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Abstract

A sibilant fricative /s/ is generated when the turbulent jet in the narrow channel between the

tongue blade and the hard palate is deflected downwards through the incisors’ gap, and impinges

the inter-space between the lower incisors and the lower lips. The flow eddies in that region

become a source of direct aerodynamic sound, which is also diffracted by the upper incisors and

radiated outwards. The numerical simulation of this phenomena is complex. The spectrum of

an /s/ typically peaks between 4 − 10 kHz, which implies using very fine computational meshes

to capture the eddies producing such high frequencies. In this work, a large-scale computation

of the aeroacoustics of /s/ has been performed for a realistic vocal tract geometry, resorting to

two different acoustic analogies. A stabilized finite element method that acts as a large eddy

simulation model has been adopted to solve the flow dynamics. Also, a numerical strategy has been

implemented which allows determining, in a single computational run, the separate contributions

from the direct turbulent sound and the sound diffracted by the upper incisors, to the radiated

sibilant /s/. Results are presented for points located close to the mouth exit showing the relative

influence of the sources of sound depending on frequency.

PACS numbers: PACS: 43.70

∗ apont@cimne.upc.edu
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I. INTRODUCTION

In this work, we aim at better understanding the generation and radiation mechanisms

of sibilant /s/, by means of computational aeroacoustics (CAA) performed on a realistic

vocal tract geometry. In particular, we are interested in determining the separate acoustic

contributions to points near the mouth exit from the flow noise generated in that region,

and from its diffraction by the upper incisors.

The sibilant fricative /s/ is produced when the turbulent jet leaving the glottis is accel-

erated in the constriction between the tongue blade and the hard palate, passes through the

incisors’ gap, and impinges the cavity between the lower incisors and the lower lips. This

results in the generation of aerodynamic noise, which in turn gets diffracted by the incisors

and radiated outwards. The emitted sound has a wide-band spectral content that typically

peaks between 4-10 kHz, as observed on human speakers [see e.g., 1–3]. Though the artic-

ulators are constantly in movement during speech [see e.g., 4], stationary vocal tract walls

are always assumed when modeling a sustained fricative sound for simplicity.

A detailed analytical model to describe the production of /s/ was proposed in [5]. In

that model, the diffraction of the sound generated by the turbulent boundary layer (TBL)

attached to the incisors was considered as the main noise contributor. A compact Green

function that accounted for a simplified geometry of the incisors and the vocal tract was

deduced and convolved with a theoretical model for the wall pressure wavenumber-frequency

spectrum [see e.g., 6], to predict the acoustic pressure at the far-field. More recently, [7]

presented large eddy simulations (LES) on a 3D realization of the geometry in [5]. They

reported that it is actually at the cavity between the lower incisors and the lower lips where

most of the aeroacoustic source terms concentrate. The simulations in the present work

with a realistic vocal tract support that conclusion. In addition, they will essentially show

that for points in the vicinity of the mouth, the direct aerodynamic sound contribution

from the eddies within the lower incisors-lips cavity dominate the acoustic spectrum at low

frequencies, whereas diffraction by the upper incisors governs the high frequency range of

the spectrum.

To validate these assertions, the numerical strategy in [8] has been implemented. We note

that in most hybrid approaches to CAA a two step procedure is followed [see e.g., 9]. First,

an LES computation is carried out by means of a finite element (FEM) (or a finite volume)
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approach, to obtain the aerodynamic noise source terms. These terms are secondly input in

an acoustic analogy that is solved resorting to an integral formulation [see e.g., 10, 11], which

becomes discretized by a boundary element method (BEM). Yet, the proposal in [8] relies

on different grounds. The method only makes use of a single FEM code that allows one to

solve, in a single computational run, an LES for the incompressible Navier-Stokes equations,

a first wave equation for the direct flow noise contribution, and a second wave equation for

the sound diffracted by the incisors. This procedure circumvents an inconsistency related to

the numerical solution of Curle’s dipolar integral term for low Mach numbers [11], given that

the total pressure to be input in that integral cannot be obtained from an incompressible

LES simulation [see e.g. 8, 12].

In this work, the focus will be placed on the acoustic results of the above strategy rather

than on the LES ones, which will be only described qualitatively, together with the imple-

mented FEM strategy. It is to be noted that 3D LES simulations of flow passing around

teeth-shaped obstacles to better understand the underlying physics of /s/ where already

reported in [13, 14] and in [15]. Simulations of flow passing through simplified geometries

with constrictions of different sizes have also been conducted [16]. [17] also resorted to LES

to analyze the flow dynamics of /s/ in a realistic vocal tract geometry. As said before, more

recently, [7] presented simulations on a 3D realization of the geometry in [5]. On the other

hand, the LES in this work has been solved with the stabilized FEM method in [18], which

behaves as an implicit LES model [see e.g., 19, 20]. In implicit LES methods, the additional

terms included in the equations to avoid numerical instabilities simultaneously act as tur-

bulence models. These have been proven numerically on well-known benchmark turbulent

tests for the strategy in [18], [see e.g., 21–23], as well as through analytical reasoning [see

24].

As regards the acoustic formulations to get the contributions from the direct flow noise in

the lower incisors-lips cavity, and from the incisors diffraction, one should ideally resort to

approaches that could account for the unsteady flow in the vocal tract. The most relevant

ones for that purpose are probably the linearized Euler equations [see e.g., 25], or some

of its source filtered counterparts to leave aside the vorticity and entropy modes, like the

acoustic perturbation equations [APE, see 26]. In [27], a low Mach number for the APE was

introduced (see [28] for a full numerical solution retaining all terms). In the case of very

low Mach number flows, like those encountered in voice production, the APE in [27] can be

4



further simplified to the acoustic analogy in [29]. The wave operator in this analogy is just

the standard wave equation, like in Lighthill’s analogy [30], yet the double time derivative of

the incompressible pressure field is used as the source term, instead of the double divergence

of the Reynolds tensor of the incompressible velocity field. It can be shown that this allows

the filtering of some pseudosound at the flow region (the term pseudosound refers to pressure

fluctuations indistinguishable by a single microphone from proper sound, see, e.g., [31]). In

this piece of research both, Lighthill’s and the analogy in [29] will be employed.

To end this introductory section, we would like to remark that aside from static vowel

sounds, for which a large amount of literature is available [see e.g., 32–41], few works can

be found in literature addressing the numerical simulation of other speech sounds. The

reason for that is probably the complex physics beneath their generation and the associated

high computational cost. An exception that has received some recent attention is that of

vowel-vowel utterances in [42]. Also, attention has been paid to some unvoiced sounds (see

e.g., [43]) and in particular to fricative sounds. Related to the present work, we shall cite [44]

where different computational fluid dynamics (CFD) formulations were tested for fricative

/S/, using realistic two (2D) and three (3D) dimensional vocal tract geometries. That study

compared the performance of a compressible CFD simulation, an incompressible LES and

a Reynolds averaged Navier-Stokes (RANS) approach. Though a rather coarse mesh was

used, the study arrived at some interesting conclusions. As expected, the RANS simulation

provided no reliable results but the compressible CFD and incompressible LES combined

with an acoustic analogy yielded proper outputs. Another interesting and unexpected result

was that although the flow field from 2D simulations did not match at all with the 3D one,

that was not the case for the 2D acoustic pressure field, which was quite similar to the 3D

one.

This paper is organized as follows. The methodology that has been followed to perform

the simulations is detailed in Sec. II. The later includes a description of the realistic vocal

tract geometry for sibilant /s/, the formulation of the acoustic analogies and the splitting

strategy between turbulent and diffracted sound that has been implemented. It also outlines

the numerical strategy used to solve the involved partial differential equations and includes

specific details on how the numerical simulations have been run. The results of the latter

are presented in Sec. III, with special emphasis on the characteristics of the generated

aerodynamic sound. Conclusions close the paper in Sec. IV.
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FIG. 1. 3D realistic vocal tract geometry for /s/ with upper incisors highlighted in green. Mea-

suring points P4 and P5 are placed at the far-field. (Color online)

II. METHODOLOGY

A. Vocal tract model

The vocal tract geometry used for the simulations was obtained from a cone-beam CT

scan (CB MercuRay, 512 slices of 512 pixel × 512 pixel grid with accuracy ±0.1 mm) in

[45] and [46], from which a physical replica was constructed. The geometry (see Fig. 1)

corresponds to an adult male Japanese native speaker with normal dentition (angle Class

I) without any speech disorder, in normal sitting position. The subject was instructed to

sustain phoneme [s] at a medium loudness (with a flow rate ∼ 21 l/min) during 10 s. The

entire vocal tract was imaged, but only the characteristic fricative portion (∼ 32 mm) was

reconstructed for the replica.

As observed in Fig. 1, it is not necessary to model the whole vocal tract from glottis

to lips to produce sibilant /s/, but just the portion where the generating mechanisms take

place like in [5]. This includes the constricted passage between the tongue blade and the

hard palate (the section with minimum area has a hydraulic diameter of 2.1 mm), the lower

and upper incisors (highlighted in green in the figure) and the lips. According to [45], the

initial flow conditions upstream (geometry and Reynolds number) do have an influence on

the modulation of the acoustic spectrum of fricatives, but do not play an essential role in

the physiological mechanisms that lead to the generation of this phoneme. Since the further

characterization of the sound [s] depending on gender, age or sex is not part of this work,

these factors have not been taken into account.
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B. Problem formulation

1. Acoustic analogies

As said in the Introduction, in this work use will be made of the celebrated Lighthill

acoustic analogy [see 30] and of the analogy in [29]. For low Mach numbers, Lighthill’s

tensor can be well approximated by the double divergence of the Reynolds tensor of the in-

compressible velocity field. If one considers a computational domain Ωv with outer boundary

Γ∞, and a rigid body embedded in it with boundary Γw and external normal n, the Lighthill

acoustic analogy problem reads (see Fig. 2),

1

c2
0

∂2p

∂t2
−∇

2p = ρ0 (∇⊗∇) :
(

u
0
⊗ u

0
)

in Ωv, (1a)

∂p

∂n
= −

1

c0

∂p

∂t
on Γ∞, t > 0, (1b)

∂p

∂n
= 0 on Γw, t > 0, (1c)

p = 0,
∂p

∂t
= 0 in Ωv, t = 0. (1d)

In Eq. (1), p(x, t) stands for the acoustic pressure fluctuations and u
0 (x, t) for the incom-

pressible velocity field obtained e.g., from a CFD computation. ρ0 stands for the flow density

and c0 for the speed of sound. In the second line, (1b) introduces a Sommerfeld non-reflecting

condition on Γ∞ and in the third one, (1c) expresses a rigid wall assumption for the im-

mersed body. The initial conditions are set in (1d). The source term ρ0 (∇⊗∇) : (u0 ⊗ u
0)

in Eq. (1) is often rewritten as ρ0 (∇⊗ u
0) : (∇⊗ u

0)
⊤
for computations (⊤ denotes trans-

pose), given that ∇ · u0 = 0 (see e.g., [47]).

With regard to the acoustic analogy in [29], it can be obtained from the low Mach APE

equations in [27], by simply neglecting the mean velocity field and combining the momentum

and continuity equations to get the scalar wave equation for the acoustic pressure. Alter-

natively, the analogy was originally derived from the following straightforward reasoning.

Taking the divergence of the Navier-Stokes momentum conservation equation results in the

Poisson equation ∇2p0 = −ρ0 (∇⊗∇) : (u0 ⊗ u
0), which allows one to replace Eq. (1a)
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with
1

c2
0

∂2p

∂t2
−∇

2p = −∇
2p0. (2)

This equation is interesting for the following reason. It is well known that the acoustic

pressure predicted by Lighthill’s analogy is only valid far away from the source region,

where no flow motion occurs. If one needs to determine the acoustic pressure field close to

the generation area it becomes necessary to filter out the pseudosound due to non-acoustic

pressure fluctuations. In the case of a flow with very small mean convection velocity, [29]

proposed to do so by splitting the pressure into its incompressible pseudosound, p0(x, t), and

acoustic, pa(x, t), components, i.e., p(x, t) = p0(x, t) + pa(x, t). Inserting this factorization

in Eq. (2) results in the following wave equation for the acoustic pressure fluctuations

1

c2
0

∂2pa

∂t2
−∇

2pa = −
1

c2
0

∂2p0

∂t2
, (3)

which is to be supplemented with the boundary and initial conditions (1b)-(1d), now for

pa(x, t).

2. Quadrupole and dipole contributions to the acoustic pressure

To determine the contributions to the utterance of [s] from the quadrupole noise generated

by the turbulent jet exiting the mouth, and from the dipole noise due to the acoustic

pressure diffraction by the upper incisors, one could typically resort, as said before, to

Curle’s formulation [see 11]. However, in the case of low Mach number flows a severe

difficulty appears when trying to account for the rigid body (e.g., the incisors) contribution

to the far field. The reason is that the surface integral in Curle’s formulation involves the

total pressure, which includes both the incompressible and acoustic fluctuations. Obviously,

the later cannot be obtained from an incompressible CFD simulation.

Though recently some proposals have been made to at least partially mitigate that prob-

lem in the framework of integral formulations [see e.g. 12], in [8], a very different approach

was suggested. The approach considers that the acoustic dipole distribution of Curle’s sur-

face integral corresponds, in fact, to the diffraction of the turbulent noise generated by the

jet flow [see e.g., 48]. On the one hand, the proposed methodology circumvents the total

pressure difficulty in Curle’s surface term. On the second hand, it avoids the need to resort
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(a)

(b)

FIG. 2. Domains for computing (a) the incident acoustic pressure and (b) the diffracted acoustic

pressure in the proposed splitting strategy for aeroacoustics. (Color online)

to integral formulations, and one can obtain the flow field in the vocal tract, the noise gen-

erated by the jet flow at the mouth exit, and the noise contribution from the incisors in a

single computational run.

The cornerstone of the method consists in splitting the acoustic pressure, p(x, t) in Eq. (1)

(the same holds for pa(x, t) in Eq. (3)), into incident and diffracted components p(x, t) =

pi(x, t) + pd(x, t). This leaves one with two wave equations, one for pi(x, t) and the other

one for pd(x, t), which are solved subsequently in slightly different domains (see Fig. 2).

The procedure goes as follows. Once an acoustic source term s(x, t) is obtained from an

incompressible CFD computation, for instance,

s(x, t) =

{

ρ0 (∇⊗∇) : (u0 ⊗ u
0)

−c−2

0
∂2p0/∂t2,

(4)
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s(x, t) is used as the inhomogeneous term in the wave equation for the incident pressure

component,

1

c2
0

∂2pi
∂t2

−∇
2pi = s in Ω (5a)

∂pi
∂n

= −
1

c0

∂pi
∂t

on Γ∞, t > 0 (5b)

pi = 0,
∂pi
∂t

= 0 in Ω, t = 0, (5c)

with Ω := Ωv ∪Ω0, Ω0 being the volume occupied by the rigid body (see Fig. 2a). In other

words, the problem is solved as if the rigid body (in our case the incisors) was absent. After

having computed pi(x, t), the rigid body is inserted again in the computational domain,

which leaves one with Ωv (see Fig. 2b). The diffracted pressure pd(x, t) is then obtained

knowing the value of the incident pressure on the boundary Γw of the rigid body, that is to

say, solving

1

c2
0

∂2ps
∂t2

−∇
2ps = 0 in Ωv (6a)

∂ps
∂n

= −
∂pi
∂n

on Γw, t > 0 (6b)

∂ps
∂n

= −
1

c0

∂ps
∂t

on Γ∞, t > 0 (6c)

ps = 0,
∂ps
∂t

= 0 in Ωv, t = 0. (6d)

Note that the summation of problems Eqs. (5) and (6) recovers the original Lighthill analogy

in Eq.(1) or the Roger one in Eq. (2), depending on the selected source term in (4).

When applied to the production of /s/, Eq. (5) will provide the incident acoustic con-

tribution pi(x, t) from the jet flow exiting the mouth to the total sibilant sound, whereas

the contribution from the aerodynamic sound diffracted by the incisors will be given by

the solution ps(x, t) to Eq. (6). In this work the factorization into incident and diffracted

components has been performed for Lighthill’s analogy and only total values for the acoustic

pressure are given for that in [29]. However, the strategy could have also been applied to

the latter.
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C. Numerical strategy

All the partial differential equations in this work have been solved using the method of

lines, i.e. the spatial discretization has been carried out with the finite element method

(FEM), while finite differences have been adopted for the time discretization. A custom

developed software has been used for all computations.

As regards the incompressible Navier-Stokes equations, it is well known that the Galerkin

FEM solution suffers from strong instabilities for convection dominated flows and for small

time steps at the beginning of evolutionary processes. Moreover, the spatial discrete problem

has to satisfy an inf-sup compatibility condition that implies using different interpolation

spaces for the incompressible pressure and velocity fields. An efficient way to circumvent

all these difficulties is to resort to residual-based stabilized variational multiscale (VMS)

methods [see 49, 50]. The unknown variables in the problem weak form become split into

large components, resolvable by the finite element mesh, and subgrid scales whose effects

onto the large ones have to be modeled. In this work the subscales have been chosen

orthogonal to the finite element space and the stabilization parameters have been obtained

from a Fourier analysis of the subgrid scale equation [see the orthogonal subgrid scale (OSS)

method in 18, 51]. As mentioned in the Introduction, the OSS method acts as an implicit

LES model. The stabilized variational Navier-Stokes equations for the problem at hand have

been solved using the second order fractional step scheme presented in [52]. A backward

differentiation formula of order three (BDF3) has been used for the time discretization.

At each discrete time step, the acoustic source terms in Eq. (4) are computed by post-

processing the incompressible pressure and velocity output from the fluid dynamics compu-

tation. In the case of Lighthill’s analogy, the acoustic waves for the incident and diffracted

acoustic pressure, Eqs. (5)-(6), become then solved. The contribution analysis has not been

performed for Roger’s source term as it would have yielded very similar results to those of

Lighthill (see Sec. III B below). Therefore, only Eq. (3) has been solved in this case.

From a computational point of view, the spatial discretization of the wave equation

poses no particular problem given that the Laplacian of the acoustic pressure gives rise to a

coercive term in the variational form of the problem. Therefore, the main difficulties with

the numerical solution of the wave equation arise from the time discretization, which should

prevent numerical dissipation as a wave propagates. Given that the focus in this work is on
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(a)

(b)

FIG. 3. (a) Meshed computational domain including the vocal tract geometry and the far field (b)

Zoom of the refined mesh region. (Color online)

the aerodynamic acoustic pressure at points only a few wavelengths from the mouth, a BDF2

scheme proves accurate enough to approximate the time derivatives in the wave equation

and its boundary conditions. Another issue to consider is that of imposing a proper non-

reflecting condition at the outer boundary of the computational domain. This often requires

the use of a perfectly matched layer (PML) formulation. However, the outwards propagating

waves in the present simulations are nearly spherical and impinge in the normal direction

to the radiation boundary. Spurious reflections have then been avoided by simply imposing

the Sommerfeld condition in [53].

The interested reader is referred to [8] and references therein for a full detailed description

of the numerical strategy that has been just outlined.

D. Numerical simulations

To perform the numerical simulations the vocal tract in Fig. 1 has been set in a circular,

rigid, flat baffle. A hemispherical domain has been attached to it to allow the flow to
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emanate from the mouth and the acoustic waves to propagate outwards (see Fig. 3a).

The following boundary conditions have been applied to solve the incompressible Navier-

Stokes equations. A velocity of 2.4 m/s has been prescribed at the inlet section. This

has been scaled from the blower in [45] and corresponds to a Reynolds number of Re =

8850, according to the inlet section diameter. Non-slip conditions have been applied to the

whole vocal tract and baffle surfaces, while the hemispherical surface has been considered

an open boundary, [15]. As regards the acoustic computations, the vocal tract and baffle

have been assumed rigid, whereas as mentioned, a non-reflecting Sommerfeld condition has

been applied at the hemispherical boundary and at the flow inlet. Since the object of

study is a low-Mach flow, no convective/turbulent jets reach these boundaries, for which the

sound generation can be considered punctual (seen from the boundaries). This is precisely

the assumption that needs to be fulfilled when applying a linear Sommerfeld boundary

condition. The following values have been taken for the physical parameters appearing in

the equations: an air density of ρ0 = 1.2 kg/m3, a kinematic viscosity of ν = 1.5×10−5 m2/s

and a sound speed of c0 = 343 m/s.

At low Mach numbers, M , an eddy of characteristic size l essentially radiates sound of

wavelength λ ∼ O(l/M). Taking into account that the Mach number according to the

inlet velocity is M ∼ 0.007 (though it can locally reach values up to M ∼ 0.23), and that

frequencies up to 12 kHz are to be captured to reproduce the physics of /s/, very fine spatial

meshes are required for the simulations. In this work a computational mesh of 45 M linear

tetrahedral elements with equal interpolation for all variables has been used (see Fig. 3a and

b for a general view and mesh refinement details). The mesh size ranges from h = 0.025 mm

close to the incisors, where the smallest turbulent flow scales are expected, to h = 2.5 mm

outside the mouth. The latter guarantees having about twelve nodes per wavelength at

12 kHz (λ ∼ 30 mm).

As explained in the previous section, a total of three equations are solved in the same finite

element computational run (four if the acoustic analogy in [29] gets included). Performing

such computations with very large size models, as the one in this work, is complex. To

that purpose a domain decomposition with an MPI distributed memory scheme has been

carried out so as to run the problem at the MareNostrum computer cluster, of the Barcelona

Supercomputing Centre (BSC). A period of 10.8 ms with a time step of ∆t = 5 × 10−6 s

has been simulated. This suffices to reach a statistical stationary state. The computational
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(a)

(c)

(b)

FIG. 4. Snapshot of (a) flow velocity profile in [m/s] on the vertical midplane cut, (b) flow velocity

profile on a plane tangent to the tract and (c) Lighthill’s acoustic source term at t=0.0108 s in

[kg m−3s−2]. (Color online)

run has lasted ∼ 30 hours using 256 processors. A Biconjugate Gradients solver with Pilut

preconditioner of the Hypre library has been used to solve the FEM algebraic matrix systems,

all of them integrated in PETSc.

III. RESULTS

A. Flow field and acoustic sources

The qualitative results from the CFD simulation confirm the general theoretical frame-

work describing the mechanisms of /s/ generation, and provide some further insight to it

as well. The jet flow is strongly accelerated in the constriction between the tongue blade

and the hard palate (see the snapshot in Fig. 4a) giving also rise to a recirculation zone.

The flow is greatly accelerated again at the inter-teeth gap reaching local Mach numbers of

M ∼ 0.2. Eddies are shed past the upper incisors and impinge at the lower lips. A strong

turbulent flow is generated at the cavity between the lower incisors and lower lips, where

most sound sources concentrate. This is shown in Fig. 4c where a snapshot of Lighthill’s
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FIG. 5. Spectrum of the incompressible pressure at a near field point showing the right f−7/3

dependence at the turbulent inertial subrange. (Color online)

source term, ρ0 (∇⊗∇) : (u0 ⊗ u
0), is presented. The strongest quadrupole sources can be

found in the direct path between the edge of the upper incisors, where flow separation takes

place, and the top side of the lower lips. The presence of a depression before the constriction

in form of a plug which diverts the flow towards the palate, (see Fig. 4a), can be explained

with the velocity profile shown at Fig. 4b. It can be observed how the tongue also closes

the tract in the transversal direction, forcing the flow to concentrate in a small section of

the path before impacting the upper incisors.

To check that the LES has been able to capture all turbulent scales down to the inertial

subrange, the incompressible pressure spectrum Epp at an arbitrary point placed just in

front of the upper incisors, at coordinates P1 = (0, 0.0205,−0.012)⊤, has been plotted in

Fig. 5, using a log-log scale. The origin of coordinates is placed at the center of the flat

section leading to the realistic vocal tract geometry in Fig. 1. According to Kolmogorov’s

theory for isotropic turbulence, the energy spectrum at the inertial subrange behaves as

E ∼ k−5/3 while the pressure spectrum as Epp ∼ k−7/3 (see e.g., [54]). Taylor’s hypothesis

of frozen turbulence allows one to show the latter also exhibits the same power dependence

with frequency, namely Epp ∼ f−7/3. It is observed in Fig. 5 that the present CFD simula-

tion well recovers the behavior of the pressure spectrum at the inertial subrange, therefore
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(a)

(b)

FIG. 6. (a) Total acoustic pressure isosurfaces and (b) mid-cut showing diffracted pressure wave-

fronts. Units in [Pa] (Color online)

showing that the stabilized FEM formulation, combined with the fine computational mesh,

corresponds to a large eddy simulation approach.

It is to be noted that quantitative details on the flow dynamics simulation are thought

out of the scope of this work, which essentially focus on the generated aerodynamic sound

results to be presented in the next subsection.

B. Incident and diffracted sound contributions to the acoustic field

On the one hand, the quadrupole sources depicted in Fig. 4b directly radiate sound which

propagates outside the mouth. On the other hand, this sound is partially diffracted by the
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(c)

(a)

(c)

(b)

(d)

FIG. 7. Time evolution of the acoustic pressure. (a) Incident pseudosound (dashed blue) and

diffracted (continuous red) components at the near field point P1 from Lighthill’s analogy, (b)

incident turbulent (dashed blue) and incisor diffracted (continuous red) contributions to the far

field point P5, (c) Incisors’ diffracted contribution using Lighthill’s analogy (dashed blue) versus

total acoustic pressure (continuous red) using the analogy in [29] at the near field and (d) total

acoustic pressure at the far field using Lighthill’s analogy (dashed blue) and the analogy in [29]

(continuous red). (Color online)

upper incisors and also becomes radiated outwards. As said before, this second mechanism

is sought to be the predominant one at the far-field [see e.g., 5]. However, it will be shown

that the incident quadrupole radiation cannot be neglected for points in the vicinity of the

mouth.

The numerical strategy in Sec. II B has been applied to compute the contributions from

the direct quadrupolar sound and the dipolar diffracted one. Before probing more deeply the
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(a)

(c)

(b)

(d)

FIG. 8. Spectra of the incident, diffracted and total components of the acoustic pressure at the far

field. (a) Point P2, (b) Point P3, (c) Point P4, (d) Point P5 . (Color online)

quantitative results, a snapshot showing the spherical acoustic wavefronts emanating from

the mouth is shown in Fig. 6a, whereas a mid-cut showing the propagation of the acoustic

waves resulting from the incisors diffraction is presented in Fig. 6b, for illustrative purposes.

Several time history occurrences for the acoustic pressure at two points located at the near

field and at the far field are presented in Fig. 7. The first one is point P1, already introduced

in the previous Sec. III B, whereas the second one is not affected by the flow emanating from

the mouth and is placed at P5 = (0, 0.035,−0.085)⊤, see Figure 1. Figure 7a presents the

incident and diffracted contributions to the near field point P1 using Lighthill’s acoustic

analogy. As known, Lighthill’s analogy is not valid for points in the source region so the
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strong fluctuations from the incident contribution in Fig. 7a (dashed blue line) correspond

to pseudosound rather than to acoustic fluctuations. These are one order of magnitude

higher than the acoustic contribution from the incisors’ diffraction (red continuous line).

The contributions for the point at the far field, P5 are presented in Fig. 7b. In this case

Lighthill’s acoustic analogy is perfectly valid to compute the generated aerodynamic acoustic

pressure. As observed, at P5 the acoustic pressure from the diffracted component is clearly

higher than that provided by the direct turbulent flow contribution.

In Fig. 7c, a comparison is presented between the contribution of the incisors’ diffraction

to the near field point P1 (dashed blue line), already plotted in Fig. 7a, and the total

acoustic pressure (continuous red line) computed with the acoustic analogy in [29]. Both

contributions have the same order of amplitude showing that the analogy in Eq. (3) is

capable of filtering the pseudosound and extracting the acoustic component from the pressure

fluctuations, at very low Mach numbers. When evaluated at a far field point like P5 both,

Lighthill’s analogy in Eq. (1a) and Eq. (3) should yield almost the same results. This is

what is observed in Fig. 7d where the time evolution for the total acoustic pressure at P5

using both analogies is plotted. The two curves in the figure show very similar trends in

terms of amplitude and phase.

The spectra in dB (ref. 2× 10−5 Pa) at four points well separated from the flow exiting

the mouth, yet close to it, are plotted in Fig. 8. Figs. 8a-d respectively correspond to points

P2 = (−0.075, 0.035,−0.0125)⊤, P3 = (0.075, 0.035,−0.0125)⊤, P4 = (0, 0.035, 0.06)⊤ and

to P5, see Figure 1. The figures contain the total acoustic pressure at these points, together

with the contributions from the incident turbulent aerodynamic noise and from the sound

diffracted by the incisors. As regards the total acoustic pressure, very similar tendencies can

be appreciated in all figures. The spectra first decrease with frequency and exhibit a dip close

to 2 kHz; then they increase linearly showing two marked peaks close to 9 kHz and 10 kHz

and finally they decrease again with frequency. As regards the contributions, it can be

checked that in the range up to 2 kHz the incident turbulent component clearly dominates.

The size of the incisors are small compared to the acoustic wavelengths at those frequencies

so diffraction is not so important. However, as frequency increases the situation changes and

both the incident and diffracted components contribute the same from 2 kHz to ∼ 8 kHz,

with a slight predominance of the former. Above ∼ 8 kHz the turbulent contribution begins

to decay and the spectra become mostly justified by the diffracted component. Again, this
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FIG. 9. Comparison of Welch averaged power spectral density levels with (a) the measurements

using mechanical replicas in [46] (b) the measurements with subject utterances in [3]. (Color online)

is logical given that for smaller wavelengths the diffraction effects become more important.

In addition, more wavelengths are needed to reach the target points and dipolar sources

become more effective. For a fixed distance, the conditions of far-field are easier to satisfy

at higher frequencies, where the diffracted component is predicted to dominate [see e.g., 5].

C. Comparison with measurements in literature

Given the lack of experimental data with the configuration simulated in the previous

section, a comparison with some measurements reported in literature will be next presented.
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This will serve to somehow validate the general trends of the obtained results.

In particular, some of the data in [46] will be first used for that purpose. In that work

a mechanical replica of the geometry in Fig. 1 was built and tested. The experimental

setup consisted of a flow facility mechanism that supplied air to an upstream circular duct

connected to the vocal tract geometry. No flat baffle was set at the exit of the replica

and measurements were taken with a microphone located at 94 cm from the mouth in the

yx-plane, and at an angle of 37◦ in the horizontal xz plane. Reproducing such experiment

would have proved prohibitive from a computational point of view. However, a somewhat fair

checking of the numerical simulations can be made by comparing the computed spectrum

at P3 with those in [46] belonging to situation I (recorded speaker), situation II (flow

facility with settling chamber plus replica) and situation III (human blowing plus replica),

for Re = 8900. For the ease of comparison of the spectral characteristics, the level of the

Welch averaged power spectral density [see e.g., 1] at P3 has been scaled taking its value

at 5 kHz as the average of the values of the measurements at that frequency. The results

are presented in Fig. 9a. As observed in the figure, despite all the commented differences

the agreement between the computed spectrum and those provided by the replica is pretty

good. Unlike the original recording of the speaker, in none of the three cases whistling

appears at 9 kHz and the slopes of the spectrum are properly described. These two results

are very important because both replica and numerical simulation are based on similar flow

conditions, whereas the recording may involve further sources of variation or modulation that

have not been taken into account in the modeling. On the other hand, it can be observed

that spectral slope, dynamic amplitude and spectral peak are less accurate when comparing

with human blowing since these features depend on the imposed volume flow rate, which

is less well controlled when air is supplied by human blowing, and due to differences in the

inlet turbulence level, which is 0% in the numerical simulation and more than 4% for human

blowing, [45],[46].

Comparisons have also been made with the measurements of uttered sibilants in [3].

Recordings with a microphone and a digital spectrograph were provided in that reference

for the pronunciation of [s] in the context of phonemes [si] and [su]. Sibilant /s/ was recorded

for an adult woman and also for a three year old child. Results are presented in Fig. 9b.

Again, the sound pressure level of the Welch averaged power spectral density has been scaled

with the average values of the measurements at 5 kHz. As observed in the figure strong
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differences can be appreciated at low frequencies, yet the general trends of the spectra are

similar. They all exhibit a decay from low frequencies to a dip between ∼ 1 − 3 kHz,

followed by a strong level increase with frequency up to ∼ 8− 9 kHz, and two peaks whose

locations change depending on each realization. The peaks are well separated and can be

found approximately at ∼ 8.5 kHz and ∼ 10 kHz for the spectra at P3. They can also

be clearly distinguished for the measurements corresponding to phoneme [si], and to a less

extent for the adult woman when pronouncing phoneme [su]. Despite considering different

speakers (woman and child) and scenarios (the reconstructed geometry portion is obtained

for sustained [s] whereas these speech observations are reported for syllables), and taking into

account that in [55] is shown that the constriction degree is greater for sustained phonemes

than for phonemes in a syllable context, qualitative good agreement is observed for spectral

slope and frequency peak.

IV. CONCLUSIONS

In this work a large-scale numerical simulation of the aeroacoustics of a single example of

sibilant fricative [s] has been carried out. Lighthill’s acoustic analogy and an analogy that

allows filtering pseudosound to some extent at the source region have been implemented.

A stabilized finite element method which acts as an implicit large eddy simulation model

has been used to solve the incompressible Navier-Stokes equations. The acoustic field has

been resolved resorting to a splitting strategy that allows one to obtain the contributions

from the incident turbulent sound and the sound diffracted by the upper incisors in a single

computational run.

The spectra from the contributions to the total acoustic pressure at points located close to

the mouth exit (yet out of the flow wake) reveal a significant different behavior depending

on the frequency range. At the lowest side of the spectrum, the acoustic pressure level

decreases and the incident turbulent sound directly emanating from eddies in the cavity

between incisors and lips dominates. This is the case up to ∼ 2 kHz. From ∼ 2 kHz

to ∼ 8 − 9 kHz, the level strongly increases and the contributions from both the sound

diffracted by the upper incisors and from turbulence are very similar. At higher frequencies

the diffracted sound becomes dominant.

Finally, one should bear in mind that the results reported in this work correspond to a
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single vocal tract geometry extracted from a subject while uttering a particular realization of

[s]. Therefore, care should be taken not to give general validity to the conclusions. However,

comparisons with measurements in literature on mechanical replicas and subject recordings

seem to validate the main trends of the obtained results.
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Fig. 1. 3D realistic vocal tract geometry for [s] with upper incisors highlighted in

green. Measuring points P4 and P5 are placed at the far-field. (Color online).

Fig. 2. Domains for computing (a) the incident acoustic pressure and (b) the diffracted

acoustic pressure in the proposed splitting strategy for aeroacoustics. (Color online).

Fig. 3. (a) Meshed computational domain including the vocal tract geometry and the

far field (b) Zoom of the refined mesh region. (Color online).

Fig. 4. Snapshot of (a) flow velocity profile in [m/s] on the vertical midplane cut, (b)

flow velocity profile on a plane tangent to the tract and (c) Lighthill’s acoustic source

term at t=0.0108 s in [kg m−3s−2]. (Color online).

Fig. 5. Spectrum of the incompressible pressure at a near field point showing the right

f−7/3 dependence at the turbulent inertial subrange.

Fig. 6. (a) Total acoustic pressure isosurfaces and (b) mid-cut showing diffracted

pressure wavefronts. Units in [Pa] (Color online).

Fig. 7. Time evolution of the acoustic pressure. (a) Incident pseudosound (dashed

blue) and diffracted (continuous red) components at the near field point P1 from

Lighthill’s analogy, (b) incident turbulent (dashed blue) and incisor diffracted (contin-

uous red) contributions to the far field point P5, (c) Incisors’ diffracted contribution

using Lighthill’s analogy (dashed blue) versus total acoustic pressure (continuous red)

using the analogy in [29] at the near field and (d) total acoustic pressure at the far

field using Lighthill’s analogy (dashed blue) and the analogy in [29] (continuous red).

(Color online). (Color online).

Fig. 8. Spectra of the incident, diffracted and total components of the acoustic pressure

at the far field. (a) Point P2, (b) Point P3, (c) Point P4, (d) Point P5 . (Color online).

Fig. 9. Comparison of Welch averaged power spectral density levels with (a) the

measurements using mechanical replicas in [46] (b) the measurements with subject

utterances in [3].
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