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Abstract: Protein-protein interactions play important roles in nearly all events that take place in a cell. High-throughput
experimental techniques enable the study of protein-protein interactions at the proteome scale through systematic
identification of physical interactions among all proteins in an organism. High-throughput protein-protein interaction data,
with ever-increasing volume, are becoming the foundation for new biological discoveries. A great challenge to
bioinformatics is to manage, analyze, and model these data. In this review, we describe several databases that store, query,
and visualize protein-protein interaction data. Comparison between experimental techniques shows that each high-
throughput technique such as yeast two-hybrid assay or protein complex identification through mass spectrometry has its
limitations in detecting certain types of interactions and they are complementary to each other. In  silico methods using
protein/DNA sequences, domain and structure information to predict protein-protein interaction can expand the scope of
experimental data and increase the confidence of certain protein-protein interaction pairs. Protein-protein interaction data
correlate with other types of data, including protein function, subcellular location, and gene expression profile. Highly
connected proteins are more likely to be essential based on the analyses of the global architecture of large-scale interaction
network in yeast. Use of protein-protein interaction networks, preferably in conjunction with other types of data, allows
assignment of cellular functions to novel proteins and derivation of new biological pathways. As demonstrated in our
study on the yeast signal transduction pathway for amino acid transport, integration of high-throughput data with
traditional biology resources can transform the protein-protein interaction data from noisy information into knowledge of
cellular mechanisms.
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1. INTRODUCTION

1.1. Protein-Protein Interaction in A Proteome

Protein-protein interactions are at the heart of biological
activities [1-3]. They play a critical role in most cellular
processes and form the basis of biological mechanisms such
as DNA replication and transcription, enzyme-mediated
metabolism, signal transduction, and cell cycle control [4,5].
Protein-protein interactions give the information about the
biological context in which an individual protein plays its
cellular role. Knowing the interactions that an
uncharacterized protein has can provide a clue about its
biological function. To fully understand a biological
machinery of a cell or a biological pathway, it is also
essential to know how the involved proteins directly interact
with each other.

The advent of genome sequencing projects makes it
possible to analyze protein-protein interactions at the
genome scale. There are now more than half a million
nonredundant sequences deposited on Genebank [6]. The
complete genomes of more than 50 bacteria have been
sequenced. Several eukaryotes have been sequenced at the
genome scale as well, including fly (Drosophilla

*Address correspondence to this author at the Protein Informatics Group,
Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN
37830, USA; Tel: 865-574-8934; Fax: 865-547-8934; Email: xud@ornl.gov

melanogaster) [7], worm (Caenorhabditis elegans) [8], yeast
(Saccharomyces cerevisiae) [9] and Arabidopsis thaliana
[10]. The human genome sequence is almost completed and
the draft of mouse genome sequence has been finished
[11,12]. The whole genome sequence provides the
information about all the proteins in genome, i.e., the so-
called “proteome”. Such information allows us, for the first
time, to characterize all the protein-protein interactions in an
organism, which is referred to as the protein interaction map
or “interactome” [13,14]. Several high-throughput
technologies have been developed to characterize the
protein-protein interaction map. This is in contrast to the
traditional biology approach, where protein-protein
interaction is determined and studied one at a time. In the
protein interaction map, life reveals itself not as a mere
collection of proteins, but rather as a sophisticated network.
In other words, we can see not only the tree but also the
forest. The protein interaction map provides a unique
approach to address challenges in this post genome era,
especially for understanding the functions of many newly
discovered genes whose functions have not been
characterized. For example, only one-third of all 6200
predicted yeast genes were functionally characterized when
the complete sequence of yeast genome became available
[15]. At present, 3800 yeast genes have been characterized
by genetic or biochemical techniques and an addition of 600
genes have been identified based on homologs of known
functions in other organisms. This leaves about 1800 genes
with unknown functions [16]. Another challenge in the post
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genome era is to understand how the proteins coded in the
genome interact with each other to perform cellular
mechanism [17]. The protein interaction map can provide
essential information to address this challenge.

1.2. Physical Interaction and Genetic Interaction

The protein-protein interactions that we address in this
review are direct or indirect, stable or transient physical
interactions. The proteins involved are physically in contact
through the binary interaction or the formation of a protein
complex. This is in contrast with the genetic interactions,
where the change of one gene affects the expression of
another gene, or mutations of two genes at the same time can
produce a novel phenotype that is not displayed by either
mutation alone. Some of the genetic interaction screens are
based on either loss or gain of viability for a phenotype.
Several classical approaches were developed to identify
genetic interaction. The synthetic lethality screen in yeast is
a very powerful method for finding interactions between
gene products [18]. It identifies non-allelic and non-lethal
mutations that are lethal in combination with a non-lethal
mutation in a gene of interest. A systematic genetic
interaction analysis in yeast was developed to enable high-
throughput synthetic lethal analysis by using an ordered
array of about 4700 viable mutants [19]. It is possible that a
pair of proteins can have both genetic and physical
interactions.

1.3. Complexity of Protein Interaction

Protein-protein interactions within proteome (the
complete set of proteins in a given organism) are of a
dynamic nature. They change during different development
stages or in response to different environmental stimuli.
Furthermore, proteins interact with others and form a large
interaction network, in which they regulate and support each
other. Protein-protein interactions are inherently complex.
Some interactions are transient, which are temporal and
specific to a certain condition or a subset of cellular states,
while others are stable, which are maintained throughout
most cellular conditions. Moreover, post-translation
modifications may change the interaction partners and
patterns. Some proteins may have different subcellular
localizations and they can interact with other proteins
through translocalization into a specific cellular
compartment upon receiving signals.

1.3.1. Transient interaction vs. Stable Complex

Protein expressions and protein-protein interaction
patterns can change during the development or
morphogenesis or in response to many different
environmental conditions. There exist different interaction
types, for example, transient interactions and stable
complexes. Some interactions are transient, which are
induced in response to a specific cellular event and quickly
released after triggering a reaction. On the other hand, some
interacting proteins form stable complexes to perform
biological roles together and such complexes can last a long
time in cell. In particular, some proteins cannot even fold

into stable structures by themselves. They can only have
stable structures and perform their function in a complex.

1.3.2. Post-translational Modification Effect

Post-translational modification (PTM) is very important
for protein formation, regulation, and interaction. Many
proteins, especially in eukaryotes, are modified after their
synthesis by adding sugars (glycosylation), phosphate
(phosphorylation), sulfate and some other chemicals. Such
modifications often play an important role in modulating the
function carried out by the protein. For example, some
proteins can switch between active and inactive forms by
such modifications. In other cases, a newly synthesized
protein coming off the ribosome is often an inactive
precursor protein, then it is cleaved into smaller proteins,
which interact with other proteins and perform the biological
function. Therefore, the protein-protein interaction patterns
and partners are dynamic and highly dependent on PTMs.
When the biological condition is changed, a protein can
undergo PTMs and has a new modulating function with new
interacting partners.

1.3.3. Multi-body Effects

Sometimes, due to “multi-body” effects, protein-protein
interactions in a complex may not be decomposed into a set
of independent binary protein-protein interactions. For
example, two proteins may interact in a protein complex that
has multiple components, but they do not interact with each
other without the presence of the other components in the
complex, since the two proteins alone cannot form a stable
complex. More interestingly, whether two proteins interact
with each other may depend on the presence of a small
molecule, i.e., the so-called allosteric effects. For example,
for a signaling protein built from multiple modular domains,
a specific ligand can robustly activate or deactivate the
interactions between these domains. There are many cases
that have been studied thoroughly, including cAMP-
mediated allosteric control over cAMP receptor protein
(CRP) conformation and activity [20]. The allosteric effects
can generate cooperative repression or reciprocally
cooperative activation using multiple weak interactions,
displaying higher specificity and sensitivity for signaling
switches [21]. These multi-body effects contribute to the
dynamic nature of the protein-protein interaction map.

1.4. Types of Protein-protein Interaction

Protein-protein interactions are also complex from
structure perspective. The structural interface between two
interacting proteins can be of three different types: (a)
coiled-coil interaction, (b) rigid-body protein binding, and
(c) flexible binding.

a. Coiled-coil Interaction

Coiled-coil conformation contains twisted α-helices,
which are characterized by a repeating sequence of seven
amino acids, (abcdefg)n, in which the a- and d-position
residues are hydrophobic, while the e- and g-position
residues are usually polar or charged [22]. Coiled coils
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mediate protein-protein interactions or oligomerization
through intertwining two coiled coils together.

b. Rigid-body Binding

“Rigid-body binding” [23] means that each polypeptide
component in a protein complex has a stable structure by
itself and the structure of a component in a protein complex
closely resembles its structure in its free, native state. This
does not exclude some small conformational changes, in
particularly on the side chains of residues buried at the
binding interface.

c. Induced Binding

“Induced binding” refers to the case where the backbone
conformation is significantly changed upon protein binding
[24]. Sometimes, in solvent a polypeptide component in a
protein complex does not have a stable structure by itself.

1.5. Size of Interactome

The total number of interactions between all proteins in
an organism, or the size of interactome (Nint) can be
estimated based on current experimental data and the size of
proteome (i.e., the number of proteins in a genome) [25,26].
Nint depends on the number of predicted ORFs (N), the
average number of interactions per protein observed in
experiments (a), the percentage of questionable interactions
or false positives (b, typically 10-20%), and the number of
ORFs with unknown function (c). It is found that ORFs with
unknown function tend to have only half as many
interactions as known proteins. Therefore, estimated Nint is:

Nint = (a*N/2) – (a*b*N/2) – (a*c/4) = N*a*[(1 - b) - c/2] /2

For example, in yeast: a=10, N=6400, b=10%, c=2000.
Hence, Nint = [6400*(1-0.1)-2000/2]*10/2 = 23,800. Nint in
other genomes can be estimated similarly. The values of a
and b are expected to be similar in all genomes.

1.6. Importance of Bioinformatics in Analyzing Protein-
protein Interaction Data

High-throughput protein-protein interaction data are
generated from technology-driven experiments, which
provide rich information with the ever-increasing volume.
However, the information explosion does not mean
biological knowledge explosion. Understanding biological
meaning from the raw outputs of experimental techniques is
becoming the bottleneck in the application of high-
throughput protein-protein interaction data. These challenges
require bioinformatics in a number of aspects. First, with
more and more data accumulating, the databases are needed
to store, document, and describe the protein-protein
interactions and visualization tools are needed to display and
navigate the interaction network. It is indisputable that
publicly available databanks play a fundamental role in
disseminating the data to the biological community. Second,
inherent to the high-throughput nature of the experimental
techniques is heterogeneity in data quality with the false
positives and false negatives. For the efficient use of data,

the computational and statistical models are needed to deal
with data quality control such as reliability assessment and
validation. Finally, new computational tools are in demand
to infer new biological discoveries and validate those
hypotheses based on high-throughput protein-protein
interaction data. The computational approaches towards the
fruitful utilization of protein-protein interaction data will not
only provide tools for experimental biologists but also result
in important scientific insights into the cellular mechanisms.

To our knowledge, there has not been any review paper
to comprehensively address the computational analysis of
high-throughput protein-protein interaction data, although
some topics have been discussed in several review papers
[27,28]. In this paper, we will provide a systematic and
comprehensive survey for computational analyses of high-
throughput protein-protein interaction data, including their
databases, assessment, prediction, analyses, and biological
inferences.

2. EXPERIMENTAL METHODS FOR PROTEIN-
PROTEIN INTERACTION IDENTIFICATION

There are many experimental methods for the
identification of protein-protein interactions and
characterization of their biological importance [29].
Traditionally, protein-protein interactions have been studied
on the individual basis by low-throughput technologies
(immuno-precipitations [30], pull-down [31], etc). In the so-
called “proteomics” approaches, several techniques are
applied for studying protein-protein interactions in a
proteome scale [32,33]. These techniques are summarized in
Table 1. To effectively analyze high-throughput protein-
protein interaction data, it is important to know the source of
the data together with the strength and limitation of the
associated experimental technique.

Different experimental methods can generate different
types of protein-protein interactions. Some technologies such
as yeast two hybrid, protein chip, and phage display can
detect the binary interactions while the others can identify
protein complexes. In a protein interaction graph, a binary
interaction can be represented as an edge with the two
interacting proteins as vertices. A protein complex can be
regarded as a connected graph. However, the topology of the
graph, i.e., which pairs of the proteins within a complex
physically interact with each other is unknown. Therefore,
we cannot get the exact binary information from a protein
complex. A more complicated issue is that due to multi-body
effects as discussed in section 1.3.3, a true protein-protein
interaction within a complex may not be detectable in a
binary interaction.

One major issue with the high-throughput experimental
technologies is the generation of false negatives and false
positives. Proteins interact with one another with a wide-
range of affinities and timescales. Detection of such
interactions is often at the margin of observation, and non-
physiological interactions result in noise. The different
techniques have different noise level since each technique
has its own strengths and weaknesses in detecting certain
types of interaction. One should take into account the
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technique bias and limitation for computational analyses of
the data. For example, most current protein-protein
interaction experimental techniques are not effective to
characterize protein interactions involving integral
membrane proteins. To overcome this shortcoming, some
genetic screening systems have been developed for assaying
membrane protein interactions, such as the Ras recruitment
system [34], the G protein based screening system [35], the
split-ubiquitin system [36,37], etc.

The genome-wide protein-protein interaction studies
have been carried out in many organisms such as
bacteriophage T7 [38], Hepatitis C virus (HCV) [39],
Helicobacter pylori [40], Caenorhabditis elegans [41,42],
Saccharomyces cerevisiae [43-46] and mouse [47]. While
our review addresses general issues in the analyses of
protein-protein interaction data, the examples used will focus
on yeast S. cerevisiae, which is not only a good model
organism for eukaryotes but also contains the most protein-
protein interaction data generated so far.

2.1. Yeast Two-Hybrid System

Yeast two-hybrid system is the most widely used method
for detecting protein-protein interactions, since its original
description in 1989 [48]. Initially it was designed as a test to
identify an interaction between two known proteins, and then
it was rapidly developed as a screening assay to find partners
for a protein at the high-throughput mode [49]. The yeast
two hybrid technique carries out two fusions: a bait protein
fused to the DNA-binding domain of a transcription factor
and potential interacting partners fused to a transcriptional
activation domain. An interaction between the bait and an
interacting partner (prey) results in the formation of a
functional transcription factor that induces the expression of
a specific reporter gene, thereby, allowing such interactions
to be detected. It should be noted that this approach forces
the protein-protein interaction between the bait and prey to
occur in nuclei, and some errors of measuring protein
interactions may result from this restriction. In the recent
years, several variations of the two-hybrid system have been
developed [50], and the methods also extend to organisms
others than yeast, including bacteria and viruses [51].

Many protein-protein interaction data have been
generated using two-hybrid system. In a proteome-wide

study on yeast by Uetz et al. two designed experiments were
used, i.e., one with a low-throughput protein array and one
with a high-throughput array. In the low-throughput array,
192 bait proteins were tested against a completed set of 6000
prey proteins, a total of 281 binary interactions were
identified. The high-throughput approach used the complete
set of 6000 yeast proteins as baits against the completed set
of 6000 prey proteins. This second approach identified 692
interacting protein pairs involving 817 unique proteins as
either bait or prey proteins. An independent, large-scale
project by Ito et al . was also conducted for the whole yeast
proteome. This study detected 3278 proteins involved in
4589 putative protein-protein interactions.

2.2. Mass Spectrometry

A typical approach to identify proteins in a protein
complex is done by the separation of the various proteins of
an extract by gel electrohporesis followed by mass
spectrometric analysis of the protein gel spot. The precise
identification of polypeptides can be done by searching the
molecular weights against a protein database. High
throughput is achieved by MALDI(automated matrix-
assisted laser desorption/ionization), providing a list of
masses of the fragmented peptides. Matching this list against
a list of pre-calculated peptide masses from an appropriate
protein sequence database can characterize the isolated
protein.

Recently, Gavin et al. and Ho et al. took a new approach
to screen protein-protein interaction in the proteome-wide
scale. This method is particularly effective for identifying
protein complexes that contain three or more components.
First, the authors attached amino acid tags to hundreds of
proteins, thus, creating bait proteins. Then they encoded
these proteins into yeast cells, allowing the modified proteins
to be expressed in the cells and to form physiological
complexes with other proteins. Then, by using the tag, each
bait protein was pulled out, and usually it fished out the
entire complex. The proteins extracted with the tagged bait
were identified using MALDI method. This approach for
characterization of protein complexes in a large scale was
named TAP (tandem affinity purification). Notably using the
tags may perturb some protein interactions and result in
errors.

Table 1. Current Major Technologies in Studying Protein-protein Interaction

Method Experimental condition Binary interaction vs.
complex

High-throughput Noise level

Two-hybrid system In vivo Binary Yes High

Immuno-precipitations In vitro Complex No Low

Pull-down In vivo Complex No Low

Mass spectrometry In vitro Complex Yes High

Protein chip In vitro Binary Yes High

Phage display In vitro Binary Yes High
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By using TAP, Gavin et al. have identified 1440 distinct
proteins within 232 multi-protein complexes in yeast after
processing 1739 genes as baits. 91% of these complexes
contain at least one protein of unknown function. Ho et al.
reported another application example for yeast using the
same general approach, which they termed HMS-PCI (high-
throughput mass spectrometric protein complex
identification) methods. Ho et al. constructed an initial set of
725 bait proteins, from which they identified 3617 associated
proteins, covering about 25% of the yeast proteome.

2.3. Protein Chip

Another approach to generate the protein-protein
interaction map is protein chip technology [52]. In this
approach, proteins are expressed, purified and screened in a
high-throughput scale so that a large number of proteins can
be attached to a planar substrate (chip) as discrete spots at
known locations, where the proteins keep their folded
conformation and their ability to interact specifically with
other proteins. A solution containing labeled protein(s) to be
tested is then incubated with the chip, and then the chip is
washed. Specific interactions between proteins on the chip
and protein(s) from the solution are indicated by the position
of the label. In addition to the rapid simultaneous
measurement of large number of samples, protein chip
technology has substantial advantages over conventional
methods, especially the high signal-to-noise ratio, small
amount of sample needed, and high sensitivity. On the other
hand, attachment of proteins to chip can disrupt some protein
interactions as well.

Recently Zhu et al. [53] identified many new calmodulin
and phospholipid interacting proteins by application of this
technique. They first fused 4800 yeast ORFs to glutathione-
S-transferase (GST) and expressed the fused proteins in
yeast. Subsequently, they printed the purified proteins onto
glass slides, thus generating a matrix that was then screened
for finding the interacting proteins and phospholipids. Zhu et
al. also developed protein chips to conduct high-throughput
biochemical assays of 119 protein kinases for 17 different
substrates.

2.4.  Phage Display

Phage display is another method for studying protein-
protein interactions [54]. It is based on the ability of
bacteriophage to express engineered proteins on their surface
coat. Diverse libraries such as peptides, antibodies and
protein domains corresponding to gene fragments can be
displayed on the coat through an artificially inserted DNA
sequence. By immobilizing a protein on an affinity support,
phages with display proteins binding to the immobilized
protein can be selected from the library. These phages
selected on the basis of their interaction with the
immobilized protein can be enriched, and the protein on the
phage that interacts with the immobilized protein can be
identified. Bartel et al. screened a library of random
bacteriophage T7 protein fragments against random libraries
of T7 activation domains. The authors found 25 interactions
among the 55 phage proteins. Since the displayed protein is

expressed artificially rather than in its native cellular
environment, inevitably some error can occur when using
this method to detect protein-protein interaction.

3. PROTEIN-PROTEIN INTERACTION DATABASES
AND VISUALIZATION

Data management is critical for using high-throughput
biological data, including protein-protein interaction data.
The massive amount of protein-protein interaction data that
have been generated are impossible to handle systematically
without a computer database, let alone many more such data
being obtained daily. To collect, retrieve, and describe
protein-protein interactions, several databases have been
established. Protein-protein interaction information retrieved
from the literature can also be added to the databases
[55,56]. These databases can be accessed through the
Internet and they typically have user-friendly interfaces.
Most of them also provide good search capacity. One can
search the interactions that a particular protein involves by
querying its ORF name or gene name. The functional
annotation, when available, is usually given for a protein
participating in an interaction. The experimental source and
reference are also provided for a particular interaction in
some databases. As we will discuss in section 4, such
information can help evaluate errors and validate protein-
protein interactions. In addition, protein-protein interaction
data in a centralized database provide a starting point (input)
for computer programs that analyze protein-protein
interaction at the proteome scale.

Most protein-protein interaction databases also provide
visualization tools, where a protein interaction network is
represented as a graph with proteins as vertices and
interactions as edges. In such a graph, all the interacting
partners of a specific protein can be displayed and the paths
between two given proteins can be easily identified. With
more and more protein-protein interaction data collected into
databases, the text listing of interactions are hardly sufficient
to evaluate and compare such huge amount of information.
The visualization tools can help researchers validate
interactions from different experimental sources, make sense
of interaction paths, and construct hypotheses for biological
pathways.

To fully utilize protein interaction network, integrated tools
implemented in the database enable the combinational
analysis of various types of biological data on proteins and
interactions, which will help researchers in biological
discoveries. For example, PIMRider provides an integrated
platform for the exploration of protein interaction maps and
other genomic/proteomic information [57].

In this section, we will review nine widely used protein-
protein interaction databases, as summarized in Table 2. We
will also provide an example of visualization for protein-
protein interactions.

DIP

The DIP [62] provides an integrated tool for browsing
and extracting information about protein-protein interactions,
which are either generated from various high-throughput
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experiments or collected from literature search [63]. The vast
majority of data are from yeast, Helicobacter pylori and
human. The DIP allows the visual representation and
navigation of protein-protein interaction networks. The
reproducibility of a given interaction can be assessed
visually by the thickness of the line between two proteins
[64]. A related tool LiveDIP also integrates protein-protein
interactions network with large-scale gene expression data
[65].

BIND

The BIND database stores various interactions between
molecular compounds including protein-protein, protein-
RNA, protein-DNA and protein-ligand interactions.
Description of an interaction includes subcellular
localizations of the proteins involved in an interaction and
experimental conditions used to observe the interaction. This
database also contains the information of molecular
complexes and pathways. BIND can be visually navigated
using a Java applet. Currently 11,171 various interactions
and 851 protein complexes are represented. BIND also
provides a framework for users to build their own protein-
protein interaction databases.

MIPS

The MIPS Comprehensive Yeast Genome Database
(CYGD) [66] provides the protein-proteins interactions
together with sequence and function information for all the

genes in the budding yeast Saccharomyces cerevisiae. All
the protein-protein interaction data are available to download
in a text file. In addition, the database contains other
compiled yeast data for download, such as functional
classification category, subcellular localization category, EC
number category, etc.

MINT

The MINT database stores data on functional interactions
between proteins, which are extracted from the scientific
literature. MINT also includes the information about
enzymatic modifications of one of the partners. The
interaction data can be extracted and visualized graphically.
Presently MINT contains 4568 interactions, 782 of which are
indirect or genetic interactions.

BRITE

BRITE [67] is a database of binary protein-protein
interactions retrieved from literature, high-throughput data
based on yeast two-hybrid system of S. cerevisiae, and yeast
two-hybrid interactions of H. pylori proteins.

Path Calling

The Pathcalling database contains yeast protein-protein
interaction data from high-throughput yeast two-hybrid
experiment. Data are available at the Curagen website

Table 2. Online Protein-protein Interaction Databases

Database size

Database name Acronym URL
Binary Compl.

Visu. Acad. Com

Database of Interacting Proteins DIP [58] http://dip.doe-mbi.ucla.edu 18,000 Yes Yes No

Biomolecular Interaction network Database BIND[59] http://binddb.org 6171 851 Yes Yes Yes

Munich Information Center for Protein
Sequences

MIPS [60] http://mips.gsf.de/proj/yeast/
CYGD/db/

11,200 1050 No Yes Yes

Molecular Interaction Database MINT [61] http://cbm.bio.uniroma2.it/ mint/ 3786 782 Yes Yes Yes

Biomolecular Relations in Information
Transmission and Expression

BRITE http://www.genome.ad.jp/ brite/ 5506 No Yes Yes

Pathcalling Yeast Interaction database PathCalling http://genome.c.kanazawa-
u.ac.jp/Y2H/

957 Yes Yes No

A Protein-Protein Interaction database Interact http://www.bioinf.man.ac.uk/
resources/interactpr.shtml

1000 200 Yes Yes Yes

Hybrigenics PIMRider http://pim.hybrigenics.com/ 1400 Yes Yes No

The General Repository for Interaction Datasets. GRID http://biodata.mshri.on.ca/grid/ 14,318 Yes Yes Yes

The table shows, in different columns, the name of the protein-protein interaction database, its acronym, its Web address, the size of the database as of August 2002 (for number of
binary protein-protein interactions and number of protein complexes), and whether the database has visualization tool (Visu.), free academic use (Acad.), and free commercial use
(Com.).
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(http://www.curagen.com) for free academic use.
Visualization tools are available for the protein interaction
network. Fig. 1 shows an example using the graph to map
interactions around the protein Nup100p. In this graph, each
node represents one protein and each edge marks an
interaction. All the immediate neighbors and the next
immediate neighbors in the protein interaction map for
Nup100p are displayed. By clicking the node, one can
navigate its neighbors and the detail description of gene,
including protein sequence and function.

Interact

Interact is a database for protein-protein interactions
constructed with object oriented technology that provides a
means to fully accommodate and query the data associated
with protein interactions. Unified Modelling Language
(UML) 6 was used to model the database. In this database
3D visualization of protein cluster is available.

PIMRider

PIMRider contains protein-protein interaction data for
Helicobacter pylori, which has been studied using genome-
wide two-hybrid assay [68]. 1273 protein-protein
interactions are viewed as a graph and assigned with PIM
Biological Score (PBS® score) that quantifies the reliability
of each interaction and allows the filtering of interactions
based on their reliability. The PBS® score takes into account
the characteristics of the libraries screened and the target

organisms as well as the results of the screens. The PBS®
score ranges from 0 (the best) to 1 (the worst). In PIMRider,
tools are also developed to identify the specific protein
domain involved in a given interaction and to query
pathways between two proteins.

GRID

The GRID is a database of genetic and physical
interactions. It includes 14,138 unique protein-protein
interactions at present, including the data from MIPS and
BIND. Osprey Network Visualization System (a graphical
visualization tool at http://biodata.mshri.on.ca/osprey/
index.html) is integrated into the database to let users
visualize searched results. Users can also upload their own
datasets and visualize the interaction maps.

4. ASSESSMENT OF PROTEIN-PROTEIN INTER-
ACTION DATA

A general strategy for high-throughput experimental
technologies in detecting protein-protein interactions is to be
selective enough to minimize the report of false interactions
yet sensitive enough to maximize the detection of all
biologically true interactions. However, currently this goal is
far from being achieved. In fact, one major issue with the
high-throughput protein-protein interaction data is the high
error rate, compared with the data generated from traditional
low-throughput methods. To use high-throughput protein-
protein interaction data for biological inference effectively, it

Fig. (1). The protein interaction map around Nup100p from PathCalling. A gene is represented as a vertex and a protein-protein interaction is
indicated as an edge.
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is essential to evaluate the coverage and reliability of the
data. In this section, we will discuss the origin of errors and
provide examples to show the characteristics of the errors.
We will also address how to assess the reliability of protein-
protein interaction data using computational methods.

4.1. False Negatives and False Positives

The difference between actual biological protein-protein
interactions and measured protein-protein interactions may
arise from three factors. (1) The dynamic nature of protein
interaction map. Protein expressions and interaction
patterns are changing under different biological conditions.
Proteins interact with one another with a wide-range of
affinities and time scales. Consequently, detection of such
interactions is often at the margin of observation and each
measurement of protein-protein interactions can only capture
a snapshot of the dynamic protein interaction map under a
specific condition. (2) The limitation of the technologies.
As discussed in Section 2, any high-throughput protein-
protein interaction technology creates a substantial
disruption of normal cellular function, which can make the
protein interaction pattern deviate from the one under the
native biological condition. For example, mass spectrometry
might fail to uncover transient or weak interactions while
yeast two-hybrid assay might not detect interactions that are
dependent on PTMs or interactions having the “multi-body”
effects. (3) The errors during the measurement. In this
case, the technology is capable of identifying an interaction
correctly. But due to operation problems during the
experiment, the interaction is not identified correctly. These
three factors make the protein-protein interaction maps
different with the use of different technologies and in
different labs using the same technology. Here we focus on
the second and the third factors, i.e., errors caused by the
technology drawbacks and measurements, including both
false negatives and false positives.

False negatives are the biological interactions that are not
detected by the experiments. For example, in yeast two-
hybrid assay, which relies on the transcriptional activation of
the reporter gene, the incorrect folding, inappropriate
subcelluar localization, and absence of certain necessary
post-translational modifications can cause the false
negatives. For protein complex mass spectrometry
identification methods, it is also likely to generate the false
negatives. For example, it may not detect some transient
interactions and it may miss some complexes that are not
presented under the given experimental conditions.
Moreover, the loosely associated components in a complex
may be washed off during the purification process.

False positives are generated by experiments that are not
true biological interactions. In two-hybrid assay, false
positives arise when the expression of the reporter gene
occurs under conditions that are not dependent on bait/prey
protein-protein interactions. For example, bait proteins may
activate the transcriptional of reported genes above a
threshold level by themselves in the actual physiological
conditions. Two-hybrid assay can also produce some non-
specific interactions that are not biologically relevant,
especially between proteins normally existing in different
subcellular location or different tissues. Large-scale protein

complex identification approaches can also generate false
positives. When the bait protein is used to fish out the entire
complex components, some other unrelated proteins (e.g.,
proteins in different compartments of a cell) may attach with
the complex and be pulled out together. Even within a true
complex, it is challenging to distinguish the true binary
interactions between the component proteins. If we assign
binary interactions between all proteins in a complex, it can
generate false positives.

4.2. Overlap and Complementation Analysis of Protein-
protein Interaction Data

Until now, there are 5125 publicly available binary
interactions identified from yeast two-hybrid experiments in
high-throughput assays or low-throughput assays. In
addition, 49,094 binary interactions can be assigned for the
protein complexes identified by TAP (tandem affinity
purification) and HMS-PCI (high-throughput mass
spectrometric protein complex identification) methods,
assuming any two components in a protein complex interact
with each other. However, our analysis shows that strikingly
few interactions (55 interactions) are commonly represented
in yeast two-hybrid, HAP and HMS-PCI. There are only
1920 interactions supported by at least two out of the three
technologies.

Unexpectedly, not only the data produced by different
technologies do not overlap significantly, the data produced
at different labs using the same technology differ
substantially. For yeast two-hybrid data, only 141
interactions were common in both data sets from Uetz et al.
and Ito et al. Interestingly, neither of those two studies
identified more than 15% of previous published interactions
[69], suggesting that coverage of protein interaction map is
very sparse and the map in a simple organism like yeast may
be more complex than expected. The approaches taken by
Gavin et al. and Ho. et al. are clearly powerful, but they also
have limitations. Both groups found a significant number of
false-positive interactions with failure to identify many
known associations. Gavin et al. estimated that the
probability of detecting the same protein in two different
purifications from the same entry point is about 70% by
purifying 13 large complexes at least twice. We also studied
the overlap and coverage using the datasets from Uetz et al.
(yeast two-hybrid) and Ho et al.  (mass spectrometric protein
complex identification) and compared the binary interactions
involved (see Table 3). We found that the common
interactions detected by both yeast two-hybrid assay and
mass spectrometric protein complex identification are only
4.4%.

In fact, not only the coverage of different techniques is
different, the protein-protein interaction data generated by
each technique have unique characteristics. Mering et al.
[70] comparatively assessed the high-throughput protein-
protein data generated from different sources in yeast such as
yeast two-hybrid assay, mass spectrometry of purified
complexes, correlated mRNA expression, genetic
interactions and in silico predictions through genome
analysis and found that data generated from different
methods have different distributions with respect to
functional categories of interacting proteins, thus indicating
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that those methods have specific strengths and weaknesses.
The lack of overlap between datasets demonstrates that the
current data is far from saturating, which suggests that high-
throughput technologies might provide complementarities to
each other. Therefore, the combination of protein-protein
interaction data from different resources will substantially
expand our knowledge of protein-protein interaction
network.

The described systematic protein-protein interaction
assay methods clearly show that single screens rarely capture
all proteins capable of interacting with the given bait. In the
yeast two-hybrid array, even multiple screens with different
two-hybrid variants usually produce only partial overlaps.
This again shows that several different methods are needed
to complement each other in order to identify as many true
interactions as possible. To illustrate the complementarily
between the two-hybrid and mass spectrometry methods, we
considers two examples. The first example is the interactions
with Rrn10p (YBL025W), RNA polymerase Ι-specific
transcription initiation factor. In Ho et al.’s dataset there was
no detected protein complex when using Rrn10p as bait
protein. Yeast two-hybrid assay detected the interaction
between Rrn10p and Rrn9p, which was also validated by
experiments. RRN10 mRNA abundance is 0.7 copy per cell
based on the genome-wide analysis of mRNA abundance in
yeast while the average number is 2.8 copies per cell [71].

Thus, it is likely that the protein complex may not be formed
due to the low abundance of the bait protein. It is also
possible that this pair of proteins has only a transient
interaction rather than forming a stable complex. On the
other hand, yeast two hybrid is independent of the protein
concentration level and capable of detecting the transient and
weak interactions.

A converse example is Cmd1p, a small ubiquitous Ca2+-
binding protein regulating a wide variety of proteins and
processes in all eukaryotes [72]. For this protein, yeast two
hybrid cannot detect the interactions while mass
spectrometry using different baits can discover several
complementary protein complexes (see Fig. 2). In response
to a Ca2+ signal, Cmd1p binds Ca2+ and consequently
undergoes a conformational change that allows it to bind and
activate a host of target proteins. Probably due to the absence
of native physiological condition, yeast two-hybrid assay
cannot detect such a protein-protein interaction.

4.3. Reliability

Currently there is no systematic statistical method
developed to assess the confidence level of an interaction
accurately. However, several heuristic approaches have been
used for this purpose. These methods can provide the side
evidence for an interaction, and as a result increase the

Table 3. The Coverage Comparison between Protein-protein Interaction Data Generated from Yeast Two-hybrid Array (Uetz et
al.) and Protein Complex Mass Spectrometry Identification Method (Ho et al.).  The known Interactions come from 2301
Annotated Binary Protein-protein Interactions Maintained at MIPS[60] which we used as Reference Dataset

Experimental method Baits having interaction Identified interactions Known interactions

Yeast two-hybrid assay 71 224 10 (4.5%)

Protein complexes mass spectrometry identification 121 1182 53 (4.5%)

Fig. (2). Three Cmd1p related protein complexes identified by Mass spectrometry. The annotated Cmd1p interacting partners, shown in dark
color, come from known experimental results reviewed in the paper from Cyert .
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confidence level of interactions measured from high-
throughput techniques.

Reliability of a reported interaction is increased by the
observations of the same interaction using different methods.
For example, if an interaction is detected by two distinct
experiments, the joint observations enhance the confidence
level for this particular interaction. Large-scale two-hybrid
screens can identify some classes of systematic false
positives using multiple, independent screen under
standardized conditions. For example, some false positives
related to particular proteins tend to appear repeatedly in
screens with unrelated baits. In a yeast study if prey proteins
are selected with more than three unrelated bait proteins
from a pool of 100 bait proteins, they will be discarded. The
array screens by Uetz et al.  used reproducibility to estimate
the reliability by testing each individual two-hybrid pair
twice in a highly standardized and parallel fashion. False
positives are often generated by mutations in the baits, prey
plasmids, or reporter genes. When screens are done in
duplicate, such mutations are unlikely to occur
simultaneously.

Literature is a valuable resource to validate the protein-
protein interaction generated by high-throughput techniques.
The idea is that if two protein names appear in the same
article, they have a chance to interact with each other. Such
information about interacting proteins, albeit unreliable, can
validate protein-protein interactions or at least provide clues
for judging an interaction. Based on the literature mining
method, a recent work created gene-to-gene co-citation
network for 13,712 named human genes from analyzing over
10 million MEDLINE records [73].

Computational approaches can also be used to assess the
reliability of the observations of high-throughput protein-
protein interactions. To verify protein-protein interaction
data, Deane et al. [74] developed two methods, i.e.,
expression profile reliability index and paralogous
verification method (PVM). By comparing gene expression
profiles of the proteins involved in an interaction, expression
profile reliability index estimates the likelihood of the
interaction to be biologically meaningful. The idea is that
proteins with higher correlated expression pattern are more
likely to interact with each other. Paralogous verification
method is based on the observation that if two proteins are
paralogs, the proteins that they interact with tend to be
paralogs as well. PVM evaluated 8000 pairwise protein
interactions in yeast and 3003 interactions were confidently
identified. Some other computational methods that we will
address in the following sections can also help assess the
confidence level of a protein interaction, including using the
relationship between protein-protein interaction data and
other types of data (Section 5), as well as in silico prediction
(Section 7) to help validate protein interactions.

5. RELATIONSHIP BETWEEN PROTEIN-PROTEIN
INTERACTION DATA AND OTHER BIOLOGICAL
DATA

Inherent in the growing collections of protein function
and subcellular localization data, protein structure, gene

expression data and protein-protein interaction data is the
internal relationships between different aspects of the same
set of genes/functions. These relationships provide a basis
for cross-validating the data and offering more information
than what a single source of data can achieve. For example,
the protein functional role and subcellular localization
information can be used to validate protein-protein
interaction data. Given relatively low reliability of these
computational relationships, one can use them to increase the
confidence of a protein-protein interaction, but it is hard to
reject a protein-protein interaction just because its pattern
deviates from the general relationships. The correlation study
between protein-protein interaction and gene expression can
be used to formulate more meaningful biological hypotheses
by improving hypotheses generated from either approach
individually. Protein structure provides rich information
about how proteins interact with each other at the atomic
details. Therefore, the integration analysis of biological data
from different sources offers a deepened knowledge
exploration for understanding cellular mechanisms. In this
section, we will discuss the relationship between protein-
protein interaction data and other types of data, including
subcellular location, function category, gene expression
profiles, and protein structures.

5.1. Subcellular Localization

The subcellular distribution of proteins within a proteome
is useful and important to a global understanding of the
molecular mechanisms of a cell. Protein localization can be
seen as an indicator of its function. Localization data can be
used as a means of evaluating protein information inferred
from other resources. Furthermore, the subcellular
localization of a protein often reveals its activity mechanism.
In a physical protein-protein interaction, the two proteins
involved should be localized at the same subcellular
compartment. If an interaction between two proteins that are
known to have the same subcellular localization, the
confidence level for the interaction increases. Therefore, the
study of relationship between protein-protein interactions
and the partners’ subcellular localizations can provide an
evaluation method for validating protein-protein interaction
data generated from high-throughput experiments. On the
other hand, a protein may have several subcellular
localizations. For example, a translocalization of NK-κB can
move the protein from cytoplasm to nuclei [75]. In this case,
we can find pairs of interacting proteins have different
subcellular localizations, when the alternative subcellular
localizations of the proteins are not recorded in the database.

We assembled 2301 annotated binary protein-protein
interactions maintained at MIPS, a manually curated
database and took them as the trusted true interactions. We
also derived protein subcellular localization information
from MIPS. In yeast 2358 ORFs have been known their
subcellular localizations, among which 169 ORFs can be
localized in more than one subcellular compartments. For all
2301 interactions, the localizations of both partners in each
interaction are known. We found that there are 2124
interactions (92 %) whose partners have the same subcellular
localizations. The data set is biased towards particular
cellular localizations of interacting proteins (Fig 3), for
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example, the number of interactions involving plasma
membrane proteins is very small, showing the technological
limitation in detecting such interactions.

Table 4 shows a comparison between the observed
number of protein-protein interaction pairs for a given
combination of subcellular localizations and the expected
number calculated from random combination of proteins
involved in the interactions. Clearly the observed number of
protein-protein interactions belonging to the same
subcellular localization is much greater than expected.
Conversely the observed number of protein-protein
interactions belonging to different subcellular localizations is
much less than expected, except for the interactions between
nuclear proteins and proteins in cell organisms such as ER,
golgi, transport vesicles, peroxisome, endosome, vacuole,
microsomes, lipid particles. This may be because proteins
can move between the two compartments (protein
translocalization), and some nuclear proteins require
modification and sorting in those cell organisms.

5.2. Function Catalogue

A protein interaction is often associated with a particular
biological pathway. Hence, it is not surprising to see a pair

of interacting proteins to have the same cellular role. To
further assess the relationship between the cellular roles of a
pair of interacting proteins, we used 3936 yeast ORFs’
cellular functions that have been hierarchically classified at
MIPS. We clustered those cellular functions into 11 broad
functional categories using the same classification method
proposed by Mering et al., as shown in Table 5. For 2301
well-annotated protein-protein interactions at MIPS, each
ORF can be assigned into a known function category and
both proteins participating in an interaction belong to the
same function category for all the cases. It is likely that any
interaction involving two proteins of different cellular roles
was removed from this data set since the interaction is
considered unreliable. Fig. 4 showed the distribution of
protein-protein interactions for different function categories,
indicating that the distribution is biased. However, the biased
distribution may be caused by the small size of dataset,
which is far from saturating currently.

5.3. Gene Expression Data

Analysis of gene expression data is currently one of the
most exciting research fields in genomics. Computationally
clustering individual gene expression measurements
provides a new way to exploit and infer the information in

Fig. (3). The distribution of protein-protein interactions whose partners have the same subcellular localizations. The abbreviations of
localizations are: N--nucleus; P--cytoplasm; K--cytoskeleton; M--plasma membrane; T--mitochondria, O--cell organelles (ER, Golgi,
transport vesicles, peroxisome, endosome, vacuole, microsomes, and lipid particles).



170    Current Protein and Peptide Science, 2003, Vol. 4, No. 3 Chen and Xu

Table 4. The Observed Number and Expected Number of the Protein-protein Pairs belonging to the Same or Different Subcellular
Localizations. “Ob.” Means the observed number and “Pr.” Means the Expected Number Calculated from the
Probability Distribution, based on the Assumption that Two Proteins involving in an Interaction have Independent
Probabilities of Subcellular Localization Distribution. The Expected Number of Interactions between Proteins in X
Subcellular Localization and Proteins in Y Subcellular Localization Equals the Total Number of Interactions Multiplied
by the Probability of X and the Probability of Y and 2, where the Probability of X and the Probability of Y are Calculated
from 2358 yeast ORFs with known Subcellular Localizations. The Notations for Subcellular Localization are: N--nucleus;
P--cytoplasm; K--cytoskeleton; M--plasma membrane; T--mitochondria, and O--cell organelles (ER, golgi, transport
vesicles, peroxisome, endosome, vacuole, microsomes, lipid particles)

K M N O P TSub.
Loc. Ob. Pr. Ob. Pr. Ob. Pr. Ob. Pr. Ob. Pr. Ob. Pr.

K 79 6 0 1 8 60 0 26 9 41 0 22

M 0 1 14 0 2 14 0 6 10 9 0 5

N 8 60 2 14 898 640 227 275 14 436 0 232

O 0 26 0 6 227 275 406 118 6 187 0 99

P 9 41 10 9 1 4 436 6 187 622 297 1 158

T 0 22 0 5 0 232 0 99 1 158 347 84

order to characterize biological processes. For example,
clustering analysis of gene expression results in hypotheses
of function based on the assumption that groups of genes that
are co-expressed are likely to mediate related function [76].
So, what is the general relationship between protein-protein
interaction and gene expression?

Grigoriev’s study showed that protein pairs encoded by
co-expressed genes interact with each other more frequently
than random protein pairs based on an analysis of
bacteriophage T7 and yeast [77]. In the paper of Ge et al.
[78], the authors gave a global evidence that genes with
similar expression profiles are more likely to encode
interacting proteins by using the transcriptome-interactome

correlation mapping strategy to compare the interactions
between proteins encoded by genes that belongs to the same
expression clusters (intra-clusters) with those between
proteins encoded by genes that belong to different clusters
(inter-clusters). From 1709 protein–protein interactions in
yeast, 347 interacting pairs could be assigned to one of the
30 clusters of gene expression data. The average intra-cluster
protein interaction density is 5.1 times that of the inter-
cluster interaction. Jansen et al . investigated the relationship
between known protein complexes and mMRA expression
level of genes that encode these proteins. They found that
subunits of the same protein complex are significantly co-
expressed in the absolute mRNA level [79].

It seems that interacting proteins should be
simultaneously represented in cell. However, the relationship
between protein-protein interaction and gene expression can
be complicated. The gene expression level does not
necessarily represent its true protein abundance.
Furthermore, protein-protein interactions are in a complex
and dynamic manner. Moreover, due to the high noisy level
of high-throughput data, the information derived from these
data might not be exact enough. Nevertheless, the cross-
correlation study between gene expression and protein-
protein interaction reveals the general trend inside the data.
Therefore, it is important and useful to formulate more
meaningful hypotheses by integrating the gene expression
data and protein-protein interaction data. For example, gene
expression profiles were used to verify protein-protein
interactions by quantifying the reliability of each interaction.

6. TOPOLOGY OF PROTEIN INTERACTION
NETWORK

A protein-protein interaction network (map) can be
viewed as a graph, where proteins are nodes and interactions
between proteins are edges. Analyses of the global
architecture of this large-scale interaction networks can give

Table 5. Yeast Protein Function Categories Retrieved from
MIPS

Category Description

A Transport and sensing

B Transcription control

C Cellular fate/organization

D Genome maintenance

E Energy metabolism

F Protein fate (folding, modification, destination)

G Amino acid metabolism

M All the other metabolism categories

O Cellular transport and transport control

P Protein synthesis

T Transcription
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us insights in the evolution of general cellular mechanisms.
Jeong et al. [80] published such an analysis of the yeast
interaction map, which showed that the map forms a highly
heterogeneous scale-free network, not an inherently uniform
exponential topology [81].

In a scale-free network, the probability for a given
protein to interact with k partners follows an inverse power
law as a function of k. In this case, majority of proteins in the
network have a small number of interactions while a few
proteins interact with many other proteins. Scale-free
networks can be generated by randomly adding edges of a
node to the existing nodes in a graph with a positive bias for
already well-connected nodes in the network. This is
consistent with current hypothesis of evolution. Such a type
of network architecture is also common to other complex
systems such as metabolic network [82], and it is error-
tolerant and robust to random mutations. The authors also
established a positive correlation between the connectivity
and lethality; in particular, highly connected proteins are
three times more likely to be essential (i.e., lethal upon
deletion). This result is not surprising, since a mutation of a
highly connected protein tends to affect more significantly
the protein-protein interaction network, and hence, it is more
likely to be lethal.

While the positive correlation between the connectivity
and lethality makes biological sense, it is worthwhile further
checking the argument because of the error associated with

high-throughput protein-protein interaction data. The study
of Jeong et al.  was based on a small data set that had 2240
interactions involving 1870 proteins, and the data were
obtained mostly from yeast two-hybrid assay, which is
known to have high false negatives and false positives. The
shape of the actual interaction network might be quite
different due to false negatives and false positives. For
example, proteins that exhibit few interactions in this
network could actually represent highly connected nodes due
to false negatives. Conversely, false positives of two-hybrid
system may generate many artificially interactions for a
particular protein.

To further explore the relationship between connectivity
and lethality of a protein, we studied the difference between
lethal proteins and viable proteins in their connectivity
distributions by using correspondence analysis [83]. We used
a core dataset from DIP, which are mostly obtained from
small-scale experiments with high confidence. The dataset
contains 3003 interactions involving 1020 proteins. We also
used the annotation about viability in MIPS, where 878
genes were assigned essential roles for viability of cells and
3158 genes were found to be non-essential based on the
literature reports (http://mips.gsf.de/proj/yeast/CYGD/db/
index.html). Table 6 shows the distribution of essential
ORFs and non-essential ORFs having different numbers of
protein interaction partners in yeast. Fig. 5 plots the
deviation of the observed connectivity frequency from the
expected frequency. The plot shows that essential ORFs

Fig. (4). The distribution of protein-protein interactions vs. function category.
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Table 6. The Distribution of Essential ORFs and Non-essential ORFs in Yeast According to the Number of Interactions in the DIP
Core Protein-protein Interaction Dataset

Number of interactions
ORF classification

>20 10-20 5-10 1-5 0

Essential ORFs 11 31 95 182 558

Non-essential ORFs 8 43 129 412 2564

Fig. (5). Yeast essential ORFs and non-essential ORFs connectivity distribution.  The Y-axis represents the frequency of profile deviated
from the average of row frequency. It showed that yeast essential ORFs connectivity distribution profile deviates greatly from the expected
value. Correspondence analysis was used to  study the  preference of  essential  ORFs  and  non-essential  ORFs as a  function of  connectivity

number. For a m×n contingency table with the cell frequencies Nij, i=1, 2, …, m, j=1, 2, …, n,   the i-th  row profile is determined by           .

have more interactions in protein-protein interaction network
than expected, and vice versa for non-essential ORFs. Our
result further supports the early studies.

The large-scale protein-protein interaction data allows us
to study the general relationship between protein-protein
interaction and evolution, especially the effect of interaction
network topology on protein evolution. Fraser et al. [84]
studied the correlation between the number of interactions of
a protein and its evolutionary rate in yeast. The authors
compiled a list of 3541 interactions between 2445 different
proteins. The well-conserved orthologs between
Saccharomyces cerevisiae and Caenorhaditis elegans were
selected. Among 164 yeast proteins having well-conserved
orthologs in the nematode, there is a negative correlation
between the number of interaction of a protein and its
evolutionary rate. This correlation does not depend on the

evolutionary fitness of the protein itself. The authors
suggested that a protein with more interactors tends to
evolve slowly because a greater proportion of the protein is
directly involved in its function given that different
interactions to the same protein may depend on different
sites of the protein. Using high-throughput yeast two-hybrid
data, Wanger’s study showed that protein-protein interaction
network resembles a random graph, where it consists of
many small subsets and one large connected subset [85]. The
relationship between gene duplication rate and interaction
showed that after gene duplication, the likelihood of loosing
an interaction exceeds 2.2×10-3 /Myr, i.e., for every 300
million years, as many as half of all interactions may be
replaced by new interactions.

Recently, to address the feature of molecular networks
operating in living cell, Maslov and Sneppen [86] analyzed

Nii

ΣNii
n

i= 1
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the topological properties of protein-protein interaction and
gene regulatory networks in yeast Saccharomyces cerevisiae.
Correlations between these two networks in their
connectivities of interacting nodes were calculated and
compared with a null mode of a network. For both protein
interaction network and regulatory network, connections
between highly connected proteins are systematically
suppressed, suggesting that the propagation of deleterious
perturbations over the network is repressed. This indicates
that the organized interaction pattern of molecular networks
is robust and specific.

7. IN SILICO PREDICTION OF PROTEIN-PROTEIN
INTERACTIONS

In addition to systematic analyses of protein interactions
by high-throughput experiments, a number of computational
methods have been developed for the prediction of protein-
protein interactions based on protein/DNA sequence
information. The predicted interactions can be found in
databases like Predictome (http://predictome.bu.edu/) [87],
which stores predicted interactions between the proteins in
44 genomes based on three computational methods, i.e.,
chromosomal proximity, phylogenetic profiling and domain
fusion [88,89]. The predicted protein-protein interactions are
less reliable than those generated from high-throughput data.
However, they expand the score of experimental data and are
useful to assess the protein-protein interactions generated
from high-throughput experiments. Notably, the combination
of experimental approaches and computational analyses has
advantages in validating protein-protein interaction network,
which is particularly effective in reducing noise. For
example, Tong et al. [90] developed a strategy that combines
large-scale yeast two-hybrid data with the computational
prediction of protein-protein interactions from preferred
ligands consensus sequences generated by phage display.

In this section, we will describe five major computational
techniques for prediction of protein-protein interactions, i.e.,
gene fusion, conserved genetic neighborhood, co-occurrence
of genes in genomes, predictions from domain interactions,
and predictions based on structural information.

7.1. Gene Fusion

The Gene fusion or “Rosetta stone” method [91] for
predicting protein-protein interaction is based on the
observation that some pairs of interacting proteins whose
homologs are fused into a single protein chain in another
organism. For example, two separate proteins A and B in
organism X are expressed as a fusion protein in an another
organism Y. When expressed as a fused protein in Y
organism, A and B as protein domains generally interact
with each other physically, and this implies that A and B as
separate proteins in X organism probably interact too. Thus,
a successful search through genome sequences for the
corresponding fused protein is powerful evidence that A and
B physically interact and are functionally linked. This
method, although limited by the relative infrequency of
fusion events, is highly sensitive with low false positive rate.
Searching sequences from many genomes revealed 6809

such putative protein-protein interactions in Escherichia coli
and 45,502 interactions in yeast.

7.2. Conservation of Gene Neighborhood

Proteins with conserved genetic neighborhood in
bacteria, i.e., a group of genes arranged in tandem in one
genome and also appeared in a similar fashion in its related
genomes, tend to interact with each other to form complexes
[92-94]. Operons represent one such conserved gene context.
Identification of operons or “conserved gene contexts” can
provide clues about which set of proteins may form a
complex. This can be done through discovering the
sequential arrangement of genes in a microbial genomic
sequence and conserved gene context across multiple related
microbial genomes. Typically the intergenic distance
between neighboring genes in an operon is short (less than
100 bases). Using such information, there are a number of
existing algorithms for identification of operons [95]. One of
the main limitations of this method is that it is only directly
applicable to bacteria.

7.3. Co-occurrence of Genes in Genome

The phylogenetic profiling approach [96,97] is based on
the assumption that proteins functioning together in a
complex are likely to evolve in a correlated fashion. During
evolution, all such functionally linked proteins tend to be
either all preserved or completely eliminated in the new
species. Such information can be represented by a
phylogenetic profile that records the presence or absence of a
protein in every known genome in a phylogenetic tree. It is
shown that proteins having similar profiles tend to have
physical interactions and to be functionally linked, for
example, insulin and its receptors [98] and dockerins and
cohexins [99]. The method of phylogenetic profiling can be
used to establish the probability of two proteins interacting
with each other. In a more quantitative approach, Pazos and
Valencia [100] proposed to calculate the phylogenetic profile
based on the evolutionary distances between the sequences
in the associated protein family for a protein. To demonstrate
the capacity of the method for large-scale predictions of
protein-protein interactions, the authors applied it to a
collection of more than 67 000 pairs of E. coli proteins, and
they predicted 2742 pairs belonging to interacting proteins.

7.4. Prediction from Domain Interactions

Protein domain, as a unit of structure, function, and
evolution, is also a unit for protein-protein interactions
[101,102]. Many physical interactions between domains are
preserved regardless of which proteins contain these
domains [103]. Therefore, understanding the protein-protein
interaction at the domain level can give a global view of the
protein-protein interaction network and can be used to
expand the knowledge of protein-protein interactions. One
can derive the rules underlying protein recognition mediated
by a small number of protein modules based on protein-
protein interactions and homologous domain repertories
[104]. These rules in turn can be used to predict protein-
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protein interactions from the domain-domain interactions.
Sprinzak and Margalit [105] analyzed the distribution of
well-characterized sequence domain of interacting protein
pairs. This information was further used to search for
putative new interacting pairs that contain an interacting
domain pair. Wojcik et al. [106] developed an approach
named “Interacting Domain Profile Pairs” based on a
combination of homologous domain searching and clustering
method to infer a protein-protein interaction map of
Escherichia coli from a Helicobacter pylori reference
interaction map. Deng et al. [107] formulated this problem in
a more systematic way by taking into account the errors of
false negatives and false positives. They used a Maximum
Likelihood approach to infer domain-domain interaction
using 5719 protein-protein interactions in yeast. Their results
from the inferred domain-domain interactions performed
well on an independent test set of known protein-protein
interactions and they also predicted novel protein-protein
interactions.

7.5. Prediction from Structure Information

Like protein folding, where the folded structure is solely
dependent on the protein sequence [108,109], a protein-
protein interaction is also just dependent on the sequences of
the two interacting proteins. This suggests a possibility of
protein-protein interaction prediction directly from the
involved proteins’ sequences and their characteristics. Some
attempts have been made, although more studies are needed
to be done to evaluate the applicability of such an approach
given the weak detectable signal in protein sequences for
interaction. Given a database of known protein-protein
interaction pairs, Support Vector Machine (SVM), a machine
learning system, was trained to recognize and predict
interaction based solely on protein sequences and their
associated physicochemical properties [110] through
recognition of correlated pattern between protein sequences
and their interactions. Another direction for predicting
interaction based on protein sequences is to explore the
information on the evolution of these sequences. Protein-
protein interaction sites are evolutionarily conserved and
they can be detected from the sequence traces, especially the
correlated pairs between monomers tend to occur at the
contact interface [11,112]. The use of the correlation
information may detect interacting protein pairs and their
contact regions. Using such an approach, Pazos et al. [113]
proposed a “in silico two hybrid system” to predict protein
interactions and the most likely sequence regions involved in
the interactions. They applied this system to predict protein-
protein interactions in E. coli.

8. BIOLOGICAL INFERENCE THROUGH PROTEIN-
INTERACTION DATA

Protein-protein interaction network contains the
information of individual proteins, including their partners,
functions and interactive complexes, as well as the
information on biological pathways, which are often the
results of several directly physical protein-protein
interactions. Thus, protein-protein interaction data are useful
to assign function to the uncharacterized gene product, and
protein-protein interactions are a new and rich source to

construct biological pathways, in particular the signal
transduction pathways. However, biological inference from
protein-protein interaction data is not trivial, given the
complexity and the errors of the protein interaction map.
When the protein-protein interaction information is
insufficient, it may be important to use other valuable
sources of data, including genomic sequence and gene
expression data to refine biological hypotheses generated
from protein-protein interactions. The integration analysis of
protein-protein interaction, gene expression and
protein/DNA sequence can be a powerful means to infer
cellular functions and pathways, and it represents a grant
challenge for bioinformatics.

8.1. Protein Function Prediction

A protein often performs its function through interacting
with other proteins of the same cellular function. This is
reflected in the statistical study that two interacting proteins
often share the same function category, as shown in Section
5.2. Hence, one can use the protein-protein interaction
information to assign putative function for a hypothetical
protein [114] based on “guilt by association”[115]. For
example, if protein X (uncharacterized) is found to interact
with protein Y and protein Z, and both Y and Z are
components of the DNA transcription processing machinery,
then it is likely that protein X is also involved in this process,
perhaps as part of the complex containing Y and Z. Based on
such an approach, high-throughput protein-protein
interaction data provide a good coverage for many novel
proteins whose functions cannot be assigned by sequence
comparison. Schwikowski et al. collected 2709 published
protein-protein interactions in yeast and clustered them
based on cellular role and subcellular localization annotated
in the Yeast Proteome Database (YPD at
http://www.proteome.com/YPDhome.html). They compiled
a list of about 370 proteins with unknown function that
interact with at least one protein with known function.
Among them, 29 proteins have two or more interacting
partners with the common function. To assign protein
function by using protein-protein interaction data in a more
systematic and rigorous way, Deng et al. [116] developed a
mathematical model based on the theory of Markov random
fields. Instead of searching for the simple consensus among
the functions of the interacting partners, the method assigns a
probability (with a confidence level) for a hypothetical
protein to have the annotated function using Bayesian
approaches.

Annotating proteins using their interaction partners’
information is a promising technique and such an approach
will become more and more useful as the protein-protein
interaction data accumulate and their quality improves. This
approach can be used in conjunction with other methods. For
example, one can also use computational strategies to assign
functions based on the co-evolution of proteins [117], etc. as
described in Section 6. It is also possible to integrate gene
expression data for this purpose.

8.2. Biological Pathway Construction

Protein-protein interaction networks not only allow the
assignment of cellular functions to novel proteins but also
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provide the resource for constructing the biological
pathways. The study of biological pathways is a challenging
research topic. The pathway network is a complex and
synergistic system. There are rich interaction networks
among the constituents, including non-protein elements such
as ligands. These interactions are numerous and have
nonlinear characteristics. For instance, even a small change
in the expression of some components might cause the
system to respond in an entirely new fashion. Moreover,
there are cross-talks among multiple pathways. Despite the
complexity, physical protein-protein interactions generally
provide the backbones for biological pathways. For example,
in the signal transduction pathway, protein-protein
interactions often play the main role in the signal
transduction cascade. Therefore, high-throughput protein-
protein interaction data can help construct biological
pathways in silico, at least partially.

Fig. 6 illustrated a validation of this approach. As a
reference, we chose the well-known MAPK signal
transduction pathway of filamentation from KEGG
[118,119] (see Fig. 6A). This pathway can be rebuilt based
solely on the protein-protein interaction mapping as shown
in (Fig. 6B). To build the pathway, it is important to
integrate the protein interaction data from different sources
such as yeast two hybrid, protein complexes etc. This also
indicates the complementarily of yeast two-hybrid method
and protein-complex identification method in the case of
their coverage as we discussed in section 4.2.

Protein interaction maps may also be used to construct
new biological pathways, especially to constitute the part of
the pathway that involves protein-protein interaction. For
example, in a signal transduction cascade involving protein-
protein interactions, if we know the sensor protein of the
signal and the terminal transcription factor that the signal
affects, we can construct a protein interaction pathway
between the two ends. However, protein-protein interaction
network is very complex. As we see in Fig. 6C, one protein
has many potential interaction partners and typically
multiple paths exist between two proteins. In addition, the
protein-protein interaction map contains false paths because
of the error in the data. To assess a potential pathway, some
priori knowledge or other type of data may be needed to
perform a comprehensive evaluation for the pathway based
on protein function (cellular role), gene expression pattern,
and subcellular localization. Two proteins with true physical
interaction generally have the similar cellular role, correlated
gene expression pattern, and the same subcellular
localization.

We have used protein-protein interaction data to study
the signal transduction pathway in yeast amino acid transport
(Chen et al., paper in preparation). The ability of yeast cells
to rapidly respond and adapt to changing environmental
conditions is essential for viability. A prerequisite for the
generation of a proper physiological response is the ability to
sense the extracellular nutrient environment and to regulate
gene expression through signal transduction pathways.
Previous genetic and biochemical experimental studies have
shown that the SPS (Ssy1p-Ptr3p-Ssy5p) amino acid sensor
system is required for amino acid-induced transcription of
amino acid transporter genes (e.g., AGP1, BAP2, TAT1,

Fig. (6). Relationship between biological pathway and protein-
protein interaction data. A:  The MAPK signaling pathway for
filamentation taken from KEGG.  B:  A MAPK signal transduction
pathway constructed from protein-protein interaction data. C: A
snapshot of protein-protein interaction map of yeast proteome taken
from the Web site at http://depts.washington.edu/sfields.  For color-
coded lines, red means that the cellular roles and subcellular
localizations of interacting proteins are identical; blue indicates
only the subcellular localizations are identical; green indicates that
only the cellular roles are identical; black means both the cellular
roles and localizations are different or the information is unknown
for at least one protein involved in the interaction. D. The signal
transduction pathway for amino acid transport in yeast constructed
from the high-throughput protein-protein interaction data, where
the different colors indicate different pathways. The different
shapes of lines represent protein-protein interactions detected by
different experimental techniques. The ovals represent the
transcription factors and the boxes represent the intermediate
proteins between the SPS sensor and transcription factors. Among
those pathways, the pathways of Ssy5p-Tup1p-Ssn6p-Mig1p and
Dipeptide-Ptr1p-Ubc2p-Cup9p-Ptr2p are already known in
literature, while the others are not characterized from experiments
yet.
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TAT2)[120] and the di-/tripeptide transporter, Ptr2p[121]. A
functional SPS sensor is also required for the regulation of
GAP1, a nitrogen-regulated amino acid transporter
gene[122]. Experimental evidence has also suggested that
PTR2 is suppressed by the binding of Cup9p (a
transcriptional repressor). This regulation is mediated by the
ubiquitination of Cup9p by the Ptr1p-Ubc2p complex[123].
However, it is not clear at all what the other proteins are
involved in this signal transduction pathway and how they
form the signal transduction cascade, and how the cross-talks
between related pathways take place.

We constructed a model of protein-protein interaction
pathways from amino acid sensors to energy metabolism,
glucose pathway, and transporter regulators (see Fig. 6D).
Based mainly on protein-protein interaction maps, we
constructed the following signal transduction pathways
between the amino acid sensor SPS and the related
transcription factors for amino acid transport:

(1) Amino acid transporter gene expression regulation
pathways:

Ptr3p-YPL158C-Jsn1p-Csn1p-Stp1p;

Ptr3p-YPL158C-Jsn1p-Cln1-Cdc28p-Clb3-Sho1p-Gln3p;

Ptr3p-YPL158C-Jsn1p-Vma22p-Dal80p.

(2) A feedback pathway:

Dipeptide-Ptr1p-Ubc2p-Cup9p-Ptr2p

(3) Other related pathways:

Ptr3p-Aut10p-Mai1p-Rtg3p;

Ssy5p-Tup1p-Ssn6p-Mig1p;

Dipeptide-Ptr1p-Ubc2p-Ubc4p-Pre1p-Rpn6p-Gcn4p.

The protein function and subcellular localization
information was used to select the most probable pathways,
i.e., all the constituents of a path with more reasonably
related functions and subcellular localizations have better
chance to be in the correct pathway. Regulatory region
analysis and gene expression analysis validate the pathway
model by showing how the selected transcription factors
control the amino acid transporters and how the cross-talks
between the amino acid transport pathway and the other
related pathways are achieved. Although the pathway model
contains some local information known before, it is the first
global pathway hypothesis for the amino acid transport
regulation process.

Our study shows that to better use protein-protein
interaction for pathway studies, it is crucial to incorporate
other bioinformatics techniques, including protein structure
prediction, gene expression analysis, and regulatory region
analysis. This type of integrative study will probably be
more and more common in the future. A study by Ideker et
al.[124] provided an another example. The authors used
DNA microaray, mass spectrometry and protein-DNA
interactions to analyze the galactose metabolism pathway in

yeast. The combination of bioinformatics sources will help
transform the protein interaction network from the local
property description to the general understanding of cellular
pathways.

9. DISCUSSION

As the highlight in biology research is moving from
genome to proteome, it is expected that in the near future the
function-based cell map will become a new hot spot.
Analysis of protein-protein interactions will play a more and
more important role, given the fact that protein-protein
interactions occur in nearly all events that take place in a
cell, and most cellular processes are regulated by multi-
protein complexes. Identification of protein interaction
network is also of great interest for drug screening and
design. High-throughput protein-protein interaction data are
very useful for providing the valuable global information
compared with the traditional biology. The major efforts of
traditional biology focus on identification of genes and
proteins responsible for specific phenomena and on
investigation of how particular genes and proteins function.
These studies have been conducted typically in some ad hoc
manners and on a small scale. The results, although accurate,
are often only pieces of local information. The high-
throughput data, given their genome-wide coverage, provide
an opportunity to merge pieces of local information together
for a global view about how a cell works at the molecular
level.

With the growth of experimental data by an
unprecedented amount, computational analysis plays a vital
role in managing and deciphering protein-protein interaction
data. Many useful researches and developments have been
done along the line, as reviewed in the paper. On the other
hand there are many more challenges. While several well-
structured databases and visual tools have been
implemented, a challenge is how to systematically integrate
protein-protein interaction data with information from other
various sources such as literature information (based on
traditional biochemical/genetic approaches) and other types
of high-throughput experimental data (genomic sequence,
gene expression profile, etc.). The integration requires a
uniform database to store and query heterogeneous
information as well as a data-mining framework to
automatically construct biological hypothesis. Furthermore,
a rigorous statistical model is needed to be developed for
data quality control before computational analyses of
protein-protein interaction network. The model should allow
automatic assessment and validation so as to combine
protein-protein interaction data sets from different sources.
An open question in this aspect is how to use protein
complex information for assessing binary interaction
effectively. This will also help function prediction and
pathway construction as described in section 8, since
currently only the binary information is used for this
purpose. Another very difficult aspect for analyzing the
protein-protein interaction map is its dynamic nature of the
map, as well as the roles of non-proteins (e.g., ligands) in
protein-protein interaction. Such a difficult has not been
solved so far at all, and some new paradigms may be needed.
Finally, the major challenge is to infer new biological
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discoveries and validate hypotheses from protein-protein
interaction data. Integrated analyses that combine
information from various sources as we discussed above
provide a promising trend. How to make the integration
automated to fully utilize the underlying information in the
data is far from being solved. Although the information
contained in high-throughput data is rich, deriving biological
knowledge/hypothesis from the information is very
challenging, given the complexity of biological pathways
and the signal-to-noise ratio in high-throughput protein-
protein interaction data (i.e., the false positives and false
negatives). Clearly, it is valuable to integrate the traditional
approaches with the high-throughput protein-protein
interaction data. Other types of high-throughput data such as
genome sequence and gene expression data are also valuable
resources for generating hypotheses about genes involved.
For example, clustering analysis of gene expression data can
be used to predict functions of unknown proteins and
identify the proteins that may be involved in a
pathway[125,126]. The sequence comparison as well as
structural information can be modeled to reveal protein
functions[127,128]. A consensus approach, or better yet, an
expert system using a variety of methods to analyze and
integrate high-throughput data will give us a global and
comprehensive understanding of the related biological
processes. An attempt has been made along the line to verify
protein-protein interaction data with microarray data and
then to further annotate function by the consensus analysis of
the genome-wide high-throughput data[129]. Nevertheless,
much more work is needed to be done.

With improved high-throughput experimental techniques,
more and more high quality protein-protein interaction data
will be generated. Moreover, we believe that well developed
databases and integrated computational tools will enable
biologists to easily navigate protein-protein interaction
network and explore new biological discoveries. It may not
be far before computational analysis of protein-protein
interaction data becomes a necessary protocol in many
biological laboratories, just like sequence homology search
being carried out today.
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