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Abstract. An alternative approach that has the potential to advance 

classical methods of flight load prediction by combining computational 

fluid dynamics (CFD), structural flexibility and the interaction of flight 

control system (FCS) in a multidisciplinary analysis package is described. 

The method employs the concept of system identification to characterize 

aircraft dynamics in the state space coordinate system and includes an 

adaptive control law design methodology. An extended account of the 

theoretical basis for the new multidisciplinary flight manoeuvre analysis 

will be presented in one of a seven-volume series on computational 

mechanics by Argyris and his associates to be published shortly. 

However, as a precursor to the complete work, a brief account of the 

theoretical development leading to this loads prediction methodology is 

included in this paper. 

Keywords. Flight loads; manoeuvre loads; multidisciplinary computa- 

tional methods; external loads. 

1. Introduction 

The structural design of aircraft requires the knowledge of external loads acting on 

individual components. The computation of such loads depends on the flight 

environment to which a particular aircraft is subjected. For example, commercial (or 

transport) aircraft is expected to withstand loads due to level flight, gust encounter, 

landing and take off, and ground handling. On the other hand, a combat aircraft is 

required to sustain additional loads due to rapid manoeuvres which are several times 

higher than normal operational loads. The development of load spectra and load 

envelope depends on a particular aircraft's mission and is typically specified by the 

procuring agencies. 
The critical design flight conditions used to compute load exceedance envelopes 

such as shear vs. bending moment, and torsion vs. bending moment can be simulated 

by moving the control sticks at desired rates (see Appa 1991). The modern aircraft 

design methodology requires that the flight control systems (FCS) be included in 
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Figure 1. A schematic diagram of computational aircraft dynamics and loads. 

qe 

analysis and design cycles so that effective use of the control surfaces may be made 

to predict the design loads while optimizing aircraft stability, control and performance 

characteristics. Therefore, the proposed loads analysis method integrates an on-line 

control law design methodology combining aircraft flexibility and nonlinear aero- 

dynamic forces computed by the CFD methods. 

The overall concept of this multidisciplinary analysis approach is depicted in 

figure 1. The nonlinear aerodynamic forces will be computed by the CFD module. 

The transient response of the aircraft subject to control stick input will be determined 

in the aircraft dynamics module. The input and response characteristics data will be 

analysed in the system identification module to derive the state space matrices. The 

state space analysis is then employed; (1) to design adaptive flight control laws, (2) to 

perform night manoeuvres, and (3) to compute net design loads. The test cases 

considered in this study demonstrate the computational feasibility of flight manoeuvre 

analysis using the CFD methods. 

Subsequent sections include brief descriptions of: (1) state space formulation of 

equations of motion of flexible aircraft, (2) implicit acceleration of the CFD method 

used in the present study, (3) the concept of system identification, and (4) adaptive 

control law design. A few test cases are included to demonstrate the overall concept 

of manoeuvre loads analysis. 

2. Equations of motion of flexible aircraft 

The equations of motion of an aircraft may be expressed in any convenient coordinate 

system. A common practice in flight mechanics is to use a body-fixed coordinate 

system oriented either along the body axis or the wind axis. Figure 2 shows various 

axes systems in which the subscripts I, W and B denote inertial, wind and body-fixed 

reference coordinates, respectively. The climb angle, ?, is denoted by the angle between 
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the wind axis and the inertial frame of reference, while the aerodynamic angles (~, fl) 

are denoted by the incidence angles between the wind and the body axes. 

A system of equations of motion of a flexible aircraft in the inertial axis system is 

given by 

Kr + M~ + F(t, L t) = 0 (1) 

where r is a displacement vector, K is a stiffness matrix, M is a mass matrix and F 

is a vector of aerodynamic and other external forces. The computation of stiffness 

and mass matrices has by now become a routine procedure in finite element methods 

(FEM). This generalized analysis procedure in structural mechanics finds its origin in 

Argyris' work (Argyris & Dunne 1947, 1949; Argyris 1953; Argyris & Kelsey 1960). 

Hence, there is no need for further discussions regarding the computation of stiffness 

and mass matrices. On the other hand, the computational aspects of the nonlinear 

aerodynamics using CFD methods have not yet reached the degree of maturity which 

has been achieved by the community of structural engineers. Nevertheless, efforts are 

being made at an ever increasing stride to achieve that goal. We will touch upon this 

topic a little later. 

Equation (1) represents several hundred or even thousands of degrees of freedom. 

But, if the structure is linear it may be replaced by a fewer modal degrees of freedom, 

11= {tit, tie }, in which the displacement vector r will be represented by a linear 

combination of rigid body modes, • r, and the vibration modes, • e. Then, the 

generalized system of equations may be given by (Appa 1991; Argyris & Mlejnek 

1991; Argyris et al 1995) 

+ + Mi i  + ii, t) = 0. (2) 

This is a second-order differential equation in time domain. But one can reduce this 

to a first-order system by replacing the independent variables by 

x = (3) 

= A x  + Bu  = F ( x ,  u, t). (4) 

The output or the measured signals of the plant may be expressed as a linear 

combination of x and 3, i.e. 

z = H t x + H x i  = C x  + D u  (5) 

where u denotes the control surface motion, and C and D are the measurement 

matrices. 

The system of equations (4) can be integrated analytically provided the eigenvalues 

of the state matrix A lie in the left half of the s (=  cr + ico) plane with a < 0. Otherwise, 

there is a need to find a feedback gain matrix which helps to shift the roots from the 

right half to the left half of the s-plane. We will discuss this issue in subsequent 

sections. 

3. C o m p u t a t i o n a l  aerodynamics :  CFD 

In the last two decades highly competitive numerical schemes have been developed 

to predict the nonlinear pressure distributions on complex configurations. Hirsch, in 
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his text books on computational fluid dynamics, discusses a number of numerical 

schemes developed to date and gives an extensive list of references (Hirsch 1990). 

These numerical schemes may broadly be classified as those based on structured or 

unstructured grid models. The finite difference schemes are well suited for structured 

grid models, while the finite element and the finite volume schemes are applicable 

for either model. The latter schemes show some potential for generalization of the 

computational algorithm such as the one used in structural mechanics. Hence, in the 

present study we have chosen a finite element-based CFD scheme (Argyris et a11989). 

The Euler equations of fluid motion, using the notations of Argyris et al (1989), 

may be written as 

- - + 2 ~ - - = 0 ,  i =  1,2,3, (6) 
~t ~ Oxi 

where 

V = {p, pu~, pu2, pu3, p~} (7) 

is a vector of independent variables and the flux in the ith coordinate direction is 

fc=u~V +el+lp+esuip, i= 1,2,3, (8) 

in which, for example, e 2 denotes 

e2 = {0 10 0 0}. (9) 

The gradient of the flux may be written as 

afi ~fi0V A 0V (I0) 

where A~ is the Jacobian of the flux, f~, in the coordinate direction x~. The eigenvalues 

of this matrix are given by 

i u  2 k - u t, k = I, 2, 3 (for the entropy wave), (I I) 

A~ = ui + a, (for the forward pressure wave), (12) 

2~ = u~ - a, (for the backward pressure wave). (13) 

The signs of these eigenvalues denote the direction in which a specific wave moves. 

Hence, the gradient of the flux f~, must be evaluated in the upwind direction. Further, 

the Jacobian matrix A~, may be expressed in terms of its eigenvalues and eigenvectors 

as 

A, = Pi(A~ + + At-)P/-z = A~ + + A~- (14) 

where A + and A[  denote diagonal matrices consisting of positive and negative 

eigenvalues, respectively, and Pi is a square matrix of eigenvectors of At. Then from 

(10) assuming that A~ is constant within an element, we obtain 

~fi At+ 0 -V + AZ 0+V (15) 
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where (a+ldxi) ( ) and (d-ldxi) ( ) denote upwind differencing depending on the sign 

of the eigenvalue ).~. 
But we know that the finite element schemes (also finite volume schemes) permit 

only centre differencing. Hence, it is necessary to express the upwind difference 

operators in terms of the centre difference operators. This can be achieved by the 

use of the Taylor series expansion. Thus, using the first two terms in series we obtain 

~+V OV- o.~i(~V ~ l_2z2(~V ~, 0<0"< l, (16a) 
gxi = gxl \ gx~ / + ~o "t \ gxt } 

= - - - -  ¢ 0 t I - - / + ] a  0 t l - - 1 ,  0 < a < l ,  (16b) 
~xi Oxi \ Ox~/ \ dxi,I 

where 6i ( ) and 62 ( ) denote undivided first- and second-order difference operators. 

Substituting (16) into (15), and simplifying the algebra, we get 

Ofi/Ox ~ = 0 f * * / 0 x .  

where the upwind flux, f**, is given by 

f** = f*(V*) - trlA~16iV, 

= V + ~ a  6iV, V? i 22 

[At[ = P~(A~ + + [A~ I)PZ ~. 

(17) 

(18) 

(19) 

(20) 

Thus, we require only central differencing which can be accomplished in the finite 

element scheme. The original ICA-CFD code has been modified to compute the upwind 

flux gradients. This eliminates the need for the artificial viscosity terms, which are 

arbitrary and undesirable in unsteady aerodynamic analysis consisting of low and 

high frequency spectra. Additional discussions relevant to the numerical computation 

of the upwind flux may be found in Argyris et al (1995). 

3.1 Movino boundary conditions 

The solid bOundary may undergo a set of rigid body motions, q,, and elastic motions, 

Ik, as discussed earlier. The rigid body motions contribute to aerodynamic attitudes 

resulting from lateral motions (~,),~) (e.g. angle of attack, ~, and sideslip, f) and 

angular rates (~, 0, ~) (roll rate, p, pitch rate, q, and yaw rate, r). These are the relative 

velocities with respect to the infinite volume of fluid. Hence, the flow variables at all 

points must be updated. Thus, at each fluid node, n, we get 

v' = T(Act, Afl)v + [l][~r']n0 , 

where 

(2i) 

v = {ul, u2, u3 } are nodal velocities, (22) 

0 = {dp, dq, dr} are incremental angular velocities, (23) 

T(A~t, Aft) is a transformation matrix based on the incremental incidences, 
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and 
~r is a rigid body modal matrix at node n. 

On the solid surface, the incremental velocity vector is given by the incremental 

change of slopes (A~, A0, A~) arising from the elastic deformations as well as the 

vibration,/le, i.e. 

Av = T EA.~, A0, ~b¢,] v + I-O,] th. (24) 

These modifications have been implemented in the ICA-CFD code. 

3.2 Implicit acceleration scheme 

The original ICA-CFD solution algorithm has been replaced by a quasi-implicit scheme 
discussed in Argyris et al (1995). Equation (6) in the context of a finite element schl:me 

may be rewritten as 

M(dV/&) + R = 0, (25) 

where M is the mass-like matrix (usually a lumped diagonal matrix) and R is the 

residual flux vector. After multiplying by M-1 we get 

(OV/Ot) + R = 0. (26) 

The normalized flux, R can be expressed as 

(OR/~V) is a Jacobian matrix, which can be approximated as a banded matrix 

consisting of 3 to 9 off-diagonal elements. The elements of (0R/de) can be computed 

using the concept of system identification. The computational details may be found 

in Argyris et al (1995). The solution algorithm is then given by 

AV = At [I + At(0R/0V)]-1Ro. (28) 

The stability of the system of equations increases with increasing bandwidth. In the 

present analysis three diagonal elements were used with the global Courant-Fdeddchs- 

Lewy (CFL) number ~< 4.0. A two-step solution is recommended for nonstationary 

solutions. 

4. System identification 

System identification is a recursive on-line estimation procedure employed to 

construct equivalent mathematical models of dynamic systems using input and output 

sequences. This methodology has been widely applied in advanced communications, 

space flights and industrial automation. Here we intend to apply this scheme to 

determine the linearized dynamic models, A and B, as proposed in § 2 (i.e. (4)). 

The usual approach is to represent the differential equations in terms of N previously 
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known records, such as 

N 

Y,-1 = ~ (A,y, + B,u,), (29) 

and solve for the A, and B, matrices (Balakrishnan 1968; Hsia 1977; Astr6m & 

Wittenmark 1989). The resulting.dynamical model and the feedback gain matrix 

will be N times larger than the original system (Pak & Friedman 1991). This means 

extensive computer resources are required to design an on-line adaptive control law. 

To minimize the cost of computation Argyris et al (1995) employ an alternate method 

which requires only one sampling from an earlier record. In other words, the number 

of equations in the estimation process is the same as in the original model. This is 

a significant reduction in the overhead cost of designing a feedback control system. 

A brief account of this procedure is as follows: 

Let 

where 

= F*(x, u, t), (30) 

F* is a vector of normalized aerodynamic forces; 

x and u represent the aerodynamic angles (~, ~), angular velocities (p, q, r) 

and the control surface motion (these are the inputs to the CFD module); 

and 
represents the acceleration of the system as an output. 

The desired mathematical model may then be linearized to read as 

= Ax + Bu + fo- (31) 

This equation, in the notations of autoregression scheme, may be rewritten as 

y = dpr0, (32) 

where 
y = ~r, (33) 

4~ = {x, u}, (34) 

EArl 0 =  B r .  (35) 

Since y and 4~ are known at various time intervals, the autoregression procedure can 

be used to solve for 0. 

5. Adaptive feedback control design 

Modem aircraft designed with relaxed static stability require digital flight control 

systems to provide stability and control at all flight conditions. Moreover, if the 

pressure distributions as computed by the CFD methods are nonlinear functions of 

the flight parameters then the dynamic model will be changing with time. For these 

reasons it is necessary that an adaptive control law based on the current estimate 

of aerodynamic derivatives must be implemented. In a previous section we described 
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a procedure for estimating the dynamic characteristics of a system using the con- 

cept of system identification. We will now describe a design procedure which utilizes 

this information to design a feedback control system. 

Let us consider a system of state space equations given by 

= Ax + Bu, (36) 

and the corresponding output equations by 

z = H l x  + H 2 £  = C x  + D u ,  (37 )  

where Ht and H2 are the output transformation matrices. The A, B, C and D matrices 

constitute what is generally known as the quadruplets of a set of state space equations. 

If z r is a vector of target output of a system, the performance index function may 

be written as 

J = hr + [½~r Q~ + ½(u - uc)rR(u - u e) + pr(F - ~)]dt, (38) 

where 

and 

u e is the pilot command, 

p is a vector of Lagrangian coefficients, 

c = ( z -  Zr) is an error vector, 

Q is a symmetric weighting matrix, 

R is a symmetric and positive definite matrix, (39) 

hr 1 T = i t r Q t r  is the terminal performance index at ty. (40) 

The designer selects the weighting matrices, Q and R, to satisfy the stability 

requirements. Parameters, x, u and p must be determined to minimize the performance 

index, J. Hence, the variation of J with respect to x, ~, u and p, yields a system of 

equations for x(t), p(t) and u(t), 

~(t) = H~ + ~-  

and 
u = - ~ -  1 [Brp(t) + DrQ(Cx(t)  _ zr)]  

~vhere 

in which 

= {x, p}, 

_ z~cr (Hamiltonian matrix), 

= R + DrQD,  

~¢ = A - B ~ -  1DTQC, 

= B M -  1Br, 

¢) = C r [ Q  - Q D R -  x D r Q ] C ,  

F1 = BM-  1DrQzr ,  

F 2 = C r [ Q  - Q D ~ -  t D r Q ] z r .  

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 
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The resulting end conditions are given by 

X(to) = Xo, 

p(tf) = I - C x ( t f )  -k D u ( t f )  - ZT']. 

(52) 

(53) 

This is a two-point boundary value problem. Its solution is more complicated than 

the usual one-point boundary value problem. A systematic solution procedure is 

given by Kirk (1970). For the sake of completeness we briefly summarize his procedure. 

The solution to (41) may be written as 

g(tf)  = [exp(H(t I - t))] g(t) + 8 -1 [exp(H(tf - t)) - I].~'. (54) 

Using the terminal end condition given by (53), one can solve for the Lagrangian 

coefficients, p, in the following form: 

p(t) = K(t)x(t) + z'(t). (55) 

Substituting (55) into (42) the adaptive feedback signal reduces to 

u = ~(t)x(t) + ~.(t) (56) 

and the adaptive control law is given by ~(t). 

If the target values, Zr were set to zero, then the above tracking problem reduces 

to that of a regulator. In that case i ( t )=  0. 

Finally, substituting for u in (36) we obtain a set of stable plant equations 

£ = [A + BAe(t)]x = k.x. (57) 

The designer may choose Q and R such that the real components of the roots of 

~i, are negative (i.e., the roots lie in the left half of the s-pl/me). 

6. Aircraft manoeuvre analysis 

In this section we specialize the equations of motion discussed in the previous sections 

to compute the design loads of a manoeuvring aircraft. The inertial accelerations 

arising from vibration are negligibly small compared to the manoeuvring accelerations 

and hence the acceleration terms in (2) which involve the elastic deformation terms, 

ii, and/h ,  omitted. Then we obtain a system of equations of motion in rigid body 

modes including the flexibility effects of the aircraft structure. After some simplifications 

the final manoeuvre equation (2) reduces to the following form: 

= F ( x ,  u, t), (58)  

in which the state variables are given by 

and the control variables are 

(59) 

u =  (6o) 
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in which V is the aircraft velocity along the flight path, &~ is the control surface 

deflection and 6T~ is the thrust control. The column vector F represents the mass 

normalized forces along and normal to the wind axis and the pitching moment about 

its mass centre. The last element in F is F4 = q =/~ and represents an integrator to 

obtain 0. The aerodynamic forces will be computed iteratively using the deformed 

shape of the aircraft given by 

= - [Ke]-lFe.  (61) 

The generalized force vector Fe represents the net forces (aerodynamic-inertia 

(centrifugal)) on the aircraft. 

The system of equations in (58) may be solved iteratively in the following steps: 

(1) compute :t using initial values of x and u, 

(2) integrate * to get x, 

(3) perform system identification to determine the state space matrices A and B, 

(4) compute the feedback gain matrix and the feedback signal u, 

(5) compute the target error, e = z - z r, 

(6) if 181 less than or equal to a specified value, end the computation, 

(7) otherwise, repeat steps 1 through 6. 

Finally, integrate the net forces to yield section design loads such as shear, bending 

and torsion. 

7. Discussion of results 

In the previous sections we discussed an analytical method unifying the CFD algorithm 

to compute flight loads and aeroelastic stability boundaries. Some preliminary test 

cases have been performed to validate the concept in the following areas: 

(a) system identification; 

(b) on-line adaptive control design; 

(c) aircraft manoeuvre analysis; 

(d) static aeroelastic effects and aeroservoelastic stability analysis. 

7.1 System identification and control desion 

Two test cases have been selected to verify the accuracy and the reliability of these 

two modules. The first example represents the landing approach of the F-16 model 

reported by Rynaski (1982). The state variables are x = {q, V, ct, 0} and the control 

variable is the elevator deflection u = {~ie}. The corresponding state space matrices 

A and B are given in table 1. For a unit-step input the plant response, ~, was computed 

and integrated to obtain x. Then, the autoregression module was used to estimate 

the plant matrices, ~, and B. Subsequently, using ~, and B the feedback control gain 

matrix, K, was computed. In addition the eigenvalues of the open-loop and the closed- 

loop plant matrices were calculated. The estimate matrices after fifty time-steps are 

seen to be in excellent agreement with the original data. Since the F-16 is a statically 

relaxed aircraft one of its roots is unstable. But, after closing the loop through the 

feedback control all the roots move to the left half of the s-plane. The closed-loop 
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Figure 3. F-16 landing approach manoeuvre model (Rynaski 1982). (a) Pitch rate, 
Q; (b) c~; (c) speed change, DV; (d) pitch angle. 

response characteristics of the aircraft due to a unit-step input are shown in figure 3. 

The system responds very rapidly to the elevator command to gain the desired lift 

during a landing manoeuvre. 

The second example represents the fuselage pitch pointing of the F-16 model. The 

state variables in this case are x = {0, q, ~}, and the control variables are u = {~s(flap), 

#e(elevator)}. The plant matrices as reported by Porter & Bradshaw (1981) are given 

in table 2. Once again the estimated plant matrices are in excellent agreement with 

the original data. As in the previous example the unstable roots move from the right 

half of the s-plane to the stable zone in the left half plane. The closed-loop response 

characteristics of the aircraft are shown in figure 4. Any desired response characteristics 

can be achieved by selecting appropriate weighting coefficients, Q and R.' 

These two examples and many others which are not reported here justify the use 

of the single sampling approach suggested in this study to estimate the plant matrices 

with reasonable accuracy. In addition, the on-line control design procedure used here 

is able to stabilize the system whose dynamic characteristics are practically unknown 

to begin with. 

7.2 Symmetric flight manoeuvre analysis 

To demonstrate the simulation of the manoeuvre analysis using the C.FD scheme we 

have selected a simple delta wing with a cranked leading edge as shown in figure 5. 

Two control surfaces, one inboard and one outboard, were used to trim and control 

the vehicle. The gross weight and the pitching moment of inertia of the vehicle were 

1.55 x 106N and 3"019 x 106kg.m 2. The centre of gravity was located at 60% of the 

mid chord. For 1-g level flight at Mach 0.7, the analysis started with an initial angle 

to attack of 3 ° . First, 50 time-step solutions were performed just to establish the flow 

field around the aircraft. Then the balancing of the aircraft started with the feedback 

control system turned on. The state space matrices were continuously estimated 
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Figure 4. Fuselage pitch pointing manoeuvre model (Porter & Bradshaw 1981): 
(a) 0; (b) pitch rate, Q; (e) ~; (d) flaperon (degrees); (e) elevator (degrees). 

4.0s 

and the feedback gain matrices were computed. The required load factor, n=, was 

used as the terminal target quantity. 

The estimated plant matrices for the open-loop and the closed-loop cases are shown 

in table 3. The elements of these matrices denote the stability derivatives of the aircraft 

with respect to V, T, q, 0 and 6 parameters. These quantities may also be expressed 
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Figure 7. Integrated load distributions for 1-# flight at M =0-7. (a) Shear; 
(b) bendingmoment; (e) torsion, 

in terms of usual aerodynamic stability derivatives such as: CL=, CM= , C~,  CL6 etc. for 

rigid as well as flexible aircraft. Figure 6 shows the time history of acceleration and 

the control surface rotation for 1-g level flight. The corresponding integrated load 

distributions: shear, bending moment and torsion about a reference axis at the centre 

of gravity are shown in figure 7. The manoeuvre data presented in this example 

remain to be verified with other sources for accuracy and reliability. 

8. Conc lus ions  

This paper summarizes a new multidisciplinary approach to computational aircraft 

dynamics and loads analysis. System identification ~as been extensively used to solve 

the CFD problem and to estimate the state-space matrices, which determine the 

stability characteristics of the system andZto compute adaptive gain matrices. The 
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principle of multidisciplinary analysis' alluded to in this study has other promising 

areas for application and development. Specifically these include: (1) computation of 

aerodynamic stability derivatives of rigid and flexible aircraft, (2) aeroservoelastic 

analysis, and (3) multidisciplinary design and optimization. While the results of the 

specific examples presented in this study are encouraging, additional validation of 

the method using practical examples has yet to be addressed. 
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of America. The authors sincerely thank Mr Raj Mantha of IBM for his active 

participation and interest in the progress of the project. Mr Don Rossman of IBM 
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