoustics (see Ref. 1 for details). Computational methods are
the tools but not the ends of CAA. It is aeroacoustics that defines
the area.

As yet there has not been widespread use of computational meth-
ods for solving aeroacoustics problems. This paper, therefore, con-
centrates on discussing the methodology issues in CAA in the hope
of stimulating interest in CAA applications and further develop-
ments or improvements of computational methods.

The first objective of this paper is to discuss issues pertinent to
aeroacoustics that may or may not be relevant to computational
aerodynamics. To provide a concrete illustration of these issues,
the case of direct numerical simulation of supersonic jet flows and
noise radiation will be used. The second objective is to review re-
cently developed computational methods designed especially for
CAA applications.

Before one designs a computational algorithm for simulating
supersonic jet noise generation and radiation, it is important that
one has some idea of the physics of supersonic jet noise. This is
extremely important, for any computational scheme would have a
finite resolution. This limitation prevents it from being capable of
resolving phenomena associated with finer scales of the problem.
The principal components of supersonic jet noise are the turbu-
lent mixing noise, the broadband shock-associated noise, and the
screech tones.>? In a supersonic jet, the turbulence in the jet flow
can be divided into the large-scale turbulence structures/instability
waves and the fine-scale turbulence. Both the large turbulence struc-
tures and the fine-scale turbulence are noise sources. However, it is
known?? that for hot jets of Mach number 1.5 or higher the large
turbulence structures/instability waves are responsible for the gen-
eration of the dominant part of all of the three principal components
of supersonic jet noise. In the discussion that follows, it will be
assumed that the noise from fine-scale turbulence, being less impor-
tant, is ignored. The resolution of fine-scale turbulence is, therefore,
not a primary issue.



II. Issues Relevant to CAA

To illustrate the various computational issues relevant to CAA,
we will consider the case of direct numerical simulation of the gen-
eration and radiation of supersonic jet noise by the large turbulence
structures/instability waves of the jet flow. Since a computation do-
main must be finite, it appears that a good choice is to select a
domain nearly identical to that in a physical experiment. Figure 1
shows a schematic diagram of a supersonic jet noise experiment in-
side an anechoic chamber. The exit diameter of the nozzle is a natural
length scale of the problem. In order that microphone measurements
do provide representative far-field noise data, the lateral wall of the
anechoic chamber should be placed not less than 40 diameters from
the jet axis. For a high-speed supersonic jet, the centerline jet veloc-
ity in the fully developed region of the jet decays fairly slowly, i.e.,
inversely proportional to the downstream distance. Thus, even at a
downstream distance of 50 jet diameters, the jet velocity would still
be in the moderately subsonic Mach number range. To avoid strong
outflow velocity and to contain all of the noise-producing region
of the jet inside the anechoic chamber, it is preferable to have the
wall where the diffuser is located to be at least 60 diameters down-
stream from the nozzle exit. The preceding considerations define
the minimum size of the anechoic chamber that will be used as the
computational domain.

A. Large Spectral Bandwidth

Jet noise is broadband, and the spectrum is fairly wide. Figure 2
shows a typical noise spectrum of an imperfectly expanded
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Fig.1 Schematic diagram showing a supersonic jet noise experiment
conducted inside a ventilated anechoic chamber. Not shown are the
sound-absorbing wedges on the walls of the chamber. The anechoic
chamber is the ideal physical domain for direct numerical simulation.
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Fig.2 Typical far-field noise spectrum of an imperfectly expanded su-
personic jet, measured at 30-deg inlet angle, showing the three principal
noise components. Data from Seiner.* Nozzle design Mach number 2.0.
Jet Mach number 1.5.
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supersonic jet measured by Seiner.* The discrete component at the
center of the spectrum is the screech tone. The peak to the right of
the screech tone is the broadband shock-associated noise. The low-
frequency peak to the left is the turbulent mixing noise. The screech
tone and the broadband shock-associated noise exist only for im-
perfectly expanded jets when a quasiperiodic shock cell structure is
present in the jet plume. For perfectly expanded jets, the noise con-
sists of turbulent mixing noise alone. Generally, the Strouhal number
range (Strouhal number = fD/u;) of interest spans from 0.01 to
10 or a ratio of 10° between the highest and the lowest frequency.
The spatial resolution requirement of the jet (region A of Fig. 1) is
dictated by the sound waves with the shortest wavelengths or the
highest frequencies. Typically a minimum of six to eight mesh points
per wavelength is required. Suppose one is interested in the turbu-
lent mixing noise of perfectly expanded supersonic jets alone. In this
case, the maximum Strouhal number of interest may be taken as 1.0,
giving an acoustic wave length A approximately equal to the jet di-
ameter D. A simple calculation will show that even by using a spatial
resolution of only six to eight mesh points per wavelength, the num-
ber of mesh points inside the computation domain is enormous. How
to develop finite difference algorithms that will give adequate resolu-
tion at six to eight mesh points per wavelength is an important issue.

B. Acoustic Wave/Mean Flow Disparity

The root-mean-square velocity fluctuation associated with the ra-
diated sound is usually quite small compared with that of the mean
flow of the jet. For example, for a Mach 1.5 jet the measured sound
intensity at 40 jet diameters away is around 124 dB. This gives a ratio
of sound particle velocity to the jet exit velocity of about 1.5 x 1074,
That is, the velocity fluctuations of the radiated sound are four or-
ders of magnitude smaller than the mean flow. This large disparity
between acoustic and flow variables presents a severe challenge to
direct numerical simulation. The small magnitude of the acoustic
disturbances can, perhaps, be better appreciated by noting that it
is usually smaller than the error (difference between the computed
mean flow and the exact mean flow solution) incurred in the com-
putation of the mean flow. This observation led Roe’ to state that
“there is a fear among investigators that the acoustic solutions may
be hopelessly corrupted by computational noise.” This issue raises
the question of whether it is more prudent to solve for the perturba-
tions after the mean flow has first been determined or to solve the full
nonlinear equations to capture the very small-amplitude sound field
directly. For the jet noise problem, especially for screech tones, the
nonlinearity of the problem is crucial to the noise generation pro-
cess. Thus, there is no alternative but to face the large-magnitude
disparity issue.

C. Distinct and Well-Separated Length Scales

Jet noise simulation is an archetypical muitilength scale aeroa-
coustics problem. In the noise source region, the growth and decay
of the large turbulence structures/instability waves are controlled
locally by the thickness § of the mixing layer. However, because the
flow spreads out in the downstream direction, they are influenced
globally by the core length L of the jet. Outside the flow, the natural
length scale of the acoustic field is the wave length A. For most su-
personic jets, these various length scales are very distinct and well
separated. Typically we have § <« A < L. The existence of very
disparate length scales calls for careful consideration of the spatial
resolution requirement before a direct numerical simulation is at-
tempted. Near the nozzle exit, region B of Fig. 1, the half-width of
the mixing layer thickness is usually found to be about 5% of the jet
diameter. To resolve adequately the instability waves in the mixing
layer of the jet, a minimum of say 15 mesh points are needed. This
gives Ar = 0.0033D where Ar is the radial mesh spacing in the
mixing layer. In the acoustic field, region A of Fig. 1, if sound waves
of Strouhal number 1.0 are considered, the mesh spacing required
is Ar = D/6. Thus a spatial resolution of roughly 50 times finer is
needed in the sound source region than in the acoustic field. Since
numerical instability of most finite difference schemes occurs when
the CFL number is larger than a critical value, it follows that the
computation time step is dictated by the size of the finest mesh. This,
needlessly, leads to excessive CPU time. To make CAA practical,
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methods that would overcome the curse of disparate length scales
are very much needed.

D. Long Propagation Distance

The quantities of interest in aeroacoustics problems, invariably,
are the directivity and spectrum of the radiated sound in the far
field. Thus the computed solution must be accurate throughout the
entire computation domain. This is in sharp contrast to aerodynam-
ics problems where the primary interest is in determining the load-
ing and moments acting on an airfoil or aerodynamic body. In this
class of problems, a solution that is accurate only in the vicinity
around the airfoil or body would be sufficient. The solution does
not need to be uniformly accurate throughout the entire compu-
tation domain.

The distance from the noise source to the boundary of the com-
putation domain is usually quite long. To ensure that the computed
solution is uniformly accurate over such long propagation distance,
the numerical scheme must be almost free of numerical dispersion,
dissipation, and anisotropy. If a large number of mesh points per
wavelength are used, this is not difficult to accomplish. However,
if one is restricted to the use of only six to eight mesh points per
wavelength, the issue is nontrivial. To see the severity of the re-
quirement, let us perform the following estimate for the jet noise
problem. Numerical dispersion error is the result of the difference
between the group velocities (not the phase velocity as commonly
believed) of the waves associated with different wave numbers of
the finite difference equations and that of the original partial dif-
ferential equations. Assume that the computation boundary is at
40 jet diameters away. Let a(«) be the wave number of the finite
difference scheme (see Sec. III or Ref. 6 for the definition of &).
Then the group velocity of the acoustic waves of the numerical
scheme is given by (d&/da)ay (assuming the numerical scheme
is dispersion relation preserving). The time needed for the sound
wave to propagate to the boundary of the computation domain
is 40D /ay. Thus, the displaced distance due to numerical disper-
sion is [(d@/da)ag — agl(40D/ayp). If a mesh of six spacings per
jet diameter is used and an accumulated numerical displacement
less than one mesh spacing is desired, then the slope of the &(«)
curve of the numerical scheme must satisfy the stringent require-
ment of
da

do

1
40 x6

6]

<

Most low-order finite difference schemes do not satisfy the preced-
ing condition.

Finite difference schemes, invariably, have built-in numerical dis-
sipation arising from time discretization. This causes a degradation
of the computed sound amplitude. Suppose AdB is the acceptable
numerical error in decibels. Then, it is easy to show that if w; is
the imaginary part of the angular frequency of the numerical time-
marching scheme, this condition can be expressed mathematically®

as
Ata _AdB
(G2)upo#)

Inthe case of AdB = 1.0and the Courant-Friedrichs—Lewy number
Atag/Ax = 0.25, it is straightforward to find w; At > —1.2 x
107*. Very few time-marching schemes can meet this demanding
requirement.

1
0> w;At > —

~ 240 @

E. Radiation and Outflow Boundary Conditions

A computation domain is inevitably finite in size. Because of this,
radiation and outflow boundary conditions are required at its artifi-
cial boundaries. These boundary conditions allow the acoustic and
flow disturbances to leave the computation domain with minimal
reflection. Again let us consider the problem of direct numerical
simulation of jet noise radiation from a supersonic jet as shown in
Fig. 1. The jet entrains a significant amount of ambient fluid so that
unless the computation domain is very large, there will be nonuni-
form time-independent inflow at its boundaries. At the same time,
the jet flow must leave the computation domain through some part
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of its boundary. Along this part of the boundary, there is a steady
outflow. It is well known that the Euler equations support three types
of small-amplitude disturbances. They are the acoustic, the vortic-
ity, and entropy waves. Locally, the acoustic waves propagate at a
velocity equal to the vector sum of the acoustic speed and the mean
flow velocity. The vorticity and entropy waves, on the other hand,
are convected downstream at the same speed and direction as the
mean flow. Thus, radiation boundary conditions are required along
boundaries with inflow to allow the acoustic waves to propagate out
of the computation domain as inregion C of Fig. 1. Along boundaries
with outflow such as region D of Fig. 1, a set of outflow boundary
conditions is required to facilitate the exit of the acoustic, vorticity,
and entropy disturbances.

F. Nonlinearities

Most aeroacoustics problems are linear. The supersonic jet noise
problem is an exception. It is known experimentally when the jet
is imperfectly expanded, strong screech tones are emitted by the
jet. The intensity of screech tones around the jet can be as high as
160 dB. At this high intensity, nonlinear distortion of the acoustic
waveform is expected. However, because of the three-dimensional
spreading of the wave front, experimental measurements inside ane-
choic chambers do not indicate the formation of shocks. Thus, in
the acoustic field, a shock-capturing scheme is not strictly required.

Although there are no acoustic shocks, inside the plume of anim-
perfectly expanded jet, shocks and expansion fans are formed. These
shocks are known to be responsible for the generation of screech
tones and broadband shock noise.>* These shocks are highly un-
steady. The use of a good shock-capturing scheme that does not
generate spurious numerical waves by itself is, therefore, highly
recommended in any direct numerical simulation of noise from
shock-containing jets.

G. Wall Boundary Conditions

The imposition of wall boundary conditions are necessary when-
ever there are solid surfaces present in a flow or sound field. Accurate
wall conditions are especially important for interior problems such
as duct acoustics and noise from turbomachinery. For the super-
sonic jet noise problem, solid wall boundary conditions are needed
to simulate the presence of the nozzle as shown in Fig. 1.

It is easy to see, unless all of the first-order spatial derivatives
of the Euler equations are approximated by first-order finite differ-
ences, the order of the resulting finite difference equations would be
higher than the original partial differential equations. With higher
order governing equations, the number of boundary conditions re-
quired for a unique solution is larger. In other words, by using a
high-order finite difference scheme, an extended set of wall bound-
ary conditions must be developed. The set of physical boundary con-
ditions, appropriate for the original partial differential equations, is
no longer sufficient. Aside from the need for extraneous boundary
conditions, the use of high-order equations implies the generation of
spurious numerical solutions near wall boundaries. In the literature,
the question of wall boundary conditions for high-order schemes ap-
pears to have been overlooked. The challenge here is to find ways to
minimize the contamination of the unwanted numerical solutions
generated at the wall boundaries.

II. Computation of Linear Waves

Recently, a number of finite difference schemes®~? has been pro-
posed for the computation of linear waves. Numerical experiments
and analytical results indicate that only high-order schemes are ca-
pable of calculating linear waves with a spatial resolution of six to
eight mesh points per wavelength. The high-order essentially non-
oscillatory (ENO)' and the dispersion-relation-preserving (DRP)®
schemes are two such algorithms. The ENO scheme is well known.
Here we will discuss the DRP scheme and in doing so introduce a few
concepts that are new to CFD. The DRP scheme was designed so that
the dispersion relation of the finite difference scheme is (formaily)
the same as that of the original partial differential equations. Accord-
ing to wave propagation theory,!! this would ensure that the wave
speeds and wave characteristics of the finite difference equations
are the same as those of the original partial differential equations.



A. Wave Number of a Finite Difference Scheme
Suppose a seven-point central difference is used to approximate
the first derivative 3f/8x at the £th node of a grid with spacing

Ax;i.e.,
3
af 1
2}y ~ a; :
(3)()[ Ax ifesi
j=-3

Equation (3) is a special case of the following finite difference equa-
tion with x as a continuous variable:

©)

3

af .
:,E(x)—Ej;fjf(X""JAx) 4)
The Fourier transform of Eq. (4) is
3
- RILT.S 3
iaf ~ A j;}a,e f (6))

where ~ denotes the Fourier transform. By comparing the two sides
of Eq. (5), it is evident that the quantity

3

pljehAx
E a;e

j=-3

~—i

o= —
Ax

©®

is effectively the wave number of the finite difference scheme Eq. (4)
or Eq. (3). Tam and Webb® suggested to choose coefficients a; so
that Eq. (3) is accurate to order (Ax)* when expanded in Taylor
series. The remaining unknown coefficient is chosen so that & is a
close approximation of « over a wide band of wave numbers. This
can be done by minimizing the integrated error

1
E=/
-7

Tam and Shen!? recommended to set y = 1.1. The numerical values
of a; determined this way are given in the Appendix together with the
coefficients for backward difference stencils. Backward difference
stencils are needed at the boundaries of the computation domain.
Figure 3 shows the relation & Ax vs o Ax. Over the range e Ax up
to 1.0 the curve is nearly the same as the straightline @ = «. Figure 4
shows the slope d&/d as a function of a Ax. Clearly do/de is close
to 1.0 (within 0.3%) up to ¢ Ax = 0.9 (or seven mesh points per
wavelength). This satisfies the requirement of Eq. (1). The standard

|@Ax — aAx|*d(@Ax) N
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Fig.3 &Axvs aAxrelation for the standard central difference second
order,-«:.-.. . ; fourth order, - - - - - ; sixth order, — - —; and the DRP
scheme, —.
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standard central difference scheme,

sixth-order scheme can resolve waves up to e Ax = 0.6 (10.5 mesh
points per wavelength). There is, therefore, an obvious advantage
in using the DRP scheme.

B. Angular Frequency of a Finite Difference Scheme
For time discretization, Ref. 6 proposed to use the following four

levels marching scheme:
df (n=J)
dt
where the superscript indicates the time level. The Laplace transform

of Eq. (8) with zero initial condition (for nonzero initial condition,
see Ref. 6) yields

3
f(n+l) . f(n) = At Zb] (8)

j=0

—iwAt _ 1) 57-

dt

i(e
3 N
At Zj:()bjel}w !

_ = ©)

where ~ represents Laplace transform. The Laplace transform of the
time derivative, i.e., the right side of Eq. (9), is equal to —iwf. On
comparing the two sides of Eg. (9), the quantity

-1

ijwhr
obje

i(eviwAr
o=

ay-

is identified as the effective angular frequency of the time marching
scheme (8). The coefficients b; are determined by requiring Eqg. (8)
to be second order accurate. Tam and Webb® found the remaining
coefficient by minimizing a weighted integral error, which forces @
to be a good approximation of w. The numerical values of b; are
given in the Appendix.

For a given value of @At, Eq. (10) yields four roots of wAr. In
order that the scheme is numerically stable, all of the roots must
have a negative imaginary part. Numerical investigations reveal that
this is true as long as @At is less than 0.4. Hence by choosing a
sufficiently small At, the scheme is stable. A detailed discussion of
the numerical stability of the DRP scheme is provided in Ref. 6. The
numerical dissipation rate of the finite difference scheme is given
by the imaginary part of . By means of Eq. (10) it is, therefore,
possible to estimate a priori, for a particular choice of the time step
At, the amount of numerical damping that would occur (see Ref. 6).
This information is most valuable in the design of computer codes.

(10

C. Group Velocity and Numerical Dispersion

The DRP scheme was formulated so that the forms of the dis-
persion relations are preserved in the discretization process. For the
linearized Euler equations, the dispersion relations for the acoustic
waves in two dimensions in the absence of a mean flow are

w = Lay(@® + ) n
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The corresponding dispersion relations for the DRP scheme are
[obtained by replacing w, «, and 8 by @, &, and 8 in Eq. (11)]

(@) = *ala*(@) + BB} (12)
The group velocity!! of the acoustic waves of the DRP scheme can
be obtained by differentiating Eq. (12) with respect to « and 8. It is

straightforward to find
dw dw _da _dp
(aa’ 35> (ada'ﬂdﬂ) (13
If a small Ar is used in the computation, then @ =~  so that
(dw/dw) =~ 1.0. For plane acoustic waves propagating in the x
direction (8 = 0), the wave velocity given by Eq. (13) reduces to
dw do
== = 4ay—
do de
It is clear from Eq. (14) and Fig. 4 that different wave numbers will
propagate at different speeds. The dispersiveness of a numerical
scheme is, therefore, dependent largely on the slope of the numer-
ical wave number curve. For the seven-point DRP scheme, d&@ /do
deviates increasingly from 1.0 for« Ax > 1.0 (see Fig. 4). The wave
speed of the short waves (high wave number) is not equal to ay.
In fact, for the ultrashort waves (¢ Ax =~ ) with wavelengths of
about two mesh spacings (grid-to-grid oscillations) the group veloc-
ity is negative and highly supersonic. The short waves are spurious
numerical waves. Once excited they would contaminate and degrade
the numerical solution.
To illustrate the effect of numerical dispersion, let us consider the
solution of the wave equation

_ +ay
@ + B2 (dd/dw)

(14

ou _
ax

du

T (15)

. e N - 2 .
with initial condition ¢ = 0 and u = e~ "“2*/34%)° Figure 5 shows

the computed results of the seven-point DRP scheme, the stan-
dard fourth- and sixth-order central difference schemes. The Fourier
transform of the initial data is a Gaussian with the main part of the
spectrum lying in the range ¢ Ax < 1.0. Thus the DRP scheme can
provide adequate resolution for this problem. The group velocity of
the wave components in the range 0.8 < ¢ Ax < 1.0 of the sixth-
order scheme is considerably less than ay. This part of the com-
puted waves lags behind the main pulse as shown in Fig. 5. The
fourth-order scheme becomes quite dispersive for o Ax > 0.6. The
computed result exhibits large-amplitude trailing waves. In general,

~0.2 " . . . .
360.0 370.0 380.0 390.0 400.0 410.0

x/Bx

Fig. 5 Comparison between the computed and the exact solutions of
the simple one-dimensional wave equation; ——, numerical solution;
--------- , exact solution: a) fourth-order central difference scheme, b)
sixth-order central difference scheme, and ¢) DRP scheme (seven-point
stencil).

420.0
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low-order schemes are more likely to be affected by numerical
dispersion.

D. Artificial Selective Damping

To obtain a high-quality numerical solution, it is necessary to
eliminate the short wavelength spurious numerical waves. This can
be done by introducing artificial selective damping terms in the finite
difference equations. The idea of using artificial damping terms to
smooth out the profile of a shock is not new.!*!* Tam et al.'5 refine
the idea by developing a way to tailor the damping terms specifically
for eliminating only the short waves. For their damping scheme, the
long waves (@ Ax < 1.0) are effectively untouched.

Consider the linearized u-momentum equation discretized on a
mesh of spacing Ax. Suppose a linear damping term consisting of
all of the values of u in the seven-point stencil is added to the right
side of the equation. At the £th mesh point, the discretized equation
may be written as

3

Va
_m Z djul+j
Jj=-3

du[
dt

(16)

where [v, /(Ax)?*] is the damping coefficient. The Fourier transform
of Eq. (16) is

de Y D (adx)i (17
du Ve i
dr (Ax)?
where
3
D(aAx) = Y dje e (18)

j=-3

Equations (17) and (18) show that the amount of damping depends
on the wave numbers so that by choosing the various d; properly
one can damp only the short waves. A way to choose d; is proposed
inRefs. 12 and 15. In the Appendix, a set of values of d; so obtained
is provided. The damping curve D (e Ax) vs a« Ax is shown in Fig. 6.
There is practically no damping for long waves (¢ Ax < 1.0). Also
shown in this figure are the damping curves for the five- and three-
point stencils. These smaller stencils are needed at the boundary
points where a seven-point stencil would not fit.

To show the effectiveness of the artificial selective damping terms,
let us again consider the numerical solution of wave equation (15).
But this time, we choose a discontinuous “box-car” initial condi-
tion, i.e.,

t=0, u=05[H(x 450 — H(x —50)] (19
where H (x) is the unit step function. Figure 7a shows the com-
puted result at ¢ = 200(Ax/a,) without artificial damping terms.

Q

D(otrx)
05 06 07 08 08
" r . r

0.4
T

0.2
T

[¢A]
T

0.0

Fig.6 Dampingfunction D(acAx): ——,seven-pointstencil (o = 0.27);
- —, seven-point stencil (c = 0.37w); -+ -0 , five-point stencil;
----- , three-point stencil.
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Fig. 7 Waveform initiated by a disturbance with a box-car profile
showing parasite waves and the effect of artificial selective damping:
a) no artificial damping and b) with artificial damping.

The spurious waves of the computed solution are generated by the
discontinuities of the initial condition. The grid-to-grid oscillations
have the highest group velocity. They are found to the left of the
velocity pulse because their group velocity is negative (d&@/do < 0).
Figure 7b shows the computed solution with artificial damping
terms™ (Ryeneit = 0.05). Obviously the spurious short waves are
largely removed. The quality of the computed solution has greatly
improved.

IV. Radiation and Outflow Boundary Conditions

In the past, the subject of radiation boundary conditions has been
studied by numerous investigators. One group of investigators used
asymptotic solutions to construct radiation boundary conditions.
These investigators include Bayliss and Turkel, 617 Hagstrom and
Hariharan,'® Hariharan et al.,' and Tam and Webb.6 to mention a
few. Another group used the idea of characteristics, These investi-
gators include Thompson,?*?! Giles,? and Poinsot and Lele.? Still
another group devised ways to construct absorbing boundary condi-
tions to minimize the reflection of waves off the artificial boundary
of the computation domain. Investigators of this group are Engquist
and Majda,*** Higdon,”*?’ Jiang and Wong,? and Kosloff and
Kosloff.*” Recently, Givoli* wrote a review article on this subject
with extensive references. However, the vast majority of the ref-
erenced works are devoted to the simple wave equation. Since the
Euler equations, unlike the simple wave equation, support not only
acoustic but also vorticity and entropy waves, only a small subset
of the aforementioned references are relevant to outflow boundary
conditions.

The formulation of radiation and outflow boundary conditions by
means of the asymptotic solutions of the problem (strictly speak-
ing, they should be the asymptotic solutions of the finite difference
equations®') is quite straightforward. Here, the asymptotic solutions
model the numerical solution outside the computation domain. For
example, consider the problem of sound transmission through a one-
dimensional variable area duct as shown in Fig. 8. Upstream of the
computation domain, it will be assumed that the duct has a constant
area carrying a subsonic mean flow z, pressure p, and density 5. The
fact that the duct has constant area implies the existence of asymp-
totic solutions valid all of the way to x — —o0. In this region, the
governing equations are the linearized Euler equations:

pu + pu
a|” 3
—luf+—| wi+ 2 |=0 (20)
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Direction of mean flow Transmitted
I waves

T ="

disturbances
———————— computation domain “ﬂ]

Fig. 8 Schematic diagram of the computation domain for a one-
dimensional flow in a variable area duct with constant area termina-
tions. Inflow disturbances at the left boundary consist of sound and
entropy waves.

It is easy to show that the general solution of Eq. 20)is

1
0 a? 1
wl=| 1 |F _+_—t)+ 0 G(i—z)
P_J 6{}—) a-+u 0 u
1
| a2
+] 1 H(_f_+r) @1)
(@) ‘T

1

where F, G, and H are arbitrary functions and @ — (yp/p)'? is
the speed of sound. The solutions associated with the F and G func-
tions are the incoming acoustic and entropy waves. They are known
functions at the inflow region. The solution associated with the H
function represents the reflected acoustic waves. It is not known a
priori. On eliminating H from Eq. (21), the following inflow bound-
ary conditions are derived:

)
a
1 a3 a\|" 2
——— — — U | = 1 —
a—udt ox -— | a2 —i?
P (pa)
1
1

S ox a X

In Eq. (22) F' and G’ are the derivatives of ¥ and G.

Now, let us return to the supersonic jet noise problem of Fig. 1.
Radiation boundary conditions, which allow sound waves to prop-
agate out of the computation domain against the incoming entrain-
ment flow, as well as outflow boundary conditions, which permit
an arbitrary combination of acoustic, entropy, and vorticity waves
to leave the computation domain smoothly following the jet flow,
are needed. The difficulty here is that the mean flow is nonuniform.
Tam and Dong? recently considered this problem. They proposed
the following radiation boundary conditions for two-dimensional
time domain computations:

pP—p pP—p
o
u—u 1 u—u
L L +— =0 (23)
Vir,0) ot | v ar | v—1p 2r | 4 —
P P~p p—p

where (r, ) are polar coordinates centered near the middle of the
computation domain; 5, i, 9, and p are the mean flow quantities at
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the boundary region; and V (r, €) is related to the mean flow velocity
V = (u, v) and the sound speed a by
1
V@, 6) =V e +[a>— (V-e)]? (24)
For the outflow, they proposed a set of boundary conditions that ac-
counts for mean flow nonuniformity. If the flow is uniform Eq. (23)
and the corresponding outflow boundary conditions reduce to those
of Tam and Webb,® which were derived from the asymptotic so-
lutions of the linearized Euler equations by the method of Fourier
transform.

Recently, Hixon et al.?* tested computationally the effectiveness
of the radiation and outflow boundary conditions of Thompson,2*?!
Giles,?? and Tam and Webb.® Their finding was that the bound-
ary conditions based on asymptotic solutions performed well, but
the characteristic boundary conditions produced significant reflec-
tions. Others also reported similar experience. It is worthwhile to
point out that for two- or three-dimensional problems, there are no
genuine characteristics. Whenever the waves incident obliquely on
the boundary or there is a significant component of mean velocity
parallel to the boundary, the validity of any pseudocharacteristic
formulation of boundary conditions becomes suspected. Great care
should be exercised in their usage.

V. Computation of Nonlinear Acoustic Waves

Nonlinearity causes the waveform of an acoustic pulse to steepen
up and ultimately to form a shock. In the stady of Tam and Shen,!? it
was found that the nonlinear wave steepening process, when viewed
in the wave number space, corresponded to an energy cascade
process whereby low wave number components are transferred to
the high wave number range. If a high-order finite difference scheme
with a large bandwidth of long waves (waves with @ =~ «) in the
wave number space is used for the computation, the computed non-
linear waveform remains accurate as long as the cascading process
does not transfer wave components into the unresolved (short) wave
number range. Since, in most aecroacoustic problems, the sound in-
tensity is not sufficient to cause the formation of acoustic shocks,
the use of a high-order finite difference scheme such as the DRP
scheme would generally be quite adequate.

If shocks are formed, it is known that high-order schemes gener-
ally produce spurious spatial oscillations around them and in regions
with steep gradients. These spurious spatial oscillations are waves in
the short wave (high wave number) range generated by the nonlinear
wave cascading process. The high-order ENO'® scheme was con-
ceived and designed to have shock-capturing capability. It should be

1.2
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Fig. 9 Computation of a nonlinear acoustic pulse using the DRP
scheme with variable artificial damping; Rgtencit = 0.05, ¢ = 40Ax/aqg,
and Gaussian initial waveform with 2y, = ap: ,numerical solution;
--------- , exact solution.

60.0 100.0
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the method of choice for this type of problem. The ENO schemes,
however, automatically perform extensive testing before a finite dif-
ference approximation is applied. As a result, it is CPU intensive.
If the shock is not very strong, the more straightforward seven-
point DRP scheme!? with artificial selective damping terms added
to eliminate the spurious high wave number oscillations around
the shock may be used instead. For strong shocks it is necessary
to apply the DRP scheme to the governing equations written in
conservation form; otherwise the computed shock speed may not
be accurate. Figure 9 shows the computed waveform of an acous-
tic pulse at t = (40Ax/a,) using the seven-point DRP scheme
with variable artificial selective damping.!* Initially the pulse has
a Gaussian waveform in u with a half-width equal to 12Ax. As
can be seen, the computed waveform compares quite well with the
exact solution. The shock, spread over four—five mesh spacings, is
not as sharp as those obtained by using specially designed shock-
capturing schemes. But this is to be expected.

VI. Wall Boundary Conditions

It was pointed out in Sec. IL.G that if a high-order finite differ-
ence scheme is used to approximate the governing partial differential
equations, then the numerical solution is bound to contain spurious
components. These spurious solutions can be generated by initial
conditions, nonlinearities, and boundary conditions. For example, in
the reflection of acoustic waves by a solid wall, the reflected waves
would consist of three distinct components.* The first component is
the reflected wave that closely approximates the exact solution. The
second component consists of spurious short waves. Figure 3 shows
that there are two (real) values of « for a given a. The first com-
ponent corresponds to a = &. The second component corresponds
to the value @ > @. The third component is made up of spatially
damped waves. They correspond to the complex roots of a in the &
vs « relation. For the sound reflection problem, these damped wave
solutions are excited by the incident sound waves at the wall. Their
amplitudes decay exponentially as they propagate away from the
wall. Effectively, they form a numerical boundary layer adjacent to
the wall surface.

Figure 10 shows the mesh layout for computing the sound re-
flection problem. The wall is at y = 0. The interior points are
points lying three or more rows away from the wall. Their com-
putation stencils lie entirely inside the physical domain. The first
three rows of points adjacent to the wall are boundary points. Their
seven-point stencils extend outside the physical domain. The points
outside the computation domain are ghost points with no obvious
physical meaning. However, Tam and Dong?* observed that ghost
points can be useful for the following reason. Recall that the so-
lution of the Euler or Navier—-Stokes equations satisfies the partial
differential equations at every interior or boundary point. In addi-
tion, at a point on the wall the solution also satisfies the appropriate
boundary conditions. Now the discretized governing equations are
no more than a set of algebraic equations. In the discretized system,
each flow variable at either an interior or boundary point is governed
by an algebraic equation (discretized form of the partial differential
equations). The number of unknowns is exactly equal to the number
of equations. Thus there will be too many equations and not enough
unknowns if it is insisted that the boundary conditions at the wall
are satisfied also. This is, perhaps, one of the major differences be-
tween partial differential equations and difference equations. But

interior points

T

boundary points
Wali

e

- ghost points

Fig. 10 Mesh layout adjacent to a plane wall showing the interior
points, boundary points, and ghost points.



now the extra conditions imposed on the flow variables by the wall
boundary conditions can be satisfied if ghost values are introduced
(extra unknowns). The number of ghost values is arbitrary, but the
minimum number must be equal to the number of boundary condi-
tions. Tam and Dong suggested to use one ghost value per bound-
ary point per physical boundary condition. To eliminate the need
for extra ghost values, they employed backward difference sten-
cils to approximate the spatial derivatives at the boundary points.
For the plane wall problem, their analysis indicated that the pre-
ceding wall boundary treatment would only give rise to very low
amplitude spurious reflected waves. The thickness of the numerical
boundary layer was also very small regardless of the angle of inci-
dence even when only six mesh points per wavelength were used in
the computation.

In most aeroacoustics problems, the wall surface is curved. In
CFD, the standard approach is to map the physical domain into a
rectangular computational domain with the curved surface mapped
into a plane boundary or use unstructured grids. For aeroacous-
tic problems, this is not necessarily the best method. Mapping or
unstructured grids effectively introduce inhomogeneities into the
governing equations. Such inhomogeneities could cause unintended
acoustic refraction and scattering. An alternative way is to retain a
Cartesian mesh and to develop special treatments for curved walls.
Kurbatskii and Tam?* developed one such treatment by extending
the one ghost value per boundary point per physical boundary con-
dition of Tam and Dong.>* They tested their curved wall bound-
ary conditions by solving a series of linear two-dimensional acous-
tic wave scattering problems. Morris et al.*® proposed not to use
the wall boundary condition. Instead they simulated the change in
impedance at the wall by increasing the density of the fluid inside
the solid body. At this time, it is too early to judge how well these
alternative methods would perform in problems with complex wall
boundaries. But for problems involving simple scatterers such as cir-
cular and elliptic cylinders, excellent computed results of the entired
scattered acoustic field have been obtained.*® In any case, mapping
or unstructured grids may not be absolutely necessary for aero-
acoustics problems.

VII. Concluding Remarks

As a subdiscipline, CAA is still in its infancy. In this paper, some
of the relevant computational issues and methods are discussed (for
a set of benchmark problems designed to address some of these is-
sues see Ref. 37). Obviously, the development of new methods is
very much needed. However, it is also pertinent to echo the belief
that applications of CAA to important or as yet unsolved aeroacous-
tics problems are just as needed. It is necessary to demonstrate the
usefulness, reliability, and robustness of CAA. Unless and until this
is accomplished, CAA will remain merely a research subject but not
an engineering tool.

Appendix: Stencil and Damping Coefficients
The coefficients of the seven-point DRP scheme are

apy =10 a; = —a-; = 0.770882380518
a; = —a_p = —0.166705904415
az = —a_3 = 0.208431427703

Backward stencil coefficients are ™, j = —n, —n+1,...,m—1,
m (n = number of points to the left and m = number of points to
the right):

06 _

al® = —al® = —2.192280339
a¥® = —a¥ = 4.748611401
a¥ = —a%, = —5.108851915
ag(’ = —q 60 = 4.461567104

al® = —a%, = —2.833498741

a¥ = —a% = 1.128328861
06 = —0.203876371

— 60
ag = —a_g

as = —al = —0.209337622

3 ol = —1.084875676

ao =
als = — 31 = 2.147776050

a15 = —a’ 2 = —1.388928322
al’ = —a’, = 0.768949766
al’ = ~a’!, = —0.281814650

al® = —a’L = 0.048230454
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a¥ = —af? = 0.049041958
a% = —a;‘z = —0.468840357
a¥t = —al* = ~0.474760914

a¥ = —a* = 1.273274737

a¥ = —a*2 = —0.518484526

§4 = —a*%, = 0.166138533
a?* = —a* = —0.026369431

The coefficients of the four-level time-marching stencil are

by = 2.302558088838
by = —2.491007599848
by = 1.574340933182
b3 = —0.385891422172

The coefficients of the seven-point damping stencil are

(o =0.27) (6 =0.37)

dy = 0.287392842460 0.327698660845
di =d_, = —0.226146951809  —0.235718815308
dy = d_, = 0.106303578770 0.086150669577

dy = d_3 = —0.023853048191 —0.014281184692

The coefficients of the five-point damping stencil are

dy = 0.375
di=d_;=-025
dy = d_5 = 0.0625

The coefficients of the three-point stencil are
dy =0.5,
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