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Abstract

Background: Gene function annotations, which are associations between a gene and a term of a controlled

vocabulary describing gene functional features, are of paramount importance in modern biology. Datasets of these

annotations, such as the ones provided by the Gene Ontology Consortium, are used to design novel biological

experiments and interpret their results. Despite their importance, these sources of information have some known

issues. They are incomplete, since biological knowledge is far from being definitive and it rapidly evolves, and

some erroneous annotations may be present. Since the curation process of novel annotations is a costly

procedure, both in economical and time terms, computational tools that can reliably predict likely annotations, and

thus quicken the discovery of new gene annotations, are very useful.

Methods: We used a set of computational algorithms and weighting schemes to infer novel gene annotations

from a set of known ones. We used the latent semantic analysis approach, implementing two popular algorithms

(Latent Semantic Indexing and Probabilistic Latent Semantic Analysis) and propose a novel method, the Semantic

IMproved Latent Semantic Analysis, which adds a clustering step on the set of considered genes. Furthermore, we

propose the improvement of these algorithms by weighting the annotations in the input set.

Results: We tested our methods and their weighted variants on the Gene Ontology annotation sets of three

model organism genes (Bos taurus, Danio rerio and Drosophila melanogaster ). The methods showed their ability in

predicting novel gene annotations and the weighting procedures demonstrated to lead to a valuable

improvement, although the obtained results vary according to the dimension of the input annotation set and the

considered algorithm.

Conclusions: Out of the three considered methods, the Semantic IMproved Latent Semantic Analysis is the one

that provides better results. In particular, when coupled with a proper weighting policy, it is able to predict a

significant number of novel annotations, demonstrating to actually be a helpful tool in supporting scientists in the

curation process of gene functional annotations.

Background
In bioinformatics, a gene function controlled annotation is

a key concept; it is the association between a gene (identi-

fied by its ID) and a controlled term (identified by its ID

and belonging to a terminology or ontology) that describes

a specific functional feature. Thus, a controlled gene func-

tion annotation states that the involved gene owns the

feature (function) described by the considered controlled

term. Controlled feature terms are usually included into

controlled vocabularies or terminologies, each devoted to

a specific aspect (e.g. molecular functions, metabolic

features, etc.), and often they are related to other terms of

the same vocabulary to form an ontology. In this paper,

we consider the feature terms of the Gene Ontology (GO)

[1], the well known bioinformatics initiative whose aim is

to uniquely and precisely define the features of genes and

gene products in a species independent manner. The GO

is composed of three controlled vocabularies structured as
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(almost) separate sub-ontologies: Biological Process (BP),

which defines a recognized series of molecular events,

with a defined beginning and end, pertinent to the func-

tioning of integrated living units (e.g. cells, tissues, organs

and organisms); Cellular Component (CC), which

describes, at the levels of sub-cellular structures and

macromolecular complexes, the parts of a cell or its extra-

cellular environment where molecular events occur; and

Molecular Function (MF), which characterizes the elemen-

tal activities of a gene product at the molecular level, such

as binding or catalysis. Each GO sub-ontology is struc-

tured as a Directed Acyclic Graph (DAG), where every

node represents a term (i.e. a concept describing a func-

tional feature) and every edge represents a relation

between two concepts, which is mainly of sub-typing (“is

a”) or partition (“part of”). Every sub-ontology tree has a

root term, which has the sub-ontology name (BP, CC,

MF). In April 2014, the GO contained about 38,600 cur-

rent terms, describing gene (and gene product) features,

with more than 25,550 BP, 9,650 MF and 3,350 CC terms.

Beyond the indubitable importance of ontologies like

GO and of gene (and gene product) annotations, they

are incomplete and may contain incorrect items. In fact,

on one hand, several gene and gene product functions

of many organisms have still to be discovered and anno-

tated; on the other hand, many biomolecular annota-

tions are only available as computationally inferred,

without the supervision of a human curator. Further-

more, gene and gene product annotations are available

in different data banks, maintained by different organi-

zations, which may contain not completely consistent

information. Since in vitro biomolecular experiments to

validate a gene function are costly and lengthy, compu-

tational methods and software able to predict and prior-

itize new biomolecular annotations, e.g. through

machine learning algorithms, are an excellent contribu-

tion to the field [2]. The techniques discussed in this

paper are in this category.

In the last years, several studies dealt with the scientific

issue of predicting highly reliable new gene and gene pro-

duct functional annotations. King et al. propounded deci-

sion trees and Bayesian networks to predict novel gene

annotations by learning patterns from available annota-

tion profiles [3]. Tao and colleagues [4] advanced by

using a k-nearest neighbour (k-NN) classifier, through

which a gene inherits the annotations that are common

among its nearest neighbour genes in a gene network.

The functional distance between genes, based on the

semantic similarity of the GO terms used to annotate

them, regulates this inheritance process.

New gene functions can also be inferred by taking

advantage of multiple heterogeneous data sources. In

[5], Barutcuoglu and colleagues used gene expression

levels, obtained in microarray experiments, to train a

Support Vector Machine (SVM) classifier for each gene

annotation to a GO term, and enforced consistency

among predicted gene annotations by means of a Baye-

sian network projected on the GO structure. Conversely,

Raychaudhuri et al. [6] and Perez et al. [7] leveraged

textual information by mining the literature and extract-

ing keywords that are then mapped to GO concepts.

More recently, to predict novel GO annotations,

Zitnik and colleagues used matrix factorization data

fusion techniques [8], whereas Vembu and colleagues

used a net-work analysis approach [9]. Lavezzo at al.

proposed an interesting method based on a genomic

sequencing pipeline [10], while in [11] Wang and collea-

gues illustrated the use of fuzzy logic and rule-based

approaches. Conversely, Kordmahalleh et al. proposed

the prediction of gene functions based on a crowding

niching-Adaptive mutation algorithm, which is related

to evolutionary multi-modal optimization [12]. Very

recently, Yu and colleagues implemented a weak-label

learning method able to predict protein functions [13].

All these methods worked very well, but no one of

them is actually able to predict new missing gene func-

tions from a set of available annotations. Instead, given a

set of biomolecular annotations and some additional can-

didate annotations, the listed methods are able to state if

the candidate annotations are supposed to be correct or

not. On the contrary, some years ago Khatri and collea-

gues proposed a method [14], built on truncated Singular

Value Decomposition (tSVD), which is able to extrapo-

late gene functions, that is to suggest new gene function

annotations absent from the input dataset.

Starting from their proposed tSVD method [14], first

we extended it, based on gene clustering, and proposed

the Semantically IMproved tSVD (SIM) [15]. Then,

similarly to what Khatri et al. did in [16], we enhanced

our method by using different annotation frequency and

distribution weighting schemes [17]. We also investi-

gated the use of Probabilistic Latent Semantic Analysis

(pLSA) [18], a topic modeling method; in [19], we

showed its application to predict gene function annota-

tions and discussed the obtained prediction results.

Then, we extended also this pLSA implementation with

different weighting schemes [20].

In this paper, we summarize the tSVD, SIM and pLSA

methods and their variants, benchmark and compara-

tively discuss them and the results that they provide on

different datasets, and highlight some important remarks

on their behavior.

The paper organization is as follows. After this introduc-

tion, in the Methods section we illustrate the considered

algorithms and weighting schemes; then in the Datasets

section we describe the datasets used to comparatively test

these methods. In the Validation procedures section we

illustrate the procedures defined to benchmark the
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considered algorithms and their variants, and to evaluate

the results that they provide. Finally, in the Results and

discussion section we illustrate some significant results

and comparatively discuss them and the considered algo-

rithms. The Conclusions section ends.

Methods
With the aim of inferring novel gene annotations, so as

to improve the quality and coverage of existing annota-

tion datasets, we implemented the workflow depicted in

Figure 1. It is mainly composed of three steps: (a) the

set of available annotations is represented in a computa-

ble format, then (b) a mathematical model is trained

and finally (c) the model is used as a generative process

for predicting novel annotations. The output of the

workflow is a ranked list of putative associations

between genes and function terms, ranked according to

a confidence value. For the first and second steps, differ-

ent variants have been implemented and tested. In the

rest of this section we describe the workflow details and

variants, as well as the validation procedures that we

used to evaluate each workflow variant.

Binary representation

At the heart of a gene annotation predictive system

there is the gene annotation matrix. Given an organism,

the annotation matrix is built from the set of known

annotations of the organism genes to function terms

and, in case these terms are related to each other within

an ontology, their ontological structure. The ontology

structure is essential because, when the controlled terms

are organized into an ontology (i.e. along with the

terms, also the relationships among them are available,

as in the case of the GO), only the gene annotations to

the most specific terms describing the gene functional

features are directly available; the annotations to the

more general terms are implicit in the ontology struc-

ture. Thus, in order to build the annotation matrix, we

firstly unfold the annotation set; this means that, for

each annotation of a gene g to a term f in the annota-

tion set, we add to the set all the annotations between

the same gene g and each term f’ such that f is a descen-

dant of f ‘ in the ontology structure. We then build a

binary matrix Atmp of dimensions (Gtmp × Ftmp), where

Gtmp and Ftmp are the number of distinct genes and the

number of distinct function terms involved in the

unfolded annotations set, respectively. Finally, we apply

a further transformation, which we named pruning. In

this step, we delete from Atmp all columns that corre-

spond to terms which are annotated to only few genes,

less than L, after the annotation unfolding. This step is

intended to delete from the input set all those function

Figure 1 Prediction workflow. The input is a gene annotation repository. Firstly, the contained annotations of interest are represented in a

computable structure (i.e. a matrix, binary or weighted). Then, this representation is used as training dataset for a machine learning method that

fits a predictive model of gene annotations. Finally, the estimated model is treated as a generative process and new putative annotations are

produced, along with a confidence value.
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terms (with their few annotations) that, being very rare,

do not bring a significant amount of information about

their annotation to distinct genes, but whose presence

increases anyway the computational complexity. In the

tests following described, in order to improve the com-

putational complexity with practically no impact on the

prediction, we heuristically used L = 3, since it is very

unlikely that the terms annotated only to three genes,

out of the several thousands of genes included in each

considered dataset, may be predicted annotated to other

genes. The reduced matrix returned by the pruning pro-

cedure is the annotation matrix A. In the following, we

use G to denote the set of genes whose annotations are

represented by the matrix A; accordingly, we use F to

denote the set of function terms in the matrix A. There-

fore, the annotation matrix A is in the [0, 1]|G|×|F |

space; each of its rows represents a gene, while each of

its columns represents a function term. An entry A(g, f )

of the annotation matrix is set to 1 if and only if the

gene g is annotated either to the term f or to any of its

descendant terms in the ontology structure (in the case

of ontological terms).

We used the annotation matrix as input to the predic-

tive systems designed with the aim of inferring novel

unknown gene annotations. The result provided by

these systems is a list of associations between a gene

and a function term, ranked according to a value that

describes how likely the association is; this likelihood is

estimated solely based on the available knowledge

expressed by the considered annotation set. The predic-

tive methods that we implemented enhance machine

learning algorithms, such as the Latent Semantic Index-

ing (LSI) by Singular Value Decomposition (SVD), Prob-

abilistic Latent Semantic Analysis, or weighting schemes

such as the term frequency - inverse document frequency

(TF-IDF) one. These are very general methods used in a

broad range of domains; our variants extend them to

better fit into the biomolecular annotation domain.

Weighting the annotation matrix

The annotation matrix that we introduced in the pre-

vious section is a simple binary matrix. Studies in the

machine learning and information retrieval fields have

shown that it is possible to improve the performances of

a predictive system, both in term of recall and precision,

by moving from the binary matrix to a more complex

and informative one. Our approach is to weight the

annotation matrix with different weighting schema,

exploiting both co-occurrence information and the

ontology structure; in our framework, starting from the

annotation matrix A and the DAG of the term ontology,

we build a real valued matrix W ∈ R|G|×|F |, which

becomes the new input of the predictive methods. The

weighting schema that we implemented are based on

the TF-IDF technique.

The intuitions behind this is that (a) the relevance of a

function term for a given gene is proportional to the

number of descendant of that terms that are annotated

to the gene and (b) if a term is rare (i.e. it is annotated

only to a small subset of G), it is a better discriminator

among the set of genes than common function terms.

The former of these two criteria can be captured by the

term frequency (TF) statistics; for each gene g, function

term f and function term f ! descendant of f, the corre-

sponding term frequency is computed as:

TF(g, f ) = 1 + |{f ′ : A(g, f ′) = 1}|

Therefore, for each gene g and term f, T F (g, f )

equals either to one, if g is directly annotated to f, or to

one plus the number of descendants of f which are asso-

ciated with g, either directly or indirectly, when the

annotation of g to f has been produced by the unfolding

process. Thus, general terms with many descendants

annotated to a certain gene, are considered more rele-

vant for that gene than terms involved in direct

annotations.

The latter criteria can be represented by the inverse

gene frequency (IGF ) measure. For each function term f

it provides an estimation of the importance of an anno-

tation to that term, decreasing the relevance of the

annotations to common terms, such as the ones close to

the ontology root. Given a function term f, we can com-

pute the corresponding IGF value as:

IGF(f ) = ln
|G|

|{g : A(g, f ) = 1}|

Thus, if a term f is associated with all the genes in the

corpus, IGF (f ) = ln1 = 0; in fact, such term does not

provide valuable information, in terms of gene discrimi-

nation. On the contrary, if f is associated with only one

gene, IGF (f ) = ln|G|, which is the IGF maximum possi-

ble value. In general, if a term is associated with less

than
|G|

e
genes, the measure IGF (f ) is greater than one

and, therefore, its relevance is increased; otherwise,

the relevance of the term in the corpus is decreased. We

compose this two statistics in order to build distinct

weighting schemes; each of such schema is made of

three components: (a) a local weight, that represents

how much a certain function term is important for a

given gene, (b) a global weight, that estimate the rele-

vance of a term in the whole corpus of annotations and

(c) a normalization procedure, which is meant to reduce

the bias between genes that strongly differ in the num-

ber of associated terms.
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In Table 1 we report the local and global schemes and

the normalization functions that we defined. Each

weighting schema is denoted by a three-letter code, the

first refers to the local schema, the second to the global

one while the last letter refers to the normalization

function. Notice that these components are different

from the ones proposed by Khatri and colleagues [14]

because of the different formulation and meaning of the

basic statistics TF and IGF.

In our previous papers [17] and [20], we tested all

possible combinations of the three components of a

weighting schema; in this work we consider only the

ones that have previously shown better performance (in

terms of average improvement with respect to the

unweighted case): NTN (No transformation - Term

weight - No normalization), NTM (No transformation -

Term weight - Maximum) and ATN (Augmented - Term

weight - No normalization).

The weighted annotation matrix W is a (|G| × |F |)

real-valued matrix; starting from the matrix A and a

weighting schema, we build such matrix by multiplying

each element of A by the corresponding local and global

weights and (in case) individually normalizing each

resulting row (gene profile).

LSI by truncated singular value decomposition

The Latent Semantic Indexing [21] technique is build on

the tSVD, that is a vectorial latent semantics method.

The core of the method is the Singular Value Decompo-

sition (SVD) of the (weighted) annotations matrix. By

means of SVD we can rewrite W as:

W = USVT

where U is an orthonormal (|G| × p) real matrix

whose columns are the left-singular vectors of W, S =

diag(s1, s2, . . ., sp), with s1 ≥ s2 ≥ . . . ≥ sp, is the (p × p)

diagonal vector of the sorted singular values of W, V is

an orthonormal (|F |×p) real matrix whose columns are

the right-singular vectors of W and p = min(|G|, |F |). A

graphical representation of the SVD matrix decomposi-

tion is shown in Figure 2. An interesting property that

holds for the matrix V is that each of its columns has

unitary length; that means that for each column vi:

length (vi) =

√

|F|
∑

j=1

vi(j)
2 = 1.

Therefore, each of these column vectors defines a

direction in the R
|F| space, which we can interpret as

the space of all the possible annotation profiles of each

gene. Each of these directions is then scaled by the

related singular value and rotated through the U matrix.

Thus, the higher the singular value is, the more relevant

the corresponding right-singular vector will be.

The tSVD method relies on these considerations and

translates them into the following assumption: the direc-

tions in the annotation profile space (vector columns of

V) which correspond to high singular values are likely

to represent biologically relevant concepts (seen as rela-

tions and co-occurrences of features). In contrast, direc-

tions associated with low singular values have high

chance to represent noisy function term relationships,

due both to missing and incorrect annotations in the

annotation matrix. The tSVD method discards the direc-

tion associated with low singular values; in practices, it

builds the approximate matrix:

Ŵ = UkSkV
T
k

where Ŵ has the same dimension of the original W

matrix, Uk is the matrix made of the first k columns of

the U matrix, Sk = diag(s1, . . ., sk ) is the diagonal

matrix of the first k singular values and Vk is the matrix

formed by the first k columns of V.

For further considerations, it is worth to notice that:

Ŵ = UkSkV
T
k = WVkV

T
k

Therefore, given an annotation profile a (i.e. a |F |

sized vector representing the annotations of a given

gene), we can compute the approximated annotation

vector as:

â = aVkV
T
k

The higher the value of â(f ) is, the more confident the

method is about the annotation to the feature term f of

the gene with the profile vector a.

Semantically IMproved tSVD

The tSVD method that we introduced in the previous

section is a linear algebra technique; the approximated

annotation profiles provided by such method are linear

Table 1. Weighting schema components

Code Name Description

Local weight

N No
transformation

∀f, g : wloc = T F (g, f )

A Augmented ∀f, g : wloc = 0.5 + 0.5 · (T F (g, f )/maxf i T F
(g, f’))

Global weight

T Term weight ∀f : wglob = IGF (f )

Normalization

N No
normalization

Normalization factor is not used

M Maximum wnorm(g, f ) = w(g, f ) / maxf’ w(g, f’)

Each of the proposed weighting schemes is made of a local weight, a global

weight and a normalization function. The implemented and tested options for

the three components are listed below.
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with the computed model. In fact, each computed anno-

tation profile is a linear combination of fixed coeffi-

cients, which are the entries of the VkV
T
k matrix. This

property shows a limitation: on average, genes annotated

to few terms tend to have a lower predicted annotation

value in the âcomputed annotation profile with respect

to genes annotated with a large number of function

terms. In fact, let VkV
T
k (∗, j) be the j-th column of the

VkV
T
k matrix; given a gene annotation profile a, for each

j = 1 . . . |F | the value of the j-th entry of the predicted

annotation profile â is computed as:

âj =

|F|
∑

i=1

aiVkV
T
k (i, j).

Thus, if a includes only a few annotations (i.e. only a

few not 0 values), the value of âj tends to be low, and

on average lower than the one obtained in the case

when many values of a are not 0, i.e when a includes

many annotations. In our tests, this was a clear source

of bias when applying the tSVD predictive method to

genes with a relevant difference in the number of anno-

tated terms. Because of this behavior, the predictive sys-

tem using the tSVD approach tends to predict lot of

annotations for well annotated genes and only a few for

poorly annotated ones.

Our Semantically IMproved tSVD (SIM) method is an

attempt to overcome this issue, by adding a gene clus-

tering step and defining a specific model for each clus-

ter, i.e. group of more equally annotated genes. The V

matrix of the tSVD algorithm implicitly uses the term-

to-term correlation matrix T = WW
T; in fact V is made

of the eigen vectors of such matrix. In SIM we propose

an adaptive approach: we cluster genes according to

their annotation profile and for every gene cluster we

estimate a different correlation matrix Tc, with c = 0, 1,

2, . . ., C, where C denotes the number of clusters and

T0 = T. That is, we choose a number C of clusters and

completely discard the columns c of matrix U where c >

C, i.e. c = C + 1, . . . , n. In fact, each column uc of the

SVD matrix U represents a cluster and the value U (i, c)

indicates the membership of gene i to the cth cluster.

We use this membership degree to cluster the genes (the

rows of matrix W). The case C = 0 corresponds to the

complete U matrix; thus, in this case, SIM = tSVD. Then,

for each of those Tc matrices, the Vc matrix, whose col-

umns are the eigen vectors of Tc, is computed and its col-

umns are sorted in not increasing order, according to the

corresponding eigen value. Finally, each Vc matrix is

truncated, keeping into account only the first k columns.

In order to build the Tc matrices we exploit the gene

clustering induced by the SVD, which is based on the

gene functional similarity. To this end, we consider the U

matrix, each of whose columns can be interpreted as a

cluster. Considered a vector column ui, its j-th entry is

the degree of membership of the j gene in the i cluster;

each gene, can belong to different clusters with different

degrees of membership. The construction of the Tc

matrix proceeds as follows: (a) a diagonal matrix Cc ∈ R
|

G|×|G| is build; the non-zero elements of Cc are the entries

of the uc column vector; (b) a modified gene-to-term

matrix is computed as Wc = CcW; (c) finally the matrix

Tc = W
T
Wc is generated.

Given an annotation profile a, the C + 1 different Vc,k

matrices are used to estimate as many predicted annota-

tion profiles:

âc = aVc,kV
T
c,k.

Among them, the best predicted annotation profile is

chosen as the one that minimizes the distance from the

original annotation profile, as computed by the L2 −

norm:

â = arg min
c=0,...,C

||âc − a||2

That annotation profile is then considered as the pre-

dicted one. The entire procedure is repeated for each

annotation profiles a.

The introduction of the arg min operator breaks the

strict linearity of the tSVD approach, reducing the bias

Figure 2 Truncated Singular Value Decomposition. Given a truncation level k, an approximation of the W matrix is built keeping into

account only the first k columns of the left singular vector matrix U and of the right singular vector matrix V and the k × k portion of the

diagonal matrix S of the singular values of W. Considered sub matrices are highlighted.
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due to the different number of annotations that different

genes have.

pLSAnorm

The pLSAnorm algorithm is a statistical method that we

introduced in [19]; it consists of a slight modification of

the pLSA algorithm [18], where the main difference lays

on a final normalization step. Similarly to tSVD and

SIM, the aim of this method is to build a latent class

model to identify hidden relationships among the set of

function terms. With respect to the tSVD and SIM

methods, which are built on linear algebra foundations,

pLSAnorm uses a probabilistic approach based on Baye-

sian inference. Therefore, while tSVD and SIM compute

a Ŵ that approximates the input (weighted) annotation

matrix W, pLSAnorm attempts to estimate the probabil-

ity of the event “gene g is annotated to the term f”, for

each gene g and function term f.

The core of pLSAnorm is the aspect model (depicted

in Figure 3), where the latent variables are named topics

and T is the set of all topics. In the aspect model, to

each gene g ∈ G it corresponds a vector δg ∈ R
|T |, for

which the property:

∑

t∈T

δg(t) = 1

holds. Thus, we can interpret each of those vectors

as multinomial distributions of probabilities over the

set of topics, where each element δg(t) is the probabil-

ity of having the topic t associated with the gene g, i.e.

δg (t) = P (t|g). Similarly, each topic t ∈ T corresponds

to a vector ϕt ∈ R|F|, subject to the constraint:

∑

f∈F

ϕt(f ) = 1.

In this case, each vector ϕt can be interpreted as a

multinomial probability distribution over the set of

function terms and each entry ϕt(f ) of such vector is

the probability of having a function term associated with

the topic.

Given the aspect model, the probability of an associa-

tion between a gene g and a function term f can be

computed as:

P(f |g) =
∑

t∈T

δg(t)ϕt(f ) =
∑

t∈T

P(f |t)P(t|g). (1)

Then, the goal is to estimate from the data all the

multinomial distributions such that for each gene and

for each term the model produces a valuable estimation

of the association probability. The pLSA method esti-

mates the set of all such probability distributions start-

ing from a random initialization and iterating the

Expectation-Maximization (EM) algorithm. EM esti-

mates a set of value assignments for the probability dis-

tributions, which corresponds to a optimum in the

likelihood function:

L = P(�, �|W) =
∏

g∈G

∏

f∈T

(

∑

t∈T

P(f |t)P(t|g)

)W(g,f)

Figure 3 pLSAnorm aspect model. Each gene is associated with each function term through hidden variables, the topics. Connections

between nodes represent probability values.
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or, equivalently, to a maximum of the log-likelihood

function:

ℓ =
∑

g∈G

∑

f∈F

W(g, f )
∑

log

(

∑

t∈T

P(f |t)P(t|g)

)

where W(g, f ) is the value corresponding to the gene

g and the function term t in the weighted annotation

matrix. The EM algorithm is made of two steps: the

E-step and the M-step. In the E-step the probability that

an association between a gene g and a function term f is

explained by the topic t is computed, for each possible

combinations of those three entities, by the formula:

P(t|f , g) =
P(f |t)P(t|g, f )

|G|

In the M-step, the values of Formula 2 are used to

estimate a novel value assignment to the probability dis-

tributions, which improves the likelihood function value.

In details, we compute the new values for the P (t|g)

values as:

P(t|g) =

∑

f∈FW(g, f )P(t|g, f )

|G|

and the new values for P(f|t)as:

It is important to keep into considerations that the EM

algorithms can only find a local optimum of the likeli-

hood function, which may be different from the global

one; the reached optimum depends on the random

initialization.

Once the assignments for the probability distribution

have been computed, it is possible to compute the prob-

ability of having an annotation by means of the Formula

1. Notice that, since the vector P (f |g) has to preserve

statistical properties, it is subject to the constraint:

∀g :
∑

f∈F

P(f |g) = 1.

Again, genes with a high number of suggested annota-

tions will have a lower average prediction value; this

introduces some problem in our prediction framework,

where we want to rank predictions according to their

value. In order to overcome this bias, we introduced a

normalization step in which the main difference between

pLSAnorm and pLSA lays: for each row of the P (f |g)

matrix we get the maximum M and we divide all the

entries of that row by M, i.e. for each gene we force the

function term with the higher probability to have a prob-

ability scaled to 1, and all the other term probabilities of

the topic are accordingly rescaled. This ensures a better

uniformity in the prediction values among different

genes. In fact, this mitigates the highlighted issue since

after this normalization, for each gene, the terms that are

identified as putative annotations have a likelihood value

close or equal to one, regardless the total number of pre-

dicted annotations for that gene.

Computational complexity

As reported by Korobkin and colleagues [22], the LSI

and pLSA algorithms have the same asymptotic compu-

tational complexity; its value is O(N 2 * x * k), where N

= |G| + |F |, x is the sparsity degree of the annotation

matrix used as input to the algorithm and k is either the

truncation level (in LSI) or the number of topics (in

pLSA). The pLSAnorm method we proposed adds a

normalization step whose theoretical complexity is O

(N2), thus it has the same asymptotic computational

complexity that pLSA has. Finally, the complexity of the

SIM algorithm can be derived from the LSI one as O(C

* N2 * x * k), where also the number of clusters C is

taken into account. As a general indication of the com-

putational time required when these methods are

applied on gene annotation data, on the Danio rerio

dataset (the medium size one of the three that we

tested, see following Table 2), the LSI method run for

~5 minutes while both pLSAnorm and SIM took ~20

minutes to complete.

Weighting schema influence

In the previous sections we introduced the predictive

methods on the W matrix; the same methods can be

applied without any modification to the A matrix, since

a binary matrix can always be seen as a real-valued one.

On the other hand, the W matrix can be seen as the

result of the application of a weighting schema to the A

matrix. By doing so, the weighting schema can modify

the results provided by the predictive machine learning

method used. In fact, by changing the values of the

input matrix, the weighting schemes implicitly change

the main directions (i.e. columns) of the V matrix com-

puted by the tSVD algorithm; in particular, through the

weighting schemes, relevant annotations influence the

model selection more than less relevant ones.

The mechanism is very similar also in the SIM

method; yet, in this case, the A matrix modification by

the weighting schemes leads also to a different set of

clusters, since also the U matrix computed by the tSVD

algorithm changes. Generally, such new clusters better

reflect the functional similarity of the genes in a cluster.

Finally, in the pLSAnorm, changes in the input matrix

A are translated into a modification of the likelihood

function to be maximized; this causes the EM algorithm

to end up in a different set of variable assignment for

the probability distributions P (f |t) and P (t|g) that con-

stitute the predictive model, thus in different annotation

prediction likelihoods.

Pinoli et al. BMC Bioinformatics 2015, 16(Suppl 6):S4
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Input and output matrix comparison

The entries of the reconstructed matrix Ŵ(i, j) > τ are

real valued. Given a threshold τ, if Ŵ(i, j) > τ, then gene

i is predicted to be annotated to term j. Subject to the

original values assumed by the matrix A, the following

cases may befall:

• If A(i, j) = 1 and Ŵ(i, j) > τ, the annotation of

gene i to term j is confirmed; this case is denoted as

an annotation confirmed (AC), with respect to the

original A(i, j). This annotation type can be consid-

ered similar to a True Positive (TP).

• If A(i, j) = 0 and Ŵ(i, j) > τ, a new annotation is

suggested; this case is denoted as an annotation pre-

dicted (AP), with respect to the original A(i, j). This

annotation type can be considered similar to a False

Positive (FP). These annotations are those that are

inserted in the likely predicted annotation lists gen-

erated, which are very useful to biologists and

physicians.

• If A(i, j) = 1 and Ŵ(i, j) ≤ τ, an existing annota-

tion is suggested to be semantically inconsistent

with the available data; this case is denoted as an

annotation to be reviewed (AR), with respect to the

original A(i, j). This annotation type can be consid-

ered similar to a False Negative (FN).

• If A(i, j) = 0 and Ŵ(i, j) ≤ τ, the annotation is not

present in the original annotation set and it is not

suggested by the analysis; this case is denoted as a

not existing annotation confirmed (NAC), with

respect to the original A(i, j). This annotation type

can be considered similar to a True Negative (TN).

We take advantage of these categories to build the

Receiver Operating Characteristic (ROC) curves in the

validation procedure.

Datasets

To test the performances of the considered methods, we

used three gene annotation datasets obtained from the

Genomic and Proteomic Data Warehouse (GPDW)

[23,24], a publicly available integrative data warehouse

maintained by our group at the Politecnico di Milano

[25]. We selected the GO gene annotations of the Bos

taurus (cattle), Danio rerio (zebra fish) and Drosophila

melanogaster (common fruit fly) organisms. We chose

these organisms because their gene annotations to the

GO include different and representative numbers of

annotations, involved genes and function terms, with

curated annotation figures from lower in Bos taurus to

higher in Drosophila melanogaster. We considered two

versions of the selected datasets, an older one from July

2009 and an updated one from March 2013. Table 2

provides a quantitative description of all the GO gene

annotation datasets considered.

Validation procedures

The validation of the predicted annotations is a very

relevant step in our pipeline. Since we do not have a

gold standard to refer to, we developed two different

validation phases to check the quality of the predictions

generated by the different methods considered. The first

phase regards the analysis of the Receiver Operating

Characteristic curves calculated for each method and

their Area Under the Curve (AUC), while the second

phase regards the comparison of the predictions to an

updated version of the datasets used to determine the

predictions.

Receiver Operating Characteristic curve analysis

A Receiver Operating Characteristic (ROC) curve is a

graphical plot which depicts the performance of a binary

classifier system while its discrimination threshold is

varied [26]. Differently from its original definition, we

Table 2. Quantitative characteristics of the considered GO (BP+CC+MF) gene annotation datasets in their July 2009

version and March 2013 updated version from the GPDW

Dataset July 2009 March 2013 #a comparison

#g #f #a #g #f #a ∆ ∆%

Curated annotations

Bos taurus 734 3,714 32,232 2,243 8,421 1,44,358 1,12,126 347.87

Danio rerio 1,807 2,967 49,834 3,825 6,848 1,79,142 1,29,308 259.47

Drosophila m. 8,722 6,516 3,08,962 10,304 8,850 5,17,457 2,08,495 67.48

Computational annotations

Bos taurus 11,646 6,927 3,35,063 5,428 9,107 2,32,945 −102,118 −30.47

Danio rerio 14,114 3,270 2,62,940 15,439 4,191 3,45,712 82,772 31.47

Drosophila m. 7,950 2,136 86,207 8,433 2,560 96,354 10,147 11.77

Figures do not include GO annotations with IEA or ND evidence, nor obsolete GO terms and genes. #g: number of genes; #f: number of function features (GO

terms); #a: number of GO gene annotations; ∆: difference of annotation number between the two dataset versions; ∆%: percentage difference of annotation

number between the two dataset versions. Drosophila m.: Drosophila melanogaster organism.
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build this curve on APrate (on the x axis) and ACrate

(on the y axis), where: (see previous section for acronym

meaning)

APrate =
AP

AP + NAC
and ACrate =

AC

AC + AR

Thus, our ROC curves depict the trade-off between

the APrate and ACrate for all possible values of the

threshold τ . Notice that, in statistical terms, APrate =

1 − Specificity and ACrate = Sensitivity. In our tests,

we considered only the AP rate in the normalized

interval [0, 0.010], in order to evaluate the best pre-

dicted annotations (APs) having the highest likelihood

score (since the more NACs are present, the closer the

APrate is to zero).

This ROC curve analysis is an efficient tool to under-

stand the dissimilarity between the input and the output

annotations. A ROC curve showing a high Area Under

the Curve (AUC) corresponds to having many ACs

(annotations present in input and confirmed present in

output) and many NACs (annotations absent in input

and confirmed absent in output). This means that the

output matrix is very similar to the input matrix, and

the output gene annotation profiles strongly reflect the

input ones. On the contrary, a low AUC means a lot of

differences between the input and the output annota-

tions. However, difficulties are related to using this ROC

curve indicator in our application scenario. In fact, since

the output predictions are compared to the input anno-

tations, if the prediction system did not predict any new

annotation, the maximum AUC value (100%) would be

obtained. This would seem to mean an optimal predic-

tion, but actually it would give no useful information

about new annotations. Despite this, we consider the

ROC curve analysis a good dissimilarity indicator also in

our application scenario, although less useful and precise

than other validation methods, such as the one based on

the comparison of the prediction results to an updated

version of the dataset used to generate the predictions.

Dataset version comparison

We also implemented an alternative validation proce-

dure, which is based on the comparison of the obtained

predictions to an updated version of the dataset used to

determine the predictions. In our tests, as input we used

sets of GO gene annotations available on July 2009, and

as updated datasets the same sets of GO gene annota-

tions available on March 2013.

The first step of this validation procedure consists of

building the predictive system model taking into account

only the most reliable annotations in the older dataset

considered for the prediction, i.e the ones not computa-

tionally inferred or with information actually available

about the genes or gene products being annotated. Thus,

we ignore the GO gene annotations with Inferred Electro-

nic Annotation (IEA) or No biological Data available

(ND) evidence code. Then, we use the created model in

order to predict a list of candidate annotations that are

not present in the considered dataset with evidence dif-

ferent from IEA or ND. Finally, we count how many of

these predicted annotations are present (a) in the consid-

ered dataset with computational (IEA or ND) evidence,

(b) in the updated dataset with any evidence, or (c) in the

updated dataset with not-computational (IEA or ND) evi-

dence. The higher those counts are, the better the predic-

tive system behaves, i.e. it is able to predict an higher

number of confirmed annotations that were unknown

when the dataset used for the prediction was created. In

particular, the count of predicted annotations that are

confirmed by annotations with not computational evi-

dence in the dataset updated version is the most relevant

and reliable one. In fact, such annotations are reviewed

by curators and mostly experimentally confirmed. It is

important to notice that all these counts only provide a

lower estimate of the prediction precision; predicted

annotations that are not found in the dataset updated

version can be correct, but not found just simply because

they have not been discovered yet by other means.

Results and discussion
Our validation tests aim at comparing the performances

of the three considered methods and their combinations

with different weighting schemes. In order to do so, for

each method we chose the same number of latent

classes (i.e. principal components in the tSVD and SIM

methods and topics in the pLSAnorm method); we set

them heuristically to 500, as was done in [14], in order

to be able to compare our results also to those reported

by Khatri and colleagues. Furthermore, for the SIM

method we decided to set to 3 the number of clusters

to be used; this value was estimated taking into account

both computational complexity and goodness of results.

We ran several experiments with different numbers of

clusters and noticed that, with the considered datasets,

usually results did not change much when we used a

cluster number greater than 3 (data not shown). Since

the greater the number of clusters is, the higher the

computational complexity of the annotation prediction

is, we chose to always use 3 clusters.

We show the results of the ROC analysis validation in

the next subsection and the results of the dataset ver-

sion comparison analysis in the following section.

ROC analysis results

The performed ROC analysis validation provided similar

ROC curves and AUC values for the three annotation

datasets considered, i.e. the Bos taurus, Danio rerio and

Drosophila melanogaster organism ones. As an example,

Pinoli et al. BMC Bioinformatics 2015, 16(Suppl 6):S4
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we show in Figure 4 the ROC curves and AUC percen-

tages of all the methods and their weighting schema var-

iants that we applied to the Bos taurus dataset. We can

observe that all the LSI and SIM method variants with

different weighting schemes provide better results than

the pLSA ones. In fact, all the LSI and SIM ROC AUCs

are greater than an indicative threshold of 66.66% (equal

to the 2/3 of the possible maximum AUC value), which

represents limitedly acceptable values; whereas all the

pLSA method variants with the different weighting

schemes considered show ROC AUC values less than

such threshold. Furthermore, in the LSI and SIM meth-

ods we can also observe that the NTN and NTM

schemes outperform the other ATN and no schema var-

iants, showing the highest AUC percentages. On the

contrary, the prediction quality of the pLSA method

worsens when the weighting schemes are added. In fact,

in Figure 4 one might notice that the pLSA method

with no weighting schema shows the highest AUC per-

centage (59.36%) among all the pLSA method variants.

ROC curves and AUC values obtained for the Danio

rerio and Drosophila melanogaster datasets show similar

trends.

As an example of our gene annotation predictions, we

report in Figure 5 a branch of the Directed Acyclic

Graph of the GO Biological Process terms predicted by

the SIM method, with the NTM weighting schema, as

associated with the PGRP-LB Peptidoglycan recognition

protein LB gene (Entrez Gene ID: 41379) of the Droso-

phila melanogaster organism. One may notice that, in

this sub-tree, our SIM method predicted five new anno-

tations, in addition to the six that were already present.

Out of these five predicted annotations, two (catabolic

process - GO:0009056 and macromolecole catabolic pro-

cess - GO:0009057) were found validated with reliable

evidence in the used dataset updated version. These con-

firmations suggest the likely correctness of their direct

children, biopolymer catabolic process - GO:0043285 and

carbohydrate catabolic process - GO:0016052, both also

children of terms annotated to the same gene with reli-

able evidence in the dataset used for the prediction.

Dataset version comparison results

In Table 3 we report the validation results obtained by

comparing the annotations predicted by each considered

method and its weighting schema variants to the

updated version of the annotation datasets used to gen-

erate the predictions. For each dataset, every prediction

method returns a list of predicted annotations sorted

according to their likelihood value. We considered the

top 500 annotations of each list and evaluated the per-

centages of such annotations that were found confirmed

by a) annotations present in the dataset used for the

prediction, but with computational evidence only (cmp),

i.e. not considered to perform the predictions, b) any

annotation in the updated version of the considered

dataset (Uany ), or c) curated annotations in the

updated version of the considered dataset (Ucur), i.e.

with a not-computational evidence. The latter values

(Ucur) are the most relevant and important, since they

refer to predicted annotations with supervised biological

confirmation. In Table 3, at a first sight, they could

seem low, but it is important to notice that they repre-

sent only the predicted annotations found most reliably

confirmed after 44 months; many other predicted anno-

tations (even all) may be correct, but not found con-

firmed in the dataset updated version just because at the

time of its creation they were not discovered yet.

Inspecting the figures in Table 3, we can see that

when the three methods are run without any weighting

schema, they provide similar results, even if pLSA gives

predictions significantly worst than the other two meth-

ods on the Drosophila melanogaster dataset, i.e. in the

case of a very high number of available annotations con-

sidered for the prediction (see Table 2). (Please note

that only available curated annotations were considered

Figure 4 ROC curves for the Bos taurus datasets. ROC curves and their AUC percentages of Annotation Confirmed rate (AC rate) versus

Annotation Predicted rate (AP rate), obtained by varying the threshold τ in predicting the GO annotations of Bos taurus genes with the LSI (a),

SIM (b) or pLSA (c) methods, each with or without weighting schemes.

Pinoli et al. BMC Bioinformatics 2015, 16(Suppl 6):S4

http://www.biomedcentral.com/1471-2105/16/S6/S4

Page 11 of 15



for the prediction). Furthermore, the weighting schemes

generally provide benefits to the predictive methods and

some interesting trends emerge from the results. pLSA

performances are always improved by the NTN schema,

in particular for to the predictions validated by the

reliable curated annotations in the more recent version

of the dataset. Conversely, pLSA performances are

usually decreased by the other weighting schemes. With

the LSI and SIM methods, the ATN schema provides

good improvements when small datasets are analyzed;

Figure 5 Predictions for the PGRP-LB gene. Branch of the Directed Acyclic Graph of the GO Biological Process terms associated with the

PGRP-LB Peptidoglycan recognition protein LB gene (Entrez Gene ID: 41379) of the Drosophila melanogaster organism. It includes GO terms

present in the analyzed dataset (black circles), as well as GO terms predicted by the SIM method with the NTM weighting schema as associated

with the same gene (blue hexagons) and the ones of them that were found validated in the dataset updated version (green rectangles). Other

GO DAG parts are connected to the shown branch as indicated by the dotted lines.

Table 3. Percentages of the top 500 predicted annotations found confirmed for each method (LSI, SIM, pLSA),

weighting schema (none, NTN, NTM, ATN), and dataset (Bos taurus, Danio rerio, Drosophila melanogaster)

Bos Taurus Danio rerio Drosophila m.

Method cmp Uany Ucur cmp Uany Ucur cmp Uany Ucur

LSI-none 26.4 26 3.6 13 21.2 11.6 31.2 30 6.8

LSI-NTN 22.2 24.8 7.2 9.4 27.4 16.8 6.6 13.8 7.2

LSI-NTM 14.8 19.2 6.4 6.6 17.6 11.6 9.8 26 17

LSI-ATN 21.6 28.2 9.4 6.2 27.6 22.6 23.6 24 5.8

SIM-none 19.2 19 4.4 12.4 21.8 10.8 32.6 35 10.6

SIM-NTN 17.4 20.6 7 11.4 28.8 17.8 7.4 24.6 17

SIM-NTM 22 24 6.2 7.4 30.2 21.4 16 45.6 35.2

SIM-ATN 24 32.2 10.4 6 31.6 26.8 22.6 23.8 6

pLSA-none 27.4 20.6 5.2 14 24.4 13 4.8 6.6 4.2

pLSA-NTN 19.6 21.2 6.8 11.8 21.6 13.2 8 11.6 5.6

pLSA-NTM 14.6 20.2 5 15.8 23.8 11.6 5.4 7 3.2

pLSA-ATN 15.6 16.2 6.4 4.8 9.6 5 3.8 6.4 4

We report: the portion of predictions that were confirmed in the outdated dataset with only computational evidence, therefore not included in the input corpus

(cmp); the portion of predictions that were confirmed in the updated dataset with any evidence (Uany) and the portion of confirmed predictions in the updated

dataset with not-computational evidence (Ucur). The best values obtained for each of these three cases and dataset across the considered methods are

highlighted in bold.
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with the growth of the dataset size, the NTM schema

becomes the best one for those methods. Interestingly,

the values in Table 3 show that, in general, weighting

schemes lead to a better prediction system, since they

seem to avoid predicting those annotations that, in the

updated version of the annotation set considered, are

present only with computational evidence, i.e. are less

likely to be biologically correct. In fact, according to the

figures in Table 3 related to the number of predictions

confirmed with biological evidence (Ucur), any method

applied to the binary annotation representation is always

outperformed by at least one of its weighting schema

enhanced variants.

Finally, overall the SIM algorithm that we proposed,

coupled with a proper weighting schema, provides the

best results with respect to the other considered meth-

ods, also when they are enhanced with any weighting

schema. This improvement is particularly evident when

keeping into account the predicted annotations con-

firmed by annotations with curated evidence in the data-

set updated version (Ucur). In contrast, the pLSA

method is the worst of the three methods compared;

such outcome may depend on the overfitting issues that

are known to affect pLSA, which are amplified in a con-

text where the training samples are both incomplete and

partially incorrect, as in the annotation datasets.

Conclusions
In this paper we discussed and comparatively evaluated

three computational methods to predict novel gene (or

gene product) functional annotations from a set of

known ones. For each method, we implemented and

tested four different variants, obtained by applying on

each method three distinct weighting schemes. Perfor-

mance evaluations were performed on three distinct

annotation datasets of different sizes, i.e. Bos taurus,

Danio rerio and Drosophila melanogaster gene annota-

tions to GO terms. Obtained results show that our

proposed SIM method is a valuable tool for gene anno-

tation prediction and biological hypotheses design.

Comparisons indicate SIM as the most precise method

of the considered ones, in contrast to the pLSAnorm

method which shows limitations in this gene annotation

prediction application. Furthermore, the proposed anno-

tation weighting schemes lead to significant prediction

improvements, although different specific schemes pro-

vide better results for different sizes of the evaluated

dataset and predictive method used.

By leveraging the lists of the most likely biomolecular

annotations that our computational algorithms can pre-

dict, scientists might be able to address their research in a

more focused direction, possibly avoiding time-consuming

and expensive biomolecular experiments for gene function

determinations. The main application and goal of our

work is to suggest some gene functions that are more likely

to exist to scientists, who can consider them in designing

and prioritizing their experiments.

Our future work will address advantages and issues in

taking into account also other gene (and gene product)

annotation types, such as the ones regarding pathways (e.

g. from KEGG [27], or Reactome [28]), or diseases (e.g.

from OMIM [29], or GAD [30]). We plan also to imple-

ment and test other topic modeling methods, such as

Latent Dirichlet Allocation (LDA) [31], as well as new

on-line machine learning techniques, such as Hybrid sto-

chastic-adversarial on-line learning [32]. We also aim at

using new prioritization techniques able to reveal most

likely predicted annotations through their ontology tree

structure [33]. On the validation side, we intend to take

advantage of literature-based validation software, as

made in [34], and implement useful statistical coefficient

for ROC analysis, as made by Robin et al. [35]. Finally, we

want to integrate our software into the on-line Web plat-

form of Bio Search Computing [36] and make it publicly

available to the scientific community.

List of used abbreviations
AC: Annotation Confirmed

AP: Annotation Predicted

AR: Annotation to be Reviewed

ATM: Augmented - Term weight - Maximum

AUC: Area Under the Curve

BP: Biological Process

CC: Cellular Component

cmp: Computational evidence

DAG: Directed Acyclic Graph

FN: False Negative

FP: False Positive

GAD: Genetic Association Database

GO: Gene Ontology

GPDW: Genomic and Proteomic Data Warehouse

ID: Identifier

IDF: Inverse Document Frequency

IEA: Inferred from Electronic Annotation

IGF: Inverse Gene Frequency

k-NN: k-Nearest Neighbour

KEGG: Kyoto Encyclopedia of Genes and Genomes

LDA: Latent Dirichlet Allocation

LSI: Latent Semantic Indexing

MF: Molecular Function

NAC: No Annotation Confirmed

ND: No biological Data available

NTM: No transformation - Term weight - Maximum

NTN: No transformation - Term weight - No

normalization

O: Order of

OMIM: Online Mendelian Inheritance in Man

PGRP-LB: Peptidoglycan recognition protein LB
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pLSA: Probablistic Latent Semantic Analysis

PPME1: Protein phosphatase methylesterase-1

ROC: Receiver Operating Characteristic

SIM: Semantically Improved tSVD

SVD: Singular Value Decomposition

SVM: Support Vector Machine

TF: Term Frequency

TN: True Negative

TP: True Positive

tSVD: Truncated Singular Value Decomposition

Uany: Any evidence in Updated dataset

Ucur: Curated (not computational) evidence in

Updated dataset
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