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Abstract

Background: Non-coding RNAs (ncRNAs) are emerging as key regulators of many cellular processes in both
physiological and pathological states. Moreover, the constant discovery of new non-coding RNA species suggests that
the study of their complex functions is still in its very early stages. This variegated class of RNA species encompasses the
well-knownmicroRNAs (miRNAs) and themost recently acknowledged long non-coding RNAs (lncRNAs). Interestingly,
in the last couple of years, a few studies have shown that some lncRNAs can act as miRNA sponges, i.e. as competing
endogenous RNAs (ceRNAs), able to reduce the amount of miRNAs available to target messenger RNAs (mRNAs).

Results: We propose a computational approach to explore the ability of lncRNAs to act as ceRNAs by protecting
mRNAs frommiRNA repression. A seed match analysis was performed to validate the underlying regression model.
We built normal and cancer networks of miRNA-mediated sponge interactions (MMI-networks) using breast cancer
expression data provided by The Cancer Genome Atlas.

Conclusions: Our study highlights a marked rewiring in the ceRNA program between normal and pathological
breast tissue, documented by its “on/off” switch from normal to cancer, and vice-versa. This mutually exclusive
activation confers an interesting character to ceRNAs as potential oncosuppressive, or oncogenic, protagonists in
cancer. At the heart of this phenomenon is the lncRNA PVT1, as illustrated by both the width of its antagonist mRNAs
in normal-MMI-network, and the relevance of the latter in breast cancer. Interestingly, PVT1 revealed a net binding
preference towards the mir-200 family as the bone of contention with its rival mRNAs.
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Background
The idea that the greater complexity of higher eukaryotes

arises from the portion of the genome called non-coding

RNAs (ncRNAs) is becoming increasingly widespread

[1,2]. Indeed, ncRNAs are of growing interest, as they have

been found to be important regulators of gene expres-

sion in development, physiology, and, when dysfunctional,

in the presence of disease. This variegated class of RNA

species encompasses the well-known miRNAs, as well

as the most recently acknowledged lncRNAs. Discovered
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first, miRNAs have been intensively studied and much is

now known about their biological functions, as opposed to

lncRNAs. In fact, the latter constitutes a new, potentially

fascinating, territory to be explored yet.

miRNAs are single-stranded short RNAs (∼22 nucleo-

tides long) that post-transcriptionally regulate gene

expression by translation inhibition or degradation of

their target mRNAs [3-6]. Virtually, all biological pro-

cesses have been proved to involve miRNA regulation,

including development, metabolism, cell proliferation,

differentiation and apoptosis [7,8]. Accordingly, altered

miRNA expression characterizes many human diseases

and mounting evidence strongly links specific miRNAs

to tumor initiation, progression and metastasis [9-14].
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Several mechanisms, including gene locus amplification

[15], chromosomal deletion [16], mutation and epigenetic

silencing [9,17,18], have been identified as responsible for

deregulating miRNA expression in cancer. However, the

underlying mechanisms leading to miRNA deregulation

in cancer are far from being fully understood.

A new mechanism of miRNA regulation concern-

ing the ability of RNAs to compete for miRNA bind-

ing has recently been discovered [19]. This intriguing

mechanism, also known as ‘target mimicry’ process, was

first discovered in plants [20]. Ebert et al. [21] later

showed that exogenously administered miRNA competi-

tors in mammalian cells derepressed miRNA targets

at least as strongly as chemically modified antisense

oligonucleotides. Crucial triggers of this new layer of

post-transcriptional regulation are ‘decoys’ - or miRNA

‘sponges’ - including both coding and non-coding RNAs,

such as pseudogenes, large intergenic ncRNAs, and cir-

cular RNAs [19,22-24]. Sponges exert their decoy activity

by recruiting miRNA molecules via base-pairing with

miRNA-recognition elements (MREs), which they share

with a target, subsequently causing release of the target

from miRNA control.

Poliseno et al. [22] analyzed this miRNA removal mech-

anism by focusing on pseudogenes in samples of both

normal and prostate-tumor human tissues. Pseudogenes

are defined as copies of real genes that originate from

duplications or retro-transpositions. Furthermore, the lat-

ter is not translated into functional proteins because their

coding potential is corrupted by premature stop codons,

deletions/insertions and frameshift mutations. Moving

from the evidence that - despite lack of translation -

sequence conservation of pseudogenes suggests function-

ality, the authors proposed them as perfect endogenous

competitors of their ancestral genes, because they retain

many of the miRNA binding sites.

More recently, Sumazin et al. [25] investigated the abil-

ity of coding and non-coding RNAs to act as ceRNAs

in human glioblastoma. They identified a broad network

of sponge interactions and suggested them as mediators

of crosstalk between different regulatory pathways. Due

to the computationally prohibitive burden of testing all

possible combination of RNA/miRNA/RNA triplets, the

authors only considered those RNA/RNA pairs sharing a

statistically significant number of common miRNAs, thus

using some a priori information on putative or validated

seeds to complementing expression data.

In this paper, we study the role of lncRNAs as pos-

sible sponge regulators of miRNA activity on target

mRNAs. We furthermore explored miRNA decoy mech-

anism within gene regulatory circuitry using expression

data from tumor and matched normal samples of breast

invasive carcinoma (BRCA), provided by The Cancer

Genome Atlas (TCGA). Our main aim was to probe

whether specific lncRNAs may function as ceRNAs of

protein-coding RNAs. lncRNAs are broadly categorized

as RNAs withmore than 200 nucleotides lacking an exten-

sive open reading frame [26]. Although recent studies

have begun to associate subsets of lncRNAs to specific

regulatory mechanisms [27-31], the relevance of their role

in controlling normal cell physiology and pathogenesis

remains unclear.

In our study, we built two networks of lncRNA-mRNA

interactions mediated by miRNAs as inferred by multi-

variate analysis for normal and cancer data, respectively.

The reduced dimensionality of this configuration space,

obtained by using a lncRNA-centered approach, made

the computational burden manageable, with the addi-

tional advantage of using a purely data-driven approach.

Our study revealed the existence - in normal samples -

of a complex regulatory network of miRNA-mediated

interactions (normal-MMI-network) that appears to be

missing in tumor samples. As a result, an oncosup-

pressive activity of some specific lncRNAs, exploiting a

decoy mechanism, is speculated therein. Furthermore,

the MMI-network assembled in tumor samples (cancer-

MMI-network), highlighted some sponge interactions

triggered in cancer and shut off in normal tissues, pointing

to their potential oncogenic activity.

Results

Identification of miRNA-mediatedmRNA/lncRNA

interactions

We analyzed a large dataset of tumor and matched nor-

mal samples of BRCA profiled for both gene and miRNA

expression, obtained from TCGA. As discussed in details

in the Methods section, we restricted our study to a total

of 10492 mRNAs, 311 miRNAs and 833 lncRNAs.

Firstly, we systematically evaluated Pearson correlations

for all available pairs of 10492 mRNAs and 311 miR-

NAs in normal breast and BRCA samples (Figure 1A and

Additional file 1: Table S1 and Additional file 2: Table

S2). The resulting distribution curves are both unimodal,

symmetric and centered at zero, thus not displaying any

peculiar underlying correlation pattern. By contrast, selec-

tion for mRNAs with at least one co-expressed lncRNA

(i.e., highly correlated pairs, r > 0.7; Figure 1B) showed

the presence, in the normal dataset, of a clear bimodal dis-

tribution (Figure 1C, left). At variance, this effect is not

visible using cancer data where the distribution remains

unchanged (Figure 1C, right). These preliminary results

suggest a possible involvement of lncRNAs in eliciting

positive and negative co-expressed mRNA/miRNA pairs.

Repeating the same selection for mRNAs with at least one

anti-correlated lncRNA (r < −0.7) yielded the emergence

of a similar bimodal behavior (data not shown). From

a purely statistical framework, positively and negatively

correlated mRNA/miRNA pairs are both interesting.
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Figure 1 Correlation analysis. A) Distribution of Pearson correlation coefficients - normalized to unit area - for all combinations of miRNA and
mRNA expression profiles in normal and cancer tissues (black and red lines, respectively). B) Schematic representation of pairs-selection criteria:
among all possible miRNA/mRNA pairs, we selected only those involving mRNAs that were highly correlated with (at least) one lncRNA in the
normal dataset. C) Distributions of Pearson correlation coefficients - normalized to unit area - of miRNA/mRNA pairs, selected as described in panel
B. The various distributions are plotted as a function of different correlation threshold values, as indicated in the inset, for normal (left side) and
cancer dataset (right side).

However, an high positive correlation between RNAs

competing for miRNA binding has been recently experi-

mentally observed and discussed [22]. Thus, we focused

on mRNA/lncRNA pairs marked by highly positive cor-

relation - which we called cognate genes in analogy with

[22] - to investigate the scenario in which specific miR-

NAs may mediate their interactions (i.e., the so-called

‘sponge model’). To pursuit this aim, we applied a well-

established tool of multivariate analysis (i.e., the partial

correlation) to each selected mRNA/lncRNA pair with

respect to each miRNA in our dataset (see Algorithm

and implementation subsection). We then computed for

each triplet the difference between the Pearson and

partial correlation coefficients and defined it sensitivity

correlation (S):

S = corr(mRNA,lncRNA)

− corr(mRNA,lncRNA|miRNA).

Informally speaking, the partial correlation measures the

extent to which an observed correlation between two vari-

ables X and Y (here, the expression profiles of a mRNA

and a lncRNA) relies on the presence of a third controlling

variable Z (here, the expression profile of a miRNA). In

particular, values of S approaching to zero are indicative of

a direct interaction between the two dependent variables

(i.e., low sensitivity to the miRNA), whereas values close

to the Pearson correlation vaue are indicative of an indi-

rect interaction, suggesting a leading contribution of the

explanatory variable (i.e., high sensitivity to the miRNA).

The sensitivity correlation computed in normal breast

samples (Figure 2A, left) unveils an overall trend of

miRNA-independent interactions between cognate genes

(S ∼ 0, red background in the heat-map) with the notable

exception of a limited pool of miRNAs (S �= 0, light verti-

cal stripes in the heat-map). This marked pattern suggests

the existence of specific miRNAs, particularly the mir-200
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Figure 2 Sensitivity analysis. Heat-map representing the sensitivity correlation S, computed using: A) the normal expression data for the
top-correlated mRNA/lncRNA pairs (N = 87398) in the normal dataset. Light vertical stripes point to a little pool of miRNAs that is responsible for the
high correlation between all top-correlated mRNA/lncRNA pairs; B) the cancer expression data for the top-correlated mRNA/lncRNA pairs in the
normal dataset; C) the cancer expression data for the top-correlated mRNA/lncRNA pairs in the cancer dataset. Rows: top-correlated mRNA/lncRNA
pairs; columns: miRNAs. Color key: red to blue scale corresponds to low to high S. Top-correlated mRNA/lncRNA pairs: Pearson correlation values
exceeding the 99th percentile of the overall correlation distribution (i.e., r > 0.7 in normal and r > 0.4 in cancer).

family, acting at global level as buffers of mRNA/lncRNA

highly co-expressed pairs. This finding appeares to be par-

ticularly relevant, since it directly points to a limited pool

of miRNAs capable of establishing a crosstalk through-

out the transcriptome as a whole. Computation of the

sensitivity correlation repeated in cancer for the same

triplets surprisingly resulted in complete disappearance

of the observed pattern (Figure 2B, left). This result pin-

points the presence of a three-way mechanism triggered

in normal breast which appears to be shut off in cancer.

Interestingly, it may suggest that overriding the interac-

tions of a small group of specific miRNAs with their

partners - mRNAs and lncRNAs - could contribute to

cancer onset and development. Of note, the high Pearson

correlation between mRNAs and lncRNAs that charac-

terizes the top-correlated pairs selected in normal breast

(Figure 2A, right; highlighted red region) drops when

using cancer data. In fact, the Pearson correlation distri-

bution - computed in cancer for the same pairs - becomes

nearly symmetric and centered around zero (Figure 2B,

right).

The same procedure, i.e. selection of top-correlated

mRNA/lncRNA pairs followed by computation of

sensitivity correlation, was applied to cancer samples

(Figure 2C, left). Here, a first difference emerges in the

distribution of Pearson correlation coefficients, which

exhibits a smaller variance and thus a less populated tail

of cognate genes (Figure 2C, right). Furthermore, there

is lack of evident vertical stripes, despite the presence of

sporadic light spots.

In the normal dataset, the unimodal and zero-centered

distribution of Pearson correlation coefficients between

all miRNAs and all mRNAs (Figure 1A), when limit-

ing miRNAs to that subset which is responsible for the

light vertical stripes in the sensitivity correlation heat-

map (Figure 2A, left), approaches to a bimodal curve

(Figure 3A). This effect seems to be specific for the normal

breast since the same miRNA selection does not affect the

Pearson correlation distribution in cancer (Figure 3A).

To summarize, we observed the emergence of a clear

distinction between cancer and normal cells induced

by two independent data selection criteria in the

miRNA/mRNA Pearson correlation analysis: i. selection

based on mRNAs having at least one highly correlated

lncRNA (Figure 1C); ii. selection based on miRNAs

mediating mRNA/lncRNA interactions (Figure 3A). Both

approaches independently disclosed a tendency towards a

bimodal behavior in normal samples, which is unmatched
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Figure 3 Correlation analysis for selected miRNA/mRNA pairs and RNA-interaction modules.A)miRNA/mRNA correlation distributions
obtained by selecting only those miRNAs that are responsible for the light vertical stripes in Figure 2A. B)miRNA/mRNA correlation distributions
obtained by merging pairs-selection criteria applied in Figure 1C and Figure 3A. In details, among all possible miRNA/mRNA pairs, we selected only
those involving mRNAs and miRNAs as follows: i. mRNAs characterized by a high correlation with at least one lncRNA in the normal tissues; ii.
miRNAs responsible for the light vertical stripes in Figure 2A. Distributions are plotted as a function of different correlation thresholds, as indicated in
the inset, for normal (left) and cancer dataset (right). The two peaks clearly visible in panel B (left) identify two ways of mRNA/miRNA interaction: one
leading to a negative Pearson correlation between them; one leading to a positive Pearson correlation between them. Correspondingly, we defined
two sponge modules: C) the pure spongemodule, where the mRNA/miRNA correlation is negative; D) themixed TF-spongemodule, where the
mRNA/miRNA correlation is positive and could be due to the presence of a repressor TF. In both cases, the lncRNA and the mRNA compete for
miRNA binding (panels C and D, center). In the panels C and D (right), the valve symbols provide a schematic representation of the regulatory
circuit: C) the mRNA (blue circle) concentration is due to the presence of themiRNA (valve) that is in turn regulated by the lncRNA (red circle);D) the
mRNA (blue circle) concentration is due to the presence of a repressor TF regulated by the miRNA that is in turn regulated by the lncRNA.

in cancer. Interestingly, when the two selection criteria are

adopted together, the bimodal character of the correlation

distribution - observed in normal breast - becomes much

more evident and witnessed by the sharp breakup of the

negative and positive contributions (Figure 3B, left). Again

this scenario is unmatched in cancer (Figure 3B, right).

This analysis allowed us to identify two RNA-

interaction modules that we termed pure sponge module

and mixed RNA-sponge module. Both of them accom-

modate miRNA-mediated communication between the

mRNA and the lncRNA, but they discriminate the cor-

relation sign linking the mRNA and the miRNA (nega-

tive and positive, respectively). Fulfilling ceRNA features,

the pure sponge module may be thought of as a reser-

voir of putative sponges (Figure 3C). On the contrary,

the unexpected positive correlation between the mRNA

and the miRNA in the mixed RNA-sponge module may

havemany different explanations. Among others, we spec-

ulate that it may hint to a further layer of regulation

ruled by another actor, for instance a transcription factor

(TF), which is both a repressor of the mRNA and a tar-

get of the miRNA (Figure 3D). We called this possibility

mixed TF-sponge module. This module may be thought

of as a built-in regulatory loop where the transcrip-

tional level is intertwined with the post-transcriptional

one.
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miRNA-mediated interactions networks

In animals, miRNAs usually repress the expression of

target genes at the post-transcriptional level by binding

to partially complementary sites in their 3’ untranslated

region (3’UTR). Particularly, Watson-Crick base-pairing

to the seed region, which comprises nucleotides 2-7 in

the 5’ region of the mature miRNA sequence, is impor-

tant for target recognition [4]. A seed match analysis -

ran for each of those miRNAs that are responsible of the

light vertical stripes in the sensitivity correlation heat-map

(Figure 2A) - showed that the selected mRNA/lncRNA

pairs are enriched for instances where both RNAs har-

bor one or more binding sites for the related miRNA

(hypergeometric test p-value < 0.01).

Integrating the results of multivariate analysis and seed

match analysis, we built in normal breast a network of

pure and mixed sponge interactions (Figure 4), that we

called miRNA-mediated interactions network or MMI-

network. Nodes in this network represent both mRNAs

and lnRNAs and edges represent miRNAs mediating

their interactions (Additional file 3: Table S3). Concretely,

linked nodes are required to meet two conditions: i.

matching high values of the sensitivity correlation (i.e.,

S > 0.3; see Algorithm and implementation subsec-

tion); ii. harboring one or more MREs for the miR-

NAs that they can “sponge”. We assigned a weight to

each mRNA/lncRNA sponge interaction on the basis of

the number of the shared miRNAs (Additional file 4:

Table S4).

We used the degree of connectivity (i.e., the number

of outgoing edges) of each node in the MMI-network

as a suitable parameter of judgement to rank top can-

didate endogenous decoys for miRNAs. Outgoing edges

from a lncRNA node encompass different types of rela-

tionship with the nearest-neighbor mRNA nodes. In par-

ticular, a given lncRNA can: i. share with the same mRNA

multiple miRNAs for which they compete for binding

(many-to-one relationship); ii. communicate with several

different mRNAs through the same miRNA (one-to-many

relationship); iii. communicate with one mRNA through a

single miRNA (one-to-one relationship).

According to this topological measure, we found that

the lncRNA PVT1 with its 2169 edges represents the first

hub in the normal-MMI-network. It is connected to 753

different mRNAs (∼50% of total mRNAs in the network)

and the mir-200 family members are mediating over 80%

of these interactions (Additional file 5: Tables S5 and S10).

Notably, the normal MMI-network (1738 nodes and

32375 edges) is marked by a clear segregation into two

internally well connected components: a larger one (1354

nodes and 31417 edges) mainly dominated by the mir-200

family and a smaller one (378 nodes and 954 edges)mainly

controlled by mir-452. In particular, we observed an out-

standing prevalence of the mir-200 family in the whole

normal-MMI-network. In fact, it mediates the most of the

communications (72%) between the majority of the lncR-

NAs (68%) and their counterpart mRNAs (60%) in the

network. Interestingly, the mir-200 family members are

well-known to be involved in cancer metastasis and are

believed to play an essential role in tumor suppression by

inhibiting epithelial-to-mesenchymal transition (EMT),

the initiating step of metastasis [32-34]. Moreover, the

mir-200 family members have recently been associated to

human breast cancer [35-39] and their overexpressionwas

shown to promote the mesenchymal-to-epithelial transi-

tion [40]. Here, our analysis suggests that these relevant

cancer-associated miRNAs hold the reins of communica-

tion through the whole MMI-network in normal breast

samples.

Seeking to functionally explore the two sub-networks

evidenced by the above analysis, the lists of protein-

coding nodes populating each of them were analyzed for

biological functional annotations using the GOrilla web

tool (http://cbl-gorilla.cs.technion.ac.il/). Interestingly,

Figure 4 Normal MMI-network. The normal MMI-network built from expression data of normal breast tissues. Nodes in this network represent
both mRNAs and lncRNAs; edges represent miRNAs. Each pair of linked nodes fulfills two requirements: i. S > 0.3 and ii. one or more shared MREs,
for each miRNA linking them.

http://cbl-gorilla.cs.technion.ac.il/
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the observed topological disjunction seems mirrored by

strong enrichment in distinct biological functionalities.

Specifically, the larger sub-network is enriched in cell-

cell adhesion function (Additional file 6: Figure S1-A

and Additional file 7: Table S6), whereas the smaller one

is enriched in cellular metabolic processes (Additional

file 6: Figure S1-B and Additional file 8: Table S7). Both

these biological processes characterize the normal breast

epithelium and their proper regulation is essential to

maintain tissue integrity.

As for the similarly constructed cancer MMI-network

(415 nodes and 1103 edges), we observed a clear segre-

gation into two components (Additional file 9: Figure S2),

yet markedly less populated compared to the normal case.

Indeed, the larger sub-network here is composed by 383

nodes and 1070 edges whereas the smaller one is com-

posed by only 20 nodes and 26 edges (Additional file 10:

Table S8). Similarly to the normal case, we assigned a

weight to each mRNA/lncRNA sponge interaction on the

basis of the number of the shared miRNAs (Additional

file 11: Table S9).

In the prevalent component of the cancer MMI-

network, mir-150 exhibits a leading role by mediating

most of the mRNA/lncRNA connections. We found that

two lncRNAs -MEG3 (Maternally Expressed Gene 3) and

KIAA0125 - compete for the role of the first hub and reg-

ulate the expression of the almost totality of the mRNAs

in the cancer-MMI-network, by antagonizing mir-379 and

mir-150, respectively (Additional file 5: Tables S5 and

S10). Of note, MEG3 was recently suggested to play a

significant role as a novel tumor suppressor lncRNA in

several human cancers and evidence of its associationwith

tumorigenesis is growing every day [41-43]. Functional

annotation enrichment analysis of nodes in this larger

sub-network clearly points to immune system-related

functions (Additional file 12: Figure S3 and Additional

file 13: Table S11). Indeed, inflammation is a hallmark

of cancer and different immune cells are known to be

involved with either pro- or anti-tumor activity in tumor

development [44].

Overall, our results indicate that the observed decoy

mechanism seems to “switch on” or “off” its agents accord-

ing to the physiological or pathological condition. Pre-

cisely, the framework of miRNA-mediated interactions

appears completely altered in BRCA samples compared to

normal. Particularly, ceRNA mechanisms orchestrated by

the mir-200 family, which is preponderant in the normal

breast scenario, disappear in the BRCA network, where

other sponges appear to be activated.

Discussion

Modes of action in the normal MMI-network

As a case study, we propose two prototypes of pure

sponge (Figure 5A) and mixed TF-sponge (Figure 6A)

modules, extracted from the normal breast analysis: the

first employs PTENP1, a growth-suppressive lncRNA

already identified as ceRNA [22,25]; the second engages

PVT1 as a competitor of CDH1 for binding to the mir-

200 family and ZEB1 as both a transcriptional repressor of

CDH1 and a target of the mir-200 family.

In both cases, the high correlation bridging the

mRNA/miRNA/lncRNA actors, which is attained in nor-

mal breast (Figures 5B and 6B), appears completely abol-

ished in breast cancer (Figures 5C and 6C). We speculate

that the disappearance of the lncRNA-mRNA crosstalk

noticed in cancer may occur because the miRNA stops

functioning as a mediator of their interaction, with a con-

sequent break-up in the ceRNA relationship. In fact, the

Pearson correlation between CDH1 and PVT1 is very high

in normal breast (r = 0.8), but strongly dependent on the

miRNA, as witnessed by the drastic drop in the correla-

tion after the computational removal of the miRNA (e.g.

r = 0.01 when subtracting mir-200b effect).

In the example of pure sponge module (Figure 5A),

PTENP1 appears to regulate the expression of HRASLS5,

a member of the HRAS-like suppressor family, via antag-

onizing mir-135b in normal breast tissue. In humans,

HRAS, together with KRAS and NRAS, constitutes the

Ras protein superfamily that controls proliferation, differ-

entiation and cell cycle via the mitogen-activating kinase

(MAPK) signaling cascade [45]. Consistently, we observed

this pure sponge module within the smaller sub-network

of the normal-MMI-network (Figure 4), which results

functionally enriched in the oxidation-reduction process,

angiogenesis and regulation ofMAPK cascade (Additional

file 6: Figure S1-B). These biological processes are closely

related. In fact, the uncontrolled cell growth and divi-

sion characterizing tumor cells are hampered by a lack

of oxygen and other essential nutrients. To overcome this

obstacle, malignant cells acquired the specific ability to

induce blood vessel growth (angiogenesis), by secreting

various growth factors. Recently, reactive oxygen species

have also been proposed as essential triggers for angiogen-

esis [46]. In this light, our observation of a deactivation -

in breast cancer - of the sponge mechanism involving

PTENP1 - together with the previously reported growth-

suppressive role of PTENP1 [22,25] - corroborates the

importance of miRNA-mediated PTENP1 regulation in

cancer [22,25].

With respect to the mixed TF-sponge module

(Figure 6A), it is worth noting that the only remaining

interaction - found in cancer cells (Figure 6C) - is the

anti-correlation between mir-141 and its validated target

ZEB1 [32,33]. Moreover, the relationship between ZEB1

and CDH1, hypothesized by our analysis, has been exper-

imentally validated [33,47], corroborating the relevance

of our findings. Specifically, ZEB1 results downregulated

in our breast cancer dataset compared to normal samples,
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Figure 5 Example of a pure spongemodule. A) A prototype of pure sponge module extracted from the normal MMI-network. B-C) Scatter plots
of expression profiles in normal and cancer dataset, respectively. Plots are shown for, from left to right: PTENP1 versus HRASL5, mir-135b versus
HRASL5, mir-135b versus PTENP1. y- and x-axis: normalized read counts from TCGA (log2-scale); r = Pearson correlation coefficient, p = p-values.
Correlations and p-values are computed by using the routine corr of MATLAB. Each p-value is the probability of getting a correlation as large as the
observed value by random chance, when the true correlation is zero.

while both the mir-200 family members and CDH1 are

overexpressed. This is suggestive of an epithelial-like

phenotype maintained by high levels of the mir-200 fam-

ily members, which inhibit ZEB1 and, hence, increases

the expression of ZEB-repressed epithelial genes, such

as CDH1 (also known as E-cadherin) [33,47]. However,

it has been shown that ZEB1 triggers a double negative

feedforward loop, by downregulating its own inhibitors

(i.e., the mir-200 family members) [47,48]. Thus, depend-

ing on the ZEB1 levels in cancer cells, this loop could

stabilize either mesenchymal or epithelial differentiation,

accounting for the phenotypic heterogeneity viewed in

tumors and metastases. In particular, the switch to a

mesenchymal state can be induced by the transforming

growth factor TGFβ , which increases ZEB1, while ectopic

expression of the mir-200 family members, which reduces

ZEB1, seems either to prevent TGFβ-induced EMT

or to initiate epithelial-like reversion in mesenchymal

cells [33].

PVT1 is the main ceRNA regulator in normal breast

PVT1 is a lncRNA that appears to be strongly conserved

between mouse and human [49] and amplification of its

locus is one of the most frequent events in breast cancer

[50]. Moreover, its overexpression has been recently sug-

gested to contribute to breast pathogenesis by inhibiting

apoptosis [50].

We found that PVT1 acts as ceRNA in the normal-

MMI-network, but not in cancer. Moreover, it reveals

a net binding preference towards the mir-200 family

(Figure 7A), which it antagonizes to regulate the expres-

sion of hundreds of mRNAs in the normal case. In

terms of topological properties, PVT1 switches from

being the first of the hubs in the normal-MMI-network

to fall outside the list of nodes of the cancer net-

work. Interestingly, recent studies suggested a role for

PVT1 in the pathophysiology of breast cancer by virtue

of PVT1-mediated inhibition of apoptosis, when over-

expressed [50].
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Figure 6 Example of a mixed TF-spongemodule. A) As in Figure 5A, this time for a prototype of mixed TF-sponge module. B)-C) As in
Figure 5B-C, this time for: PVT1 versus CDH1, CDH1 versus mir-141, PVT1 versus mir-141, and ZEB1 versus mir-141. y- and x-axis: normalized read
counts from TCGA (log2-scale); r = Pearson correlation coefficient, p = p-values. Correlations and p-values are computed by using the routine corr of
MATLAB. Each p-value is the probability of getting a correlation as large as the observed value by random chance, when the true correlation is zero.

Among PVT1 nearest-neighbors in the normal-MMI-

network, we emphasize some important regulators of

breast tissue morphogenesis and development, such as:

the aforementioned CDH1; all three members of the

extended p53 family (i.e., TP53, TP63 and TP73); two

members of the mammalian RUNX family (i.e., RUNX1

and RUNX3) and GATA3 (Figure 7B). TP53 is the

most extensively studied tumor suppressor and acts in

response to diverse forms of cellular stresses to induce cell

cycle arrest, apoptosis and senescence [51,52]. The two

identified homologues, TP63 and TP73, have also been

related to apoptosis, and a possible role as tumor sup-

pressors has been suggested [51]. RUNX1 is the predom-

inant RUNX family member expressed in human breast

epithelial cells and there is a growing body of evidence

suggesting its possible role as a breast cancer suppressor

[53-56]. RUNX3 has been recently reviewed as a tumor

suppressor, specifically in human BRCA, with decreas-

ing expression associated to disease progression [54,57].

Finally, GATA3 has been linked to mammary gland

morphogenesis, mammary tumor differentiation and

metastasis [58].
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Figure 7 The PVT1 sub-network. A) Percentage of the miRNAs sponged by PVT1 in the normal-MMI-network. B) Schematic diagram of selected
nearest-neighbors of PVT1 in the normal-MMI-network, that are important regulators of breast tissue morphogenesis and development. C) Sketch of
the PVT1 locus as it appears in the UCSC genome browser (http://genome.ucsc.edu/), illustrating the PVT1 alternative isoforms (Iso). Boxes represent
exons while black lines represent introns. Colored boxes correspond to exons where the seed-complementary sites - for mir-200a/mir-141 (red), and
for mir-200b/mir-200c (purple) - occur. Note that two isoforms (Iso 11 and 12) lack seed matches for the mir-200 family.

In sum: i. the PVT1 neighborhood in the normal-

MMI-network encompasses cancer related genes as well

as genes involved in mammary gland development and

cell morphogenesis; and ii. the sponge program orches-

trated by PVT1 results completely abolished in can-

cer. Taken together these findings may be indicative

of a possible PVT1 surveillance role aimed to preserve

cell-cell adhesion. Indeed, mammary gland morphogen-

esis results from the coordination of diverse cellular

processes involving cell-cell adhesion, migration, prolif-

eration and apoptosis. Thus, PVT1 controlling circuit

may provide further insight in solving this complicated

puzzle.

The PVT1 sponge program is turned off in breast cancer

The specific conditions required for a ceRNA network

to occur are still far from being determined. The impor-

tance of the relative concentration of the ceRNAs, and

their related miRNAs, has been recently emphasized

[27]. In fact, in their study, Salmena et al. [27], sug-

gest that large changes in the ceRNA expression lev-

els either overcome, or relieve, the miRNA repression

on competing ceRNAs; similarly, a very large miRNA

overexpression may abolish competition. Along this line,

the mir-200 family members appear highly upregulated

in the cancer dataset that we analyzed (from 4- to 8-

fold). This may explain the observed annihilation of the

sponge interactions that they mediate. However, this

model may be undermined by the evidence that PVT1 -

the main sponge regulator of the mir-200 family in the

normal network - also results upregulated (∼ 2-fold) in

cancer.

Examination of the PVT1 genomic locus showed the

existence of multiple isoforms, whose sequence analysis

prompted us to formulate an alternative hypothesis. In

particular, members of the mir-200 family can be grouped

in two clusters based on the seed sequence (i.e., the mir-

200b/c/429 and mir-200a/141 clusters), differing by one

http://genome.ucsc.edu/
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nucleotide. Despitemost of the PVT1 alternative isoforms

harboring seed matches for both clusters (Figure 7C),

two isoforms lack the putative MREs for the mir-200

family. This is the result of alternative splicing events as

well as the presence of alternative transcription start sites

that cause skipping of the exons where the MREs reside.

Hence, the observed withdrawal in cancer of the PVT1

sponge activity may be due to preferential expression of

these two isoforms, independently from the abundance of

PVT1.

Comparison betweenMMI-network and correlation

network

We compared the MMI-networks with their cog-

nate correlation networks (Additional file 14: Figure

S4), composed by highly correlated mRNA/lncRNA

pairs (i.e., correlation of linked nodes > 0.7). Interest-

ingly, we noticed that the shape of both normal and

cancer-MMI-networks is reminiscent of their ances-

tor correlation networks. In particular, the two com-

ponents, which characterize the normal-MMI-network

(Figure 4), emerge as already separated, when mapped

onto the corresponding correlation network (blue points

in Additional file 14: Figure S4-A). In fact, the correla-

tion network itself appears to be weakly connected and

a tendency to split into two sub-regions is already con-

ceivable (Additional file 14: Figure S4-A). On the other

hand, the cancer correlation network is clearly com-

posed by a giant highly tangled component (Additional

file 14: Figure S4-B) that mirrors the single prevalent

sub-network dominating the cancer-MMI-network, disre-

garding the limited residual component (Additional file 9:

Figure S2). Taken together, the analyses of the correla-

tion and MMI-networks strengthen the hypothesis that

the normal breast is marked by a more structured organi-

zation as opposed to the disordered malignant picture.

Conclusions
We propose a novel computational approach suitable to

exploring the potential role of lncRNAs as ceRNAs. We

applied our method to a large dataset of BRCA obtained

from TCGA and built two networks of ceRNA interac-

tions in normal and cancerous state. Overall, we noticed a

dramatic difference between the physiological and patho-

logical condition concerning the identification and the

amount of activated sponges. The drastic change observed

in the sponge program is suggestive of a marked ceRNA

rewiring that characterizes the cancer state. The main

actor of this “system-reset” is PVT1. Despite its upregu-

lation, it stops working as ceRNA in the cancerous state.

We speculate that the withdrawal in cancer of the PVT1

ceRNA activity can be due to the preferential expression of

the two isoforms missing the binding sites for the mir-200

family.

Methods

Algorithm and implementation

The pipeline of our algorithm encompasses the following

four steps: i. data collection and processing; ii. statistical

analysis; iii. seed match analysis; iv. network building.

i. Data collection and processing

Level 3 IlluminaHiSeq gene and miRNA expression

datasets of human BRCA were obtained from TCGA
(dowloaded on May 28th, 2012; http://cancergenome.

nih.gov/). The analysis was restricted to 72

individuals for which the complete sets of tumor and
matched normal (i.e., normal tissue taken from the

same patient) profiles were available for RNA
sequencing assays of both small RNAs and long RNAs

(Additional file 15: Table S12). We filtered out entries

with more than 10% of missing values and separated
coding versus non-coding RNAs based on entrez

gene identifiers and human annotation obtained from

NCBI (ftp://ftp.ncbi.nih.gov/gene/DATA/GENE_
INFO/Mammalia/Homo_sapiens.gene_info.gz). We

limited the analysis to those mRNAs with an available
3’UTR sequence at least equal to 500 nt in the curated

UTRdb database [59]. All together, we analyzed a total

of: 10492 mRNAs, 311 miRNAs and 833 lncRNAs.
ii. Statistical analysis

We selected the top-correlated mRNA/lncRNA pairs

in normal and cancer datasets by setting in both cases
the correlation threshold to the 99th percentile of the

corresponding overall correlation distribution. We
chose this threshold in order to reduce both the

computation burden in the evaluation of the sponge

interactions and the number of false positives. This
threshold yielded selection of Pearson correlation

values greater than 0.7 and 0.4 for the normal and

cancer expression data, respectively. The number of
selected pairs is 87398. Then, we built up two

regression models: i. the expression profile of the
mRNA is the dependent variable X and the

expression profile of the miRNA is the explanatory

variable Z; ii. the expression profile of the lncRNA is
the dependent variable Y and the expression profile

of the miRNA is the explanatory variable Z. To infer

the role of Z in mediating X-Y correlation, we
computed partial correlation defined as:

ρXY |Z =
ρXY − ρXZρZY

√

1 − ρ2
XZ

√

1 − ρ2
ZY

where ρXY is the Pearson correlation between X and

Y , ρXZ is the Pearson correlation between X and Z

and ρZY is the Pearson correlation between Y and Z.
The partial correlation ρXY |Z measures how much

http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
ftp://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz
ftp://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz
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remains of the correlation between X and Y after the

computational removal of Z. This is mathematically

achieved by subtracting from the ρXY value the
independent contributions of the Pearson correlation

of Z with X and of Z with Y . If any of X and Y does

not correlate with Z (i.e., ρXZ = 0 and/or ρZY = 0),
the partial correlation is equal to their Pearson

correlation (ρXY |Z = ρXY ). This scenario suggests
that the correlation between X and Y is direct.

Otherwise, if both X and Y correlate with Z (i.e.,
ρXZ �= 0 and ρZY �= 0, with concordant sign of the
correlation), the partial correlation is lower than the

Pearson correlation. This scenario suggests that the

correlation between X and Y is not direct but rather
mediated to some extend by Z. As an extreme case of

the latter, a null partial correlation value (i.e.,
ρXY = ρXZρZY ) would suggest that the correlation

between X and Y is entirely given by the independent

Pearson correlations of Z with X and of Z with Y . In
this case, the observed Pearson correlation between

X and Y appears spurious and possibly entirely due to

Z. In other words, if we were able to remove Z from
the data, no correlation between X and Y would be

expected.
To establish if the Pearson correlation between X and

Y is direct or Z-mediated, we defined a new metrics,

that we called sensitivity correlation S:

S = ρXY − ρXY |Z

and selected XYZ triplets with S > 0.3. This

threshold corresponds to the 99th of the distribution

of the S-values (Additional file 16: Figure S5). This
choice allowed us to reduce the number of the false

positives and to have greater confidence in the
obtained data. The X and Y variables correspond to

the top-correlated mRNA/lncRNA pairs.

iii. Seed match analysis

A perfect match to positions 2 to 7 at the 5’-end of

the mature miRNA sequence (6mer miRNA seed) is

the minimal pairing requirement considered
predictive for miRNA target recognition [60]. The

miRNA seed sequences were obtained by mapping
TCGA miRNA identifiers to miRBase

(www.miRBase.org, release_18). Complementary

DNA (cDNA) sequences (i.e., without introns) for
lncRNAs were obtained querying the Ensembl

(http://www.ensembl.org/) data portal through its

R/Bioconductor (http://www.bioconductor.org)
interface provided by package biomaRt and by using

Entrez gene identifiers (http://www.ncbi.nlm.nih.
gov/gene). For each 3’UTR sequence included in our

dataset, we recorded all the occurrences matching

the reverse-complement of the 6-mer seed for the
miRNAs analyzed. For each lncRNA included in our

dataset, we similarly recorded all the occurrences of

short sites matching the reverse-complement of a

miRNA seed in the entire transcript sequence.
Recently, miRNA MREs have also been reported to

occur in the 5’UTR and coding sequences. However,

we decided to restrict our seed match analysis to the
3’UTR of mRNAs based on current experimental

evidence showing that MREs residing in the 3’UTR
yield the highest effect on mRNA destabilization [61].

The lists of coding and non-coding RNA identifiers

used to retrieve corresponding sequences were built
based on gene annotations obtained from the NCBI

(“Homo_sapiens.gene_info.gz” from NCBI ftp site:

ftp://ftp.ncbi.nih.gov/gene/).
The seed match analysis constitutes a refinement

criterium downstream to the already stringent
selection steps. In fact, the stringent selection steps i.

and ii. greatly narrowed the space of sequences of

lncRNAs and mRNAs to be searched for MRE
occurrences. This allowed us to relax the stringency

of the seed match requirements to having at least a

6mer seed match. In fact, it has been reported that
this seed type has the highest sensitivity in recalling

functional miRNAMREs [62]. However, the high rate
of spurious occurrences of 6mers on a genome-wide

analysis forces the majority of predictions algorithms

to mainly focusing on conserved and/or longer seed
matches (e.g.: 7-8mer seeds) to restrict the number of

false positives. This approach allowed us to do not

miss potentially relevant species-specific interactions
in our MM1-networks. Nevertheless, we annotated

miRNA/mRNA interactions populating our normal

breast and cancer networks to target predictions
provided by TargetScan (http://www.targetscan.org/)

and to experimentally validated miRNA targets
reported in miRTarbase (http://mirtarbase.mbc.nctu.

edu.tw/). This information could be of interest to

prioritize further investigation of selected sublists of
interactions taken from the MMI-networks

(Additional file 17: Table S13 and Additional file 18:

Table S14).
Finally, we used the seed match analysis to restrict

the above selected triplets (step ii.) to those where
both the lncRNA and mRNA have at least one perfect

6mer seed match for the shared miRNA.

iv. Network building

Integrating the results of statistical analysis and seed

match analysis, we built the MMI-network both in

normal and cancer tissues. Nodes in the networks
represent mRNAs and lnRNAs with highly correlated

expression profiles while edges represent miRNAs
mediating their interactions. Concretely, linked

nodes are required to meet three conditions: i.

matching high values of the Pearson correlation

www.miRBase.org
http://www.ensembl.org/
http://www.bioconductor.org
http://www.ncbi.nlm.nih.gov/gene
http://www.ncbi.nlm.nih.gov/gene
ftp://ftp.ncbi.nih.gov/gene/
http://www.targetscan.org/
http://mirtarbase.mbc.nctu.edu.tw/
http://mirtarbase.mbc.nctu.edu.tw/
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between their expression profiles; ii. matching high

values of the sensitivity correlation; iii. sharing

binding sites for miRNAs.

Algorithm validation

Our algorithm identifies high correlated mRNA/lncRNA

pairs in which the correlation is due to the presence of one

or more miRNAs. These pairs correspond to a high value

of the sensitivity correlation, i.e., the correlation between

these pairs shows a drastic decrease after the removal of

the miRNAs mediating their interaction. The seed match

analysis (step iii.) showed that these pairs were enriched

for the presence of binding sites for the miRNAs medi-

ating their interactions (hypergeometric test p-value <

0.01).

Very few lncRNAs has been characterized and exper-

imentally validated thus far. Among them, the first dis-

covered competing endogenous RNA in humans was the

pseudogene PTENP1 [22]. We found PTENP1 in the nor-

mal MMI-network and its important sponge interactions

are discussed in details in the Discussion section.

Additional files

Additional file 1: Table S1— Pearson correlations between mRNA

andmiRNA expression profiles in normal breast tissues. The table lists
the Pearson correlation coefficients computed for each pair of mRNA and
miRNA expression profiles across our dataset of normal breast samples.

Additional file 2: Table S2— Pearson correlations between mRNA

andmiRNA expression profiles in breast cancer tissues. The table lists
the Pearson correlation coefficients computed for each pair of mRNA and
miRNA expression profiles across our dataset of breast cancer samples.

Additional file 3: Table S3—MMI-network built in normal breast

tissues. The table lists the normal MMI-network in format abc (i.e., node1,
node2, interaction) with additional information on nodes (lncRNAs,
mRNAs) and edges (miRNAs).

Additional file 4: Table S4—Weights of the sponge interactions in

the normal MMI-network. The table lists the weight assigned to each
mRNA/lncRNA sponge interaction in the normal MMI-network based on
the number of the shared miRNAs.

Additional file 5: Tables S5 and S10— The top lncRNAs functioning

as ceRNAs in normal and breast tissues, respectively. The tables list
features of the top ranking hubs, corresponding to the 8% of the total
lncRNAs, in the normal and cancer MMI-network, respectively.

Additional file 6: Figure S1— Functional enrichment analysis in the

normal MMI-network. This figure shows the results of functional
enrichment analysis for genes participating in the two-components of the
MMI-network built from expression data of normal breast tissues. The
enrichment test p-values, obtained by running the GOrilla web tool (http://
cbl-gorilla.cs.technion.ac.il), shown in the picture are adjusted p-values for
multiple testing using the Benjamini and Hochberg method.

Additional file 7: Table S6— Functional enrichment analysis for the

large sub-network in the normal MMI-network. The table is produced
by the GOrilla web tool and lists the results of the enrichment analysis of
biological processes (GO terms) for genes participating in the large
sub-network of the normal MMI-network.

Additional file 8: Table S7— Functional enrichment analysis for the

small sub-network in the normal MMI-network. The table is produced
by the GOrilla web tool and lists the results of the enrichment analysis of
biological processes (GO terms) for genes participating in the small
sub-network of the normal MMI-network.

Additional file 9: Figure S2—MMI-network built in breast cancer.

This figure shows the MMI-network built from expression data of breast
cancer tissues. Nodes in this network represent both mRNAs and lncRNAs;
edges represent miRNAs mediating their interactions.

Additional file 10: Table S8—MMI-network built in breast cancer

tissues. The table lists the cancer MMI-network in format abc (i.e., node1,
node2, interaction) with additional information on nodes (lncRNAs,
mRNAs) and edges (miRNAs).

Additional file 11: Table S9—Weights of the sponge interactions in

the cancer MMI-network. The table lists the weight assigned to each
mRNA/lncRNA sponge interaction in the cancer MMI-network based on
the number of the shared miRNAs.

Additional file 12: Figure S3— Functional enrichment analysis in the

cancer MMI-network This figure shows the results of the functional
enrichment analysis for genes participating in the largest component of
the MMI-network built from expression data of breast cancer tissues. The
enrichment test p-values, obtained by running the GOrilla web tool (http://
cbl-gorilla.cs.technion.ac.il), shown in the picture are adjusted p-values for
multiple testing using the Benjamini and Hochberg method.

Additional file 13: Table S11 — Functional enrichment analysis for

the large sub-network in the cancer MMI-network. The table is
produced by the GOrilla web tool and lists the results of the enrichment
analysis of biological processes (GO terms) for genes participating in the
large sub-network of the cancer MMI-network.

Additional file 14: Figure S4— Correlation networks for normal and

cancer tissues. This figure shows the correlation networks of highly
correlated mRNA/lncRNA pairs for normal breast (A) and breast cancer (B)
tissues. Nodes aremRNAs and lncRNAs and a link is present if the connected
nodes (mRNA/lncRNA pairs) are highly correlated (i.e., their correlation
exceeds the 99th percentile of the overall correlation distribution).

Additional file 15: Table S12 — List of the TCGA data sample

identifiers. The table lists TCGA data sample identifiers for the 72
individuals included in our analysis.

Additional file 16: Figure S5—Distribution of the sensitivity

correlation values. The figure shows the distribution of the sensitivity
correlation values and the threshold chosen to select sponge interactions.

Additional file 17: Table S13 —Annotation of miRNA/mRNA

interactions from the normal breast MMI-network to predicted and

validatedmiRNA targets. The table provides annotations of
miRNA/mRNA interactions extracted from the normal breast MMI-network
to miRNA target predictions from TargetScan and experimentally validated
miRNA targets from miRTarbase.

Additional file 18: Table S14 —Annotation of miRNA/mRNA

interactions from the breast cancer MMI-network to predicted and

validatedmiRNA targets. The table provides annotations of
miRNA/mRNA interactions extracted from the breast cancer MMI-network
to miRNA target predictions from TargetScan and experimentally validated
miRNA targets from miRTarbase.
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