

Computational Aerodynamic Analysis of Threedimensional Ice Shapes on a NACA 23012 Airfoil

GaRam Jun (University of Michigan) Daniel Oliden (Arizona State University) Mark Potapczuk (NASA Glenn Research Center) Jen-Ching Tsao (Ohio Aerospace Institute)

6th AIAA Atmospheric and Space Environments Conference Atlanta, GA June 16-20, 2014

Overview

- Background
- Motivation
 - Ice Accretion Shapes
 - Workflow
- Approach
 - Grid Generation
 - CFD
- Results
- Future Work

Background

Background

 To-date CFD analysis has been performed on, 2D crosssections, 3D extrusions of 2D cross-sections, and 3D ice shapes generated by ice accretion codes

www.nasa.gov

Motivation

- Complex 3D ice shape geometry data can now be collected
 - In-situ laser scans of ice accretion shapes
 - CAT scans have also been performed
 - Complete ice shape documentation, including surface roughness elements
- How good is good enough?
 - What level of ice shape detail must be simulated by ice accretion codes?
 - Detailed analysis of the aerodynamics and heat transfer mechanisms at the ice-liquid-air interface can shed light on the parameters of importance

Ice Accretion Shapes

Types of ice accretion
– Rime

Ice Accretion Shapes

Types of ice accretion
– Glaze

Workflow

Ice Shape Scanned in IRT Ice Shape Processed with Geomagic Ice Shape Grid **Built in Pointwise** Aerodynamic Analysis with NCC Plotting and Visualization with Tecplot

Geomagic

Commercial software used to create watertight surface from scanned point cloud data

Lee, S., Broeren, A. P., Addy, H. E., Jr., Sills, R., and Pifer, E. M., "Development of 3-D Ice Accretion Measurement Method," NASA/TM-2012-217702, AIAA Paper-2012-2938, 2012

Pointwise

Commercial software used to import ice shape geometry data and create grid for CFD analysis

- 1. Import Geometry
 - Database
 - Surface Grid

- 1. Import Geometry
- 2. Create Surface Grid Rime

- 1. Import Geometry
- 2. Create Surface Grid Horn

- 1. Import Geometry
- 2. Create Surface Grid
- 3. Create Volume Grid Rime

- 1. Import Geometry
- 2. Create Surface Grid
- 3. Create Volume Grid Horn

- 1. Import Geometry
- 2. Create Surface Grid
- 3. Create Volume Grid
- 4. Refinement

Statistics of Initial Grids

	Ice Shape Geometry	Chord length (in)	Span length (in)	Grid Type	Volume grid cell count
Clean	-	18	12	Structured	0.5 million
Rime	ED1966	18	6	Unstructured	1.6 million
Glaze	ED1978	18	6	Unstructured	3.7 million

Broeren, A.P., Addy, H.E., Lee, S., and Monastero, M.C., "Validation of 3-D Ice Accretion Measurement Methodology for Experimental Aerodynamic Simulation," AIAA 6th Atmospheric and Space Environments Conference, Atlanta, GA, June 16-20, 2014

National Combustion Code (NCC)

- Solver
 - Finite-volume
 - Explicit, four-stage Runge-Kutta integration algorithm
 - RANS, URANS
- Turbulence
 - $k \epsilon$ model
 - higher order, non-linear method
 - Partially Resolved Numerical Simulation (PRNS)
- Parallel Computing
 - Parallel Virtual Machine (PVM)
 - Message Passing Interface (MPI)

Liu, N.-S. and Shih, T.-H., "Turbulent Modeling for Very Large-Eddy Simulation," AIAA Journal, Vol. 44, No. 4, April 2006

Domain Conditions

- Boundary Conditions
 - Velocity Inlet
 - Pressure Outlet
 - No-slip Airfoil Wall
 - Periodic Side Walls
- Freestream Conditions M = 0.10, 0.18 $Re = 1.0 \times 10^{6}, 1.8 \times 10^{6}$ $P_{\infty} = 98,595$ [Pa] $T_{\infty} = 294.3$ [K] $\alpha = 0^{\circ}$ to 10°

Clean Wing (M=0.10 @ 0°)

Clean Wing (M=0.10 @ 0°)

Clean Wing (M=0.10 @ 0°) Other CFD Solvers

Clean Wing (M=0.10 @ 0°) Other CFD Solvers

Clean Wing C_L Curve (M=0.10)

ED1966 Wing (M=0.10 @ 0°) Rime Shape

ED1966 Wing (M=0.10 @ 0°) Rime Shape

ED1966 Wing Lift Coefficient Results

- Results suggest that viscous effects play a role for the rime ice case, consistent with expectations
- Results from a single instantaneous pressure profile, used in the computation, need to be replaced with time averaged and spatially integrated results

ED1978 Wing (M=0.18 @ 0°) Glaze shape

ED1978 Wing (M=0.18 @ 0°) Glaze Shape

Future Work

- Detailed examination of solutions
 - Both ice shapes (ED1966 and ED1978)
 - Variations in flow field results across the span
 - Time averaging of unsteady results
 - Spatial integration across the span
 - Grid resolution studies
 - Turbulence models
 - Glaze ice shape (ED1978)
 - Investigate cause of pressure fluctuations near leading edge
- Parametric study of mesh quality
 - Establish minimum amount of grid points along airfoil surface
- Perform detailed analysis of ice surface roughness region
- Develop post-processing modules for NCC to calculate standard external aerodynamic parameters

National Aeronautics and Space Administration

Thank You!

Questions?

www.nasa.gov