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Because of their small size and flight regime, coupling of aerodynamics, structural dynamics, and flight dynamics

are critical for micro aerial vehicles. This paper presents a computational framework for simulating structural

models of varied fidelity and a Navier–Stokes solver, aimed at simulating flapping and flexible wings. The structural

model uses either 1) the in-house developedUM/NLABS, which decomposes the equations of 3-D elasticity into cross-

sectional and spanwise analyses for slender wings, or 2) MSC.Marc, which is a commercial finite-element solver

capable of modeling geometrically nonlinear structures of arbitrary geometry. The flow solver employs a well-tested

pressure-based algorithm implemented in STREAM. A NACA0012 cross-sectional rectangular wing of aspect

ratio 3, chord Reynolds number of 3 � 104, and reduced frequency varying from 0.4 to 1.82, with prescribed pure

plunge motion is investigated. Both rigid and flexible wing results are presented, and good agreement between

experiment and computation are shown regarding tip displacement and thrust coefficient. Issues related to coupling

strategies, fluid physics associated with rigid and flexible wings, and implications of fluid density on aerodynamic

loading are also explored in this paper.

Nomenclature

aroot = plunge amplitude
c = mean aerodynamic chord length
CL = lift coefficient
CT = thrust coefficient
D = plate bending stiffness
f = frequency
FB = beam sectional forces expressed in the deformed

frame
fs0, fs1 = generalized forces corresponding to the finite-section

modes
f0, f1 = beam forces per unit length; first-order forces per unit

length associated with the work needed to deform the
cross section

h = displacement at a point along y axis
HB = angular momentum column matrix expressed in the

deformed structural frame
hr = nondimensional plunge amplitude� aroot

c

K = kinetic energy per unit length
k = reduced frequency� !c

2U
M = cross-sectional inertia matrix
MB = beam sectional moments expressed in the deformed

frame
m0, m1 = beam moments per unit length, first-order moments

per unit length associated with the work needed to
deform cross section

p = static pressure
PB = linear momentum column matrix expressed in the

deformed frame
q = amplitude of the finite-section mode
Qs0

= generalized forces corresponding to finite-section
modes

Qs1
= generalized moments corresponding to finite-section

modes
Qt = generalized momenta corresponding to finite-section

modes
q0 = derivative of the finite-section mode along the

spanwise direction
Re = Reynolds number� �Uc

�
S = cross-sectional stiffness matrix
St = Strouhal number� hrk
T = plunge cycle period
t = time
�t = nondimensional time� tU

c
U = freestream velocity
ui = fluid velocity vector components
� = strain energy per unit length
VB = beam inertial velocity column matrix at the deformed

frame
w = column matrix of 3-D warping displacements

components
x, y, z = global Cartesian coordinates
x, x1 = coordinate along the structural wing span
x2, x3 = coordinates in the wing cross section
�inst = instantaneous effective angle of attack
� = column matrix of force strains measures
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� = column matrix of moment strain measures
� = dynamic viscosity
�B = components of the applied generalized forces in the

deformed frame
�B = column matrix of normalized cross section

coordinates
�1 = ratio of elastic and aerodynamic forces� D

�fU
2c3

�2 = ratio of inertia and aerodynamic generalized forces�
IB

�fc
5

�3 = ratio of the first bending mode to the frequency of
oscillation

�4 = ratio of the second bending mode to the frequency of
oscillation

�5 = ratio of the first torsion mode to the frequency of
oscillation

�f = fluid density
�m = material volumetric density
�s = equivalent structural volumetric density
�B = inertial angular velocity vector at a point on the beam

reference line in the deformed frame
! = angular frequency� 2�f

Superscripts

�� = nondimensional quantities
�0 = differentiation with respect to the coordinate along

the spanwise direction, x1
_� = differentiation with respect to time

I. Introduction

M ICROAir Vehicles (MAVs) are advancing our capabilities in
the areas of environmental monitoring and homeland security

[1]. Because of their small size and flight regime, the coupling
between aerodynamics, structural dynamics, and flight dynamics is
critical.MAVs have amaximumdimension on the order of 15 cm and
nominal flight speeds of approximately 10 m=s, operating in a low
Reynolds number regime (105 or lower). The rise and growth of
MAVs have been stimulated by the long history of natural flight
studies. Good reviews of the state-of-the-art in this subject are given
in [2,3]. High speed cine and still photography and stroboscopy
indicate that most biological flyers undergo orderly deformation in
flight [4]. Birds, bats, and insects exploit the coupling between
flexible wings and aerodynamic forces such that the wing defor-
mations improve aerodynamic performance [5]. The interaction bet-
ween unsteady aerodynamics and structural flexibility is, therefore,
of considerable importance for MAV development [1].

Much of the aeroelasticity efforts thus far have focused on fixed-
wing membrane-based MAVs [6–10]. Shyy et al. [6] have discussed
flexible wings using membrane materials and inferred from
computations that comparedwith a rigidwing, amembranewing can
adapt to stall better and has the potential to achieve enhanced agility
and storage condition by morphing its shape. They also emphasized
the importance of fluid–structure analyses to understand the
membrane wing performance. Lian and Shyy [7] have studied the
3-D interaction between a membrane wing and its surrounding fluid
flow via an aeroelastic coupling of a nonlinear membrane structural
solver and a Navier–Stokes solver. Stanford et al. [8] made a direct
comparison of wing displacements, strains, and aerodynamic loads
obtained via a novel experimental setup with those obtained
numerically. In their work, they considered both prestall and poststall
angles of attack and the computed flow structures revealed several
key aeroelastic effects: decreased tip vortex strength, pressure spikes
and flow deceleration at the tangent discontinuity of the inflated
membrane boundary, and an adaptive shift of pressure distribution in
response to aerodynamic loading.

The aeroelasticity of flapping wings has only recently been
seriously addressed, and a full picture of the basic aeroelastic pheno-
mena in flapping flight is still not clear [1,5,11–21]. In an earlier
investigation, Smith [14] has studied the effects of flexibility on the

aerodynamics of moth wings by modeling them as linearly elastic
structures using finite elements for a Reynolds number of the order of
103 and reduced frequencies of the order of 0.2 and higher. Laminar
flow assumption was made. In the structural finite-element model,
the veins of the wings were treated as tubular beams of varying
thickness, and the wing surfaces were modeled as quadrilateral (or
triangular) membranes that are also of varying thickness with ortho-
tropic properties. For the aerodynamics, an unsteady panel method
was used. Both the structural and the aerodynamic equations were
simultaneously solved to obtain the coupled flapping wing response.
Frampton et al. [5] have investigated a method of wing construction
that results in an optimal relationship betweenflappingwing bending
and twisting such that optimal thrust forces are generated. The thrust
production of flapping wings was tested in an experimental rig.
Results from this study indicated that the phase between bending
motion and torsional motion is critical for the production of thrust. It
was noted that a wing with bending and torsional motion in phase
creates the largest thrust whereas a wing with the torsional motion
lagging the bending motion by 90 deg results in the best efficiency.
Hamamoto et al. [15] have done finite-element analysis based on the
arbitrary Lagrangian–Eulerian method to perform fluid–structure
interaction analysis on a deformable dragonfly wing in hover and
examined the advantages and disadvantages of flexibility. They
tested three types of flapping flight: a flexiblewing driven by dragon-
fly flapping motion, a rigid wing (stiffened version of the original
flexible dragonfly wing) driven by dragonfly flapping motion, and a
rigid wing driven by modified flapping based on wing tip motion.
They found that the flexible wing with nearly the same average
energy consumption generated almost the same amount of lift force
as the rigid wing with modified flapping motion. In this case, the
motion of the tip of the flexible wing provided equivalent lift as the
motion of the root of the rigidwing.However, the rigidwing required
19% more peak torque and 34% more peak power, indicating the
usefulness of wing flexibility.

More recently, Singh [11] has discussed a computational
framework for the aeroelastic analysis of hover-capable, bioinspired
flapping wings. The chord-based Reynolds number considered for
the analyses was in the 103 to 105 range. A finite-element-based
structural analysis of thewingwas used along with an unsteady aero-
dynamic analysis based on indicial functions. Experimental valida-
tion of the computational results was conducted. One of the major
inferences from this work is that at high flapping frequencies
(�12 Hz), the light-weight and highly flexible insectlike wings used
in the study exhibited significant aeroelastic effects. Zhu [16] has
developed a nonlinear fluid–structure interaction approach to study
the unsteady oscillation of a flexible wing for a Reynolds number of
2:025 � 104. His hybrid solution approach included a 3-D boundary-
integral method to solve the flow around the body and the dynamics
of the wake and a nonlinear thin-plate model to simulate the struc-
tural response of the wing. He found that when thewing is immersed
in air, the chordwiseflexibility reduces both the thrust and the propul-
sion efficiency, and the spanwise flexibility (through equivalent
plunge and pitch flexibility) increases the thrust without efficiency
reduction within a small range of structural parameters. However,
when the wing is immersed in water, the chordwise flexibility
increased the efficiency and the spanwise flexibility reduced both the
thrust and the efficiency. Willis et al. [17] have presented a compu-
tational framework to design and analyze flapping MAV flight. A
series of different geometric and physical fidelity level represen-
tations of solution methodologies was described in the work. Liani
et al. [18] have coupled an unsteady panel method with Lagrange’s
equations of motion for a 2-degree-of-freedom spring-mass wing
section system to investigate the aeroelastic effect on the aero-
dynamic forces produced by a flexible flapping wing at different
frequencies especially near its resonance.

Heathcote et al. [19] have experimentally investigated the effects
of stiffness on thrust generation of airfoils undergoing a plunging
motion under various freestream velocities. Direct force measure-
ments showed that the thrust/input-power ratio was found to be
greater for flexible airfoils than for the rigid one. They also observed
that at high plunging frequencies, the less flexible airfoil generates
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the largest thrust, although the more flexible airfoil generates the
most thrust at low frequencies. To study the effect of the spanwise
stiffness on the thrust, lift, and propulsive efficiency of a plunging
wing, a water-tunnel study was conducted by them on a NACA0012
uniform wing of aspect ratio three. They observed that for Strouhal
numbers greater than 0.2, a degree of spanwise flexibility was found
to be beneficial. Tang et al. [20] explored a 2-D flexible airfoil by
coupling a pressure-based fluid solver with a linear beam solver. In
this work, the fluid flow around a plate of different thicknesses with a
teardrop shaped leading edgewas computed at a Reynolds number of
9 � 103. In addition to this, a flat plate with half cylinders at leading
and trailing edges were investigated at a Reynolds number of 102 to
probe the mechanism of thrust generation. In particular, they pointed
out that the effect of the deformation (passive pitching) is similar to
the rigid-body motion (rigid pitching), meaning that the detailed
shape of the airfoil is secondary to the equivalent angle of attack.

This paper is part of an ongoing study in the computational
aeroelasticity of flapping wings. Previously [21] a fluid–structure
coupling procedure between a Navier–Stokes solver and a quasi-3-
D finite-element solver was introduced. Results were presented on a
model example problem corresponding to a NACA0012 wing of
aspect ratio 3 in pure heave motion at a Reynolds number of 3�
104. It was observed that the phase lag of the wing tip displacement
relative to the flapping motion becomes more pronounced as the
fluid density increases. The main objectives of this paper are to
1) present computational aeroelastic frameworks for the analysis of
flapping wings, 2) validate the proposed computational method-
ology for the aeroelasticity of flapping wings with the experimental
results of Heathcote et al. [19], and 3) study the characteristics of the
coupling between fluid and structural dynamics solvers, the impact
of aerodynamic loading on the structural response, the implications
of the thrust coefficient in response to the reduced frequency, and
the fluid physics associated with flexibility. A primary goal of this
work is to validate the implementation of the present approach,
including assessment of the sensitivity of numerical solutions,
structural modeling, and fluid–structure coupling. Furthermore, the
impact of flexibility on aerodynamics is interpreted. A more com-
plete investigation regarding the degree of structural flexibility and
its interaction with aerodynamics is reported in Aono et al. [22].

II. Numerical Framework for High-Fidelity
Flapping Wing Simulations

In this section, a brief description of the fluid dynamics formula-
tion and two structural dynamics approaches for the problem of
geometrically nonlinear deformations offlappingwings is presented.
From these, two aeroelastic frameworks are developed for the
analysis of low Reynolds number flows and their interactions with
flexible flapping wings.

A. Computational Fluid Dynamics Solution (STREAM)

The fluid solution is obtained from the incompressible Navier–
Stokes equations and the continuity equation

@ui
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where�f is thefluid density,ui is thevelocity vector, t is the time, xi is
the position vector,p is the pressure, and � is the kinematic viscosity.
Based on the definition of the motion [20] for forward flight, if the
freestream velocity (U), the chord length (c) and the inverse
plunging/pitching (1=f) frequency are used as the velocity, length,
and time scales, respectively, the Reynolds and Strouhal numbers
appear as Re�Uc=	 and St� fc=U. With these choices of the
scaling parameters, the nondimensional form of the Navier–Stokes
equations becomes
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It should be noted that the relation between Strouhal number and
reduced frequency is St� hrk. The numerical solution is obtained
using a pressure-based algorithm, with an employment of combined
Cartesian and contravariant velocity variables to facilitate strong
conservation law formulations and consistent finite volume treat-
ment. The convection terms are discretized using a second-order
upwind scheme, whereas the pressure and viscous terms are
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Fig. 1 Asymptotic solution process for 3-D slender structures implemented in UM/NLABS.
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discretized with a second-order central difference scheme. For the
time integration, an implicit Euler scheme is employed. A moving
grid technique employing the master–slave concept [7] is used to
remesh the multiblock structured grid for fluid–structure interaction
problems. The geometric conservation law (GCL) originally pro-
posed by Thomas and Lombard [23] was incorporated to compute
the cell volumes in the moving boundary problem consistently and
eliminate artificial mass sources. The specific implementation and
implications of the GCL in the context of the present solution
algorithm have been discussed by Shyy et al. [24].

B. Structural Dynamics Solution (UM/NLABS)

The first geometrically nonlinear structural dynamic solution is
based on an asymptotic approach to the equations governing the
dynamics of a general 3-D anisotropic slender solid [25,26]. It is
implemented in the University of Michigan’s nonlinear active beam
solver (UM/NLABS) computer code. Assuming the presence of a
small parameter (the inverse of the wing aspect ratio) allows for a
multiscale solution process, in which the problem is decomposed
into separate cross-sectional (small-scale) and longitudinal (long-
scale) analyses. The longitudinal problem solves for average mea-
sures of deformation of the reference line under given external
excitations. The cross-sectional problem solves the local deforma-
tion for given values of the long-scale variables. Both problems are
tightly coupled and together provide an efficient approximation to
the displacement field in the original 3-D domain. A flow diagram of
the process is shown in Fig. 1.

The structural formulation follows the variational-asymptotic
method for the analysis of composite beams [27]: the equations of
motion for a slender anisotropic elastic 3-D solid are approximated

by the recursive solution of a linear 2-D problem at each cross section
[26], and a 1-D geometrically-nonlinear problem along the reference
line [25]. This procedure allows the asymptotic approximation of
the 3-Dwarping field in the beam cross sections, which are usedwith
the 1-D beam solution to recover a 3-D displacement field. The
warping was approximated for the elastic degrees of freedom of a
Timoshenko-beam model (extension and transverse shear, �, and
twist, bending about two directions, �) and augmented with an
arbitrary set of functions approximating the sectional deformation
field (amplitude q and its derivative along the spanwise direction q0).
These capture “nonclassical” deformations, which are referred to as
finite-sectionmodes. These newdeformationmodes are not restricted
to be as small as the fundamental warping field. The solution of a
variational problem yields the warping field corresponding to 1-D
beam strains f�; �; q; q0g. In its first-order approximation, it can be
written as [26]

w�x1; x2; x3� � w��x2; x3���x1� �w��x2; x3���x1�

� wqn
�x2; x3�qn�x1� �wq0n

�x2; x3�q
0
n�x1� � HOT (3)

where fw� w� wqn
wq0n g are the first-order warping influence

coefficients and HOT stands for higher-order terms. Using this
approximation for the warping field, the cross-section problem gives
the strain energy per unit length of the beam:
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Here, the constant matrix [S] is the first-order asymptotic appro-
ximation to the stiffness matrix. The integration of the kinetic energy
can be directly done as a function of the 1-D variables, yielding
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where the constant matrix [M] is the inertia matrix for the cross
section. From the resulting 1-D problem, the geometrically nonlinear
dynamic equations of equilibrium along the reference line (as
presented in [25]) are written as

�

d

dt
� ~�B

�

PB �

�

d

dx
� ~KB

�

�FB � f1� � f0

�

d

dt
� ~�B

�

HB � ~VBPB �

�

d

dx
� ~KB

�

�MB �m1�

� � ~e1 � ~��FB �m0

d

dt
Qt �

d

dx
�Qs1

� fs1� � �Qs0
� fs0� (6)

where the generalized forces and momenta are all expressed in their
components in a reference frame attached to the deformed beam
reference line. The first two equations imply equilibrium of forces

Fig. 2 A schematic of the aeroelastic framework involving Navier–
Stokes and two different structural solvers of variable fidelity.

Fig. 3 A schematic of the implicit coupling approach involvingfluid–structure subiterations, whereCSD stands for computational structural dynamics.
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and moments. The last equation in (6) includes the set of equilibrium
equations corresponding to the finite-section modes. With the
warping influence coefficients givenbyEq. (3), the applied forces per
unit length in Eq. (6) are

f0 �

Z

A�x�

�BdA; f1 �

Z

A�x�

wT
��BdA

fs0 �

Z

A�x�

��T
q �wT

q��BdA; fs1 �

Z

A�x�

wT
q0�BdA

m0 �

Z

A�x�

�B�BdA; m1 �

Z

A�x�

wT
��BdA (7)

The present implementation of this formulation follows the approach
described in [25], where the solution to Eq. (6) is done by means of a
finite-element discretization on amixed-variational form of the equa-
tions. Therefore, although they are analyzed independently, the small
and long-scale problems are intimately linked in the detailed appro-
ximation to the solution. This is particularly important in the gene-
ration of the solid side of an aeroelastic model: the interface of the
structural model consists of the actual wetted surfaces of the vehicle,
without extrapolations from the motion of a reduced-dimension
structural model, nor the assumption of rigid cross sections required
by beam theories.

C. Structural Dynamics Model (MSC.Marc 2005r3)

The ability to model very-flexible low-aspect-ratio flapping wings
made of anisotropic materials is ultimately required to analyze and
design bioinspired wings.MSC.Marc [28] is a commercial nonlinear
finite-element solver that can be used towards this end. It is capable of
handling nonlinearities either due to material behavior, large defor-
mation, or boundary conditions. It contains three isoparametric,
doubly curved, thin shell elements: 3-, 4-, and 8-node elements based
on Koiter–Sanders theory [28]. These elements are C1 continuous
and exactly represent rigid-body modes, critical in flapping wing
analyses. Some of the shell elements in the solver could be used in
conjunctionwith selected beam elements tomodel built-up structural
wing constructions. MSC.Marc provides a coupling interface to
external computational fluid dynamics (CFD) solvers available
through user subroutine programming. Such an interface was
developed in this work to perform aeroelastic simulations.

D. Aeroelastic Coupling

The aeroelastic coupled solution is based on a time-domain
partitioned solution process inwhich the nonlinear partial differential
equations modeling the dynamic behavior of both fluid and structure
are solved independently with boundary information (aerodynamic
loads and structural displacements) being shared between each other
alternately. A schematic of such a framework is shown in Fig. 2. A
dedicated interface module was developed to enable communication
between the flow and the structure at the 3-D wetted surface (fluid–
structure interface). In the interface module, both the fluid and the
structural modules are called one after the other according to the
coupling method adopted for the problem. The coupling algorithm is
determined by the capability of the individual simulation code.

There are two coupling algorithms within the purview of the
aeroelasticity frameworks proposed here. In the first one, denoted
here as the explicit coupling approach, both solvers are called once
per coupled time step while exchanging data at the interface. In the
second algorithm, denoted here as the implicit coupling approach,
both the fluid and the structural solvers exchange more than once per
coupled time step (see Fig. 3). The number of such fluid–structure
subiterations is determined by a specified convergence criterion. The
convergence criterion chosen in this work is the absolute difference
of the vertical tip displacement at the tip computed in two successive
fluid–structure subiterations. Between any two fluid–structure
subiterations, the initial conditions in the solvers are not updated and
hence a new solution is obtained for the same time step at the end of a
subiteration. However, between the last fluid–structure subiteration
of a coupled time step and the first fluid–structure subiteration of the

subsequent coupled time step, the initial conditions in the solvers are
updated and the solution is time marched. It is important to note that
numerical instabilities have been encountered [29] due to added-
mass effects when explicit coupling methods were used to study the
interaction of thin-elastic structures with incompressible, viscous
flows. Such algorithms exhibit numerical instabilities for a given
geometry as soon as the density of the structure is lower than a certain
threshold.

Two separate coupled simulation codes have been developed for
this work. The first is between UM/NLABS and STREAM and the
second is between MSC.Marc and STREAM. Both explicit and
implicit coupling algorithms have been adopted for the simulation
code involving UM/NLABS. Only the explicit method was possible
in the case of the code involving MSC.Marc because the code does

Fig. 5 Prescribed plunge motion for the rectangular wing (normalized

with respect to amplitude). (Points A, B, C, andDare representative time

instants corresponding to 0, T=4, T=2, and 3T=4, respectively, and are
used at several places in this document for referencing purposes.)

Fig. 6 Wing cross sections used in the experiments of Heathcote et al.

[19]: a) rigid, and b) flexible.

Fig. 4 Water-tunnel experimental setup (from Heathcote et al. [19]).
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not support exchanges with the external CFD solverwithin a coupled
time step.

For the development of the coupled simulation codes, several
interface subroutines have been written to control the coupled
solution and to perform interpolation of physical quantities between
the fluid and the structural grids via thin-plate spline [30] or bilinear
interpolationmethods. In this work, the thin-plate splinemethodwas
used to transfer deflections and the bilinear method to transfer
pressures, across the fluid–structure interface. A coupled code was
achieved simply by compiling the object files of the individual
solvers along with those of the interface routines to produce a shared
executable. Considering the limitations of the explicit coupling
approach as discussed previously, only the implicit coupling was
applied in the simulations involving UM/NLABS in this work.

III. Results and Discussion

This section is divided into three subsections. In the first one, a
brief description of the test problems that are considered in this
study is provided. In the second subsection, details of the fluid and
the structural computational models are provided. Finally in the
third subsection, computational results on a rectangular wing
configuration of NACA0012 cross section (both rigid and flexible)
are reported and compared against the experimental results of
Heathcote et al. [19].

A. Description of the Validation Case

In an attempt to validate the proposed coupled fluid–structure
frameworks, results were obtained on a 3-D rectangular wing of
NACA0012 uniform cross section oscillating in water in pure heave.
Water-tunnel studies have been performed by Heathcote et al. [19] to
study the effect of spanwise flexibility on the thrust, lift, and propul-
sive efficiency on this configuration. A schematic of the experimental
setup is shown in Fig. 4. Three wings of 0.3 m span and 0.1 m chord
with varying levels of flexibility were constructed. The leading edge
at the wing root is actuated by a prescribed sinusoidal plunge
displacement profile as shown in Fig. 5. Wing shape was recorded
with a 50-frames-per-second, high-shutter-speed, digital video
camera.

Overall wing thrust coefficient and tip displacement responsewere
experimentallymeasured. Only the “rigid” and “flexible” versions of
the wings used in the experiment are considered here. The represen-
tations of the cross-section constructions are reproduced in Fig. 6.

B. Computational Models

A structuredmultiblock O-type grid around a NACA0012wing of
aspect ratio 3 was used for the CFD simulations. The number of grid
points are 120, 56, and 60 in the tangential, radial, and spanwise
directions, respectively. Grid sensitivity studies have been performed
to identify a grid suitable for the computations in this work. The CFD
model setup, which includes the boundary conditions is shown in
Fig. 7a. The outer boundary of the CFDmesh is 10 chords away from
thewing tip. All other boundaries are approximately 20 chords away
from the wing.

For the structural representation of the rigid experimental case, the
structure was assumed to be infinitely stiff. For the flexible experi-
mental case, two different structural models were developed. The
first (Fig. 8) is based on a 1-D beam finite-element discretization with
39 elements along the semispan. Chordwise deformation was
reported as being negligible in the experiment, therefore, a beam
model with six elastic degrees of freedom, corresponding to exten-
sion, twist, and shear and bending in two directions, was chosen. The

Fig. 8 UM/NLABS computational models: a) rectangular thin-strip
cross section used to evaluate structural stiffness and mass properties,

and b) CSD–CFD interface grid with the beam reference line

indicated in black.

Table 1 Geometric and mechanical properties of the wing

Semispan 0.3 m Structural thickness 10�3 m
Chord 0.1 m Density of steel 7800 kg=m3

Young’s modulus
of steel

210 GPa Equivalent structural
density

975 kg=m3

Table 2 Flow properties

Flow velocity 0:3 m=s

Air/water density 1:2 kg=m3, 1000 kg=m3

Fig. 7 Diagram showing a)CFDcomputationalmodel setup for the rectangularwing, andb) shell finite-elementmodel of the thin rectangular steel strip

in MSC.Marc.

1870 CHIMAKURTHI ETAL.



beam reference line (cantilevered to a plunging frame of reference) is
chosen along the leading edge of the wing (highlighted in black in
Fig. 8b) and cross-sectional properties are evaluated with respect to
the leading-edge point. Furthermore, the properties are uniform
throughout the semispan. The contribution of the PDMS rubber
material (used in the experimental wing configuration) to the overall
mass and stiffness properties was found to be negligible; therefore,
only the stainless steel stiffener (rectangular thin strip) was used for
the evaluation of cross-sectional properties (Fig. 8a). The 3-D
structural solution is obtained by using 75 recovery nodes on each
cross section resulting in a structured grid of 3000 interface points,
which define the solid side of the aeroelastic interface. The second
structural model (Fig. 7b) is a rectangular plate, and it was created in
MSC.Marc using four-noded thick shell elements (MSC.Marc
element number 75). Thewing is actuated by prescribing motion to a
pivot point that is connected to the structure via a rigid link.

A summary of the wing geometrical and mechanical properties is
included in Table 1. Table 2 provides information about the flow
properties (dimensional). In Table 3, all dimensionless numbers
related to either the structure, the flow, or to both are furnished. The
dimensionless numbers �1, �2, �3, �4, and �5 are discussed in more
detail in [31].

C. Rectangular Wing in Pure Plunge (Rigid and Flexible)

Computational studies on the rigid and the flexible versions of the
wing in the experiments of Heathcote et al. [19] are presented here.
Results illustrating numerical issues related to time-step sensitivity

and explicit and implicit coupling methods are discussed first. Next,
correlations between computational results and the experimental
data are presented. Finally, the effect of structural flexibility on the
plungingwing aerodynamics is discussed using pressure distribution
and streamlines plotted on the rigid and the flexible wing configu-
rations at selected span stations and at representative time instants.

1. Evaluation of Computational Parameters

To assess the independence of the numerical solution to grid
refinement, a grid convergence study was performed, and a suitable
grid was subsequently chosen. This grid has a total of 120, 56, and 60
points in the tangential, radial, and spanwise directions, respectively.
A time-step sensitivity study was performed with this grid at a
reduced frequency of 1.82 and Reynolds number of 3 � 104. Three
different nondimensional time steps 3 � 10�3�1 � 10�3 s�, 6�
10�3�2 � 10�3 s�, and 15 � 10�3�5 � 10�3 s�, were tested. These
correspond to 575, 287, and 115 time-steps, respectively, per cycle of
oscillation of the wing. The corresponding thrust coefficient of the
rigid wing as a function of time is shown in Fig. 9. Based on this
analysis, a time step of 6 � 10�3�2 � 10�3 s� was chosen as being
adequate to ensure asymptotic convergence and was used in all cases
discussed in this paper unless otherwise stated.

2. Explicit and Implicit Coupling Methods

To demonstrate the impact of the fluid–structure subiterations
within a time step (implicit computation) on the coupled response,

Table 3 Dimensionless parameters associated with wing model

Chord-Reynolds number 3 � 104 Strouhal number 0.3185
Reduced frequency range 0.40 to 1.82 Chord-normalized plunge amplitude 0.175
�1 213 �2 7:8 � 10�8

�3 5.46 �4 34.3
�5 33.7 Time step 3 � 10�3, 6 � 10�3, 15 � 10�3
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Fig. 10 Lift coefficient response of the wing for reduced frequency of 1.74: a) explicit and implicit coupling methods, and b) zoomed view highlighting

high-frequency oscillations.
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flexible wing computations were performed for a chord Reynolds
number of 3 � 104 and reduced frequency of 1.74 with both explicit
and implicit coupling methods. Figure 10 includes the computed lift
coefficient response on the wing. In general, there is little difference

between the two solutions for the selected time steps. The implicit
method, however, eliminates most of the high-frequency error
through the forced convergence within each time step, a feature not
present in the explicit approach. It should be noted that the initial
conditions of the simulation for both the displacements and rotations
are zero. Therefore, only results based on the implicit coupling
method is presented for the UM/NLABS-based solutions, whereas
MSC.Marc solutions are based on the explicit method (due to
limitations described previously).

Figure 11 shows the normalized tip vertical displacement (with
respect to the plunge amplitude) for the flexible wing computed
with two proposed coupled simulation codes. Good correlation is
obtained between the two frameworks and also with the experi-
mental response. This indicates that the frameworks using UM/
NLABS (more efficient) and MSC.Marc (more general) work
similarly for bend/twist dominated flexible wings and that their inte-
gration with the CFD is verified. The MSC.Marc framework will be
used to develop complex structural dynamic models of insect
winglike structures for future aeroelastic computations. But for the
results that follow, only the UM/NLABS-based framework is used
for the studies of this simple wing.

3. Correlations Between Rigid and Flexible Wing Computations

with Experiment

For the case of chord Reynolds number 3 � 104 and reduced
frequency of 1.82, the thrust coefficient response of both the rigid
and flexible wings in pure plunge is shown in Fig. 12. The
experimental data of Heathcote et al. [19] are also included for
comparison. The computational response correlates well with that
of the experiment. As found in the experiment, the frequency of
the thrust response is twice that of the plunge frequency as the
maximum thrust occurs twice in a period as the wing passes
through the neutral (zero) position (points B and D of Fig. 5).
There are, however, missing parts of the troughs corresponding to
the rigid wing at the end of downstroke (point C of Fig. 5) and
both the troughs and the peaks corresponding to the flexible wing
at points B and C. The reason for this discrepancy is not clear at
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this point and will be investigated further. Figure 12 also shows
that the thrust coefficient of the flexible wing is greater than that
of the rigid wing. This indicates that spanwise flexibility has a
favorable impact on the thrust response in the case considered in
this paper. It is worth noticing, however, that this result is not
universal. As also shown in the experimental studies of [19],

significant flexibility to the wing (�1 � 71:2, which is approxi-
mately 1=3 of the value for the wing studied here) can reduce the
thrust generated when compared with the rigid case. The phase
lag associated with structural flexibility affects the effective
angles of attack, which means that the specific level and nature of
flexibility can affect the outcome of thrust enhancement.
Although different in many ways [16] also attempts to study the
effect of wing flexibility on the thrust generation. A similar result
was numerically obtained for a wing with �1 � 57:2. Simulations
were done for both plunge and combined pitch/plunge in water. The
author observed from the numerical simulation that the thrust loss is
associated with a decrease in heave amplitude along the span of the
wing when compared with the prescribed motion. Because the fluid
solver used in [16] is based on a much simplified formulation
(boundary element method), its capability to capture certain flow
dynamics is questionable (e.g., delayed stall). Such limitations
prevent deeper investigations into the phenomenon. Our proposed
aeroelastic framework has the capability of analyzing in great detail
the unsteady flowfield, which in turn will support the understanding
of the fundamental mechanisms behind the thrust generation for
different levels of flexibility on flapping wings. This capability is
exemplified in the next section.

To assess the dependence of thrust production on the reduced
frequency of oscillation, a parametric study was conducted on both
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Fig. 15 Pressure contours and streamlines at four different time instants in a stroke period around the airfoil at 50% semispan section (as viewed from

the reference frame moving with prescribed motion).
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the rigid and flexible wings. Figure 13 shows the computational
results and their comparison with the experiment, showing good
correlation between them. As shown from the experiment, the thrust
coefficient response increases gradually at low reduced frequencies
and more rapidly at higher reduced frequencies. This trend is
captured well by the model. It may be noted here that time steps of

6 � 10�3�2 � 10�3 s� and 15 � 10�3�5 � 10�3 s� were used for the
rigid and the flexible wing simulations, respectively.

Figure 14 shows the amplitude of elastic tip deformation response
as a function of reduced frequency. As seen in the figure, the
amplitude of deformation increases with the oscillation frequency in
a similar fashion as the thrust coefficient.

Fig. 16 Pressure distribution on the rigid and flexible wings at point B of Fig. 5: a) top surface, and b) bottom surface (magnitudes of pressure are

shown in Pa).

Fig. 17 Pressure field distribution at several stations along the wing semispan (for time instants corresponding to points B and C of Fig. 5).
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4. Effect of Structural Flexibility on Aerodynamics

To better understand the implications of wing flexibility on the
aerodynamics, detailedflow structure and pressure distributions need
to be investigated. These are presented here as an illustration of the
capability of the proposed aeroelastic framework. Results are shown
for selected wing span locations and representative time instants on
both the rigid and the flexible wings.

In Fig. 15, streamlines (as viewed from the reference frame
moving with the prescribed motion) and pressure contours around
the airfoil at 50% semispan location are plotted for both rigid and
flexiblewings at four different time instants (A, B, C, andD of Fig. 5)
within a stroke period T. It may be observed from the figure that the
streamlines in the case of the flexible wing hit the wing surface
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because the reference frame with respect to which they were plotted
does not take into account the surface speed due to deformation.

The following features can be observed:
1) At point A (t� 0), that is, at the beginning of the downstroke, in

the case of the rigid wing, a strong vortex is seen on the bottom
surface close to the leading edge and a weaker one on the top surface
close to the trailing edge.Whereas, in the case of theflexiblewing, no
vortex is seen on the top surface, and the one on the bottom surface is
stronger than its counterpart on the rigid wing.

2) At point B (t� T=4), that is, at the middle of the downstroke, in
both rigid and flexible wings, the vortex on the bottom surface
becomes weaker and moves downstream. Further, only for the rigid
wing, the smaller vortex on the top surface grows in size and also
moves downstream toward the trailing edge. This is the point at
which maximum thrust is generated in both the rigid and the flexible
cases.

3) At point C (t� T=2), that is, at the beginning of the upstroke, in
the case of the rigid wing, a large vortical structure is now seen on the
top surface closer to the leading edge and a smaller sized vortex on
the bottom surface closer to the trailing edge. For the flexible wing, a
much stronger vortex is seen on the top surface.

4) At point D (t� 3T=4), in the case of the rigid wing, both the
vortices seen at time T=2 become weaker and move toward the
trailing edge. The one on the top surface moves downstream much
less than the one on the bottom. Whereas, in the flexible wing case,
the weakening of the vortex is seen but it does not convect
downstream as much as its counterpart on the rigid wing.

Figure 16 shows the spanwise distribution of pressure contours
for both top and bottom surfaces of the rigid and flexible wings
corresponding to point B of Fig. 5. In general, most of the top
surface presents suction for both cases. However, the effect is more
pronounced in the case of the flexible wing. Leading-edge suction
plays a critical role in determining the level of the thrust generated
[32]. Although the pressure contours presented in Fig. 16 provide a
global picture of the spanwise variation, in order to focus on the
effect of leading-edge suction and its enhancement in the case of
the flexible wing, Fig. 17 shows the pressure field distributions at
four stations along the wing semispan (15, 50, 83, 97%) for two
different time instants (points B and C of Fig. 5). It is seen in the
figure that the effect of leading-edge suction is enhanced in the
flexible wing case (higher suction peak near the leading edge),
which helps explain the increase in thrust with increase in
flexibility.

The structural flexibility results in higher instantaneous effective
angles of attack, which, in turn, promote larger streamline curvatures
around the wing. From the momentum equations, streamline
curvatures induce pressure gradients in corresponding manners. The
instantaneous effective angle of attack is defined as

�inst � tan�1
�

�
1

U

dh�t�

dt

�

(8)

where dh�t�

dt
is thewing velocity component normal to the uniformflow

in the case of the rigid wing and, in the case of the flexible wing, it is
the sum of that and the velocity due to elastic deformation. To
corroborate the impact of flexibility on thrust generation, Fig. 18
shows the time response of the instantaneous angle of attack for both
rigid and flexible wings. For the flexible wing case, two different
stations along the semispan (50 and 97%) are considered because
each station sees a different effective angle of attack due to wing
bending and spanwise variation of velocities induced due to
deformation. As seen in the figure, the amplitude of the effective
angle of attack in the case of the flexible wing (for 97% semispan
station) is at least 35% higher than that of the rigid wing. This
reinforces the fact shown in Fig. 12 that there is a thrust enhancement
due to wing flexibility. Also, it is important to note here that flexible
wings can yield favorable performance at quite high instantaneous
angles of attack (50 deg) and large streamline curvatures without
stalling.

To discern the effects of flexibility on the flow structure further,
streamlines at several stations along the semispan for both the rigid

and the flexible wings are plotted in Fig. 19. They are placed next to
each other for comparison. These represent the wing when it is at its
mean position (point B of Fig. 5). The left column corresponds to the
rigid wing and the right to the flexible wing. Each row in the figure
corresponds to a location along the semispan.

From these results, the following observations can be made:
1) For the rigid wing, a smaller separation bubble is observed on

the top surface near the inboard region of the wing and closer to the
wing trailing edge in addition to a bigger one on the bottom surface
closer to the leading edge. The smaller bubble is not seen on the
flexible wing in any region.

2)On the rigidwing, the separation bubble exists until around 83%
semispan, whereas on the flexiblewing, it exists until 60% semispan.
In general, the size of the separation bubble in the case of the flexible
wing is smaller than its counterpart on the rigid wing. This may also
be observed from the rigid and flexible pressure distributions
presented in Fig. 16 (bottom surface).

3) Figure 19 shows streamlines hitting thewing surface in the case
of the flexible wing (similarly to Fig. 15). Again, this is because the
reference framewith respect towhich theywere plotted does not take
the surface speed due to deformation into account.

Figure 20 includes the elastic tip deformation response (norma-
lized with respect to the plunge amplitude) of the flexible wing in
pure plunge (at a constant frequency of oscillation) at two different
flow densities (air density, water density) compared with the case in
vacuum. The deformation is expressed with respect to a frame that is
fixed to the body and moves with the prescribed plunge motion. In
both cases, a forward speed of 0:3 m=swas assumed, which fixes the
Reynolds number and reduced frequency for the problem. As seen in
Fig. 20, in the case of the wing oscillating in a fluid of air density, the
deformation is almost identical to the case when there are no fluid
dynamic forces (vacuum). Reported in [16] are similar results for a
flexible wing in both heave and pitch motion immersed in both air
and water. It reports this scenario as being the inertia-driven defor-
mation. The fundamental mechanisms of fluid–structure interaction
in different media and for different scaling parameters can now be
explored using the proposed framework as exemplified for water
here. These studies will be presented in a future paper.

IV. Conclusions

A computational aeroelastic framework suitable for flapping wing
micro air vehicle problems is presented, and results from a preli-
minary validation study are reported. Two structural models of
different fidelity levels are presented. The simpler formulation is
capable of handling geometrically nonlinear beamlike deformations
and linear platelike motions, and it has been implemented in UM/
NLABS, an in-house code. The higher fidelity approach is based on
MSC.Marc, a commercial finite-element solver capable of modeling
geometrically/materially nonlinear shell/plate built-up structures.
TheNavier–Stokes flow solver employs awell-tested pressure-based
algorithm, and it is implemented in STREAM. Each of the structural
models is independently coupled to the CFD solver resulting in two
different coupled simulation codes with distinct capabilities.
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Based on the experiment by Heathcote et al. [19], numerical
simulations were conducted on a rectangular NACA0012 wing
oscillating in pure heave. Quantitatively good agreement with the
experimental results was obtained for the thrust coefficient for both
rigid and flexible wings in the entire range of reduced frequencies
(0.4 to 1.82) considered. Each comutational time step (including
CFD, load transfer, structural dynamics, deflection transfer) for the
rigid and flexible wing cases needed an average of 2 and 4 min,
respectively, of CPU time, on a single node Intel Pentium 4 CPU
3.4 GHz processor. Several important conclusions from the
numerical studies in this paper are highlighted in the following:

1) Within the range of nondimensional parameters considered,
spanwise flexibility was shown to have a favorable impact on the
thrust generation.

2) Leading-edge suction was shown to be important for thrust
generation in plunging wings with leading-edge curvature.

3) In the range of reduced frequencies considered (0.4 to 1.82),
increasing reduced frequency increased the thrust generated by both
rigid and flexible wings. In the case of the flexible wing, the tip
displacement increased over the entire range of reduced frequencies.

4) Similar results were obtained between two different coupled
simulations, one using the in-house quasi-3-D structural solver UM/
NLABS and the other using the commercially available MSC.Marc.

5) The importance of using fluid–structure subiterations within a
coupled time step (implicit method) was emphasized and illustrated
with sample results.

Future work will address the combined plunge/pitch excitation of
flapping wings with complex planform geometry and material
distribution in both water and air.
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