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Abstract The study on antitumor activities of artemisinin and its derivatives has been closely focused on in recent years.

Herein, 2D and 3D QSAR analysis was performed on the basis of a series of artemisinin derivatives with known

bioactivities against the non-small-cell lung adenocarcinoma A549 cells. Four QSAR models were successfully established

by CoMSIA, CoMFA, topomer CoMFA and HQSAR approaches with respective characteristic values q2 = 0.567,

R2
= 0.968, ONC = 5; q2 = 0.547, R2

= 0.980, ONC = 7; q2 = 0.559, R2
= 0.921, ONC = 7 and q2 = 0.527,

R2
= 0.921, ONC = 6. The predictive ability of CoMSIA with r2 = 0.991 is the best one compared with the other three

approaches, such as CoMFA (r2 = 0.787), topomer CoMFA (r2 = 0.819) and HQSAR (r2 = 0.743). The final QSAR

models can provide guidance in structural modification of artemisinin derivatives to improve their anticancer activities.
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1 Introduction

Cancer ranks the top public health threat and is the main

cause of death in China [1]. In 2015, more than 4 million

new cancer cases and nearly three million deaths occurred

in China, in which lung cancer is the most common inci-

dent cancer and it is also the highest mortality cancer.

Although a series of chemical therapies are available, many

of which would accompany with serious side effects due to

the chemical toxicity to normal cells. Additionally, drug

resistance during the cancer treatment is of great challenge

to be overcame. These challenges urged researchers to

develop novel antitumor drugs.

Natural products are treasure in the process of drug

discovery. Artemisinin (ART), a sesquiterpene lactone

natural product, isolated from the traditional Chinese

medicinal herb Artemisia annua L., is a powerful

antimalarial drug. In 1991, Scholars reported that artemi-

sinin derivatives showed inhibitory activity to leukemia

P388 cell [2]. Afterward, Henry’s group revealed that

dihydroartemisinin combined with holotransferrin exhib-

ited powerful inhibitory activity against leukemia cell line

and breast cancer cells with minor effects on normal human

lymphocytes [3, 4]. In the past decades, increasing publi-

cations have been disclosed in the area of the artemisinin

and its derivatives as antitumor compounds [5–7].

Over the years, Artemisinin was widely used as anti-

malarial drug and potential anticancer lead compound, but

the clear target and mechanism are still unknown. Fur-

thermore, there are some pharmacokinetic limitations of

artemisinin, such as low solubility in water or organic

media, low bioavailability and short plasma half-life

in vivo [8]. To overcome these problems, a series of arte-

misinin derivatives such as artemether, Artemisia ether,

dihydroartemisinin, artesunate were designed to improve

both antimalarial and anticancer activities [9].

Quantitative structure activity relationship (QSAR)-

which encompasses several analysis methods such as

comparative molecular field analysis (CoMFA),
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Table 1 Structures and corresponding pIC50 values of artemisinin derivatives

Compounds Ar Y X pIC50

1 – – – 4.100

2 C6H5 – – 5.911

3 2–Br–C6H4 – – 6.130

4 3–Br–C6H4 – – 6.359

5 4–Br–C6H4 – – 7.327

6 3,4–(OMe)2–C6H3 – – 6.655

7 3–C6H4O–C6H4–CF3 – – 6.764

8 C6H5 – – 6.179

9 2–F–C6H4 – – 6.438

10 4–F–C6H4 – – 6.514

11 2–Cl–C6H4 – – 4.974

12 2–Br–C6H4 – – 6.714

13* 3–Br–C6H4 – – 7.070

14 4–Br–C6H4 – – 7.408

15 3–C6H4O–C6H4–CF3 – – 6.853

16 C6H5 (CH2)2 O 5.619

17 2––Cl–C6H4 (CH2)2 O 6.073

18 2–Br–C6H4 (CH2)2 O 6.303

19 4–CN–C6H4 (CH2)2 O 5.146

20* 4–OMe–C6H4 (CH2)2 O 5.199

21 2,4–(OMe)2–C6H3 (CH2)2 O 5.146

22 3,4–(OMe)2–C6H3 (CH2)2 O 5.083

23 3–OMe,4–Obz–C6H3 (CH2)2 O 5.313

24 C6H5 (CH2)5 O 5.334

25* C6H5 (CH2)2 NH 5.327

26 2–F–C6H4 (CH2)2 NH 5.366

27* 3–F–C6H4 (CH2)2 NH 5.327

28 4–F–C6H4 (CH2)2 NH 5.337

29* 3–Cl–C6H4 (CH2)2 NH 5.522

30 4–Cl–C6H4 (CH2)2 NH 5.366

31 2–Br–C6H4 (CH2)2 NH 5.337

32* 3–Br–C6H4 (CH2)2 NH 5.318

33 4–Br–C6H4 (CH2)2 NH 5.376

34 4–NMe2–C6H4 (CH2)2 NH 5.356

35 2–naphthyl (CH2)2 NH 5.275

36 C6H5 (CH2)2 NCH3 4.891

37 2–F–C6H4 (CH2)2 NCH3 4.854

38* 3–F–C6H4 (CH2)2 NCH3 4.872

39* 2–Cl––C6H4 (CH2)2 NCH3 5.214
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comparative molecular similarity indices analysis (CoM-

SIA) [10, 11], topomerCoMFA [12] and hologram QSAR

(HQSAR) [13] was widely used in drug development

process. Numerous researches documenting QSAR studies

on the antimalarial artemisinin have been published. Cheng

and co-workers established CoMFA and CoMSIA models

to study artemisinin and its analogues as antimalarial

agents. They concluded that the CoMFA and CoMSIA

models had a good predictive ability and well matched the

docking results [10]. Avery group reported the CoMFA and

HQSAR analysis on a series of 211 artemisinin derivatives

with known antimalarial activity [14]. Yadavand co-

workers employed QSAR and molecular docking to screen

the novel antimalarial artemisinin derivatives [15]. By

contrast, there are few QSAR studies on the anticancer

property of artemisinin. In this work, traditional QSAR,

topomer QSAR and HQSAR based on 46 compounds

against A549 cell were performed to get useful information

to guide the structural modification of artemisinin for

improvement of its antitumor activities.

2 Experimental Section

2.1 Data Sets

An array of artemisinin derivatives in Table 1 with repor-

ted anticancer activities against the non-small-cell lung

adenocarcinoma A549 cells were selected [16, 17]. The

molecular structures were prepared by D.S 4.0 (Discovery

Studio 4.0 Client). Those 3D structures were optimized by

energy minimization with SYBYL- 9 2.0. The IC50 values

in units were converted in logarithmic unit (pIC50). The

relationships between the chemical structures and pIC50

against A549 were listed in Table 1. During the develop-

ment of QSAR models, the rational selection of training

and test sets have an impact on the predictive ability of the

established model [18]. The marked nine compounds by *

in Table 1 were selected as the test set.

2.2 Structure Preparation and Alignments

The results of CoMFA and CoMSIA analysis depend on

the molecular alignment [19]. It is vital to choose a tem-

plate compound at this stage [20]. The geometry opti-

mizations of the ligands were performed by Powell

conjugated gradient algorithm method using the TPIPOS

force field until the root-mean-square (RMS) deviation

reached 0.005 kcal/mol. The Gasteiger Hückel approach

was applied to calculate partial atomic charges. In this

study, a ligand-based alignment was adopted since the

receptor is unknown. Compound 14, the most potent

inhibitor among those selected ligands, was chosen as the

template which all molecules were aligned based on. The

alignment of structures was shown in Fig. 1.

2.3 CoMFA and CoMSIA Methodology

In CoMFA, the energies parameters of steric and electro-

static of the CoMFA were set by the default probe, i.e., a

Fig. 1 The alignment of 46 artemisinin derivatives

Table 1 continued

Compounds Ar Y X pIC50

40 4–Cl–C6H4 (CH2)2 NCH3 5.134

41 2–Br–C6H4 (CH2)2 NCH3 4.793

42 4–Br–C6H4 (CH2)2 NCH3 5.275

43 2,4–Me2–C6H3 (CH2)2 NCH3 5.115

44 3(3–CF3C6H4)OC6H4 (CH2)2 NCH3 5.602

45 C6H5 1,2–C6H4 NCH3 4.962

46* C6H5 CH = CH(cis) NCH3 4.716

*Molecules used in the test set
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sp3 carbon atom and ? 1 charge as steric and electrostatic

probe respectively. And Tripos force field with a distance-

dependent dielectric constant at all intersections with a

fixed grid spacing of 2 Å was used. The maximum steric

and electrostatic energy thresholds were set to be

30 kcal/mol. Firstly, the partial least squares (PLS) analy-

sis was performed based on the CoMFA descriptors as

independent variables and pIC50 values as dependent

variables. The leave-one-out (LOO) cross-validation

method was used in regression analysis. The column fil-

tering was set to be 3 kcal/mol to improve the signal–noise

ratio by omitting those lattices points which energy varia-

tion was below this threshold. Then the cross-validation

was performed to obtain the optimum number of compo-

nents (ONC), standard error of predictions (SEP) and cross-

validation squared correlation coefficient (q2). The opti-

mum number of components (ONC) was used for the non-

cross validation PLS analysis to build the final model with

the corresponding conventional correlation coefficient (r2),

standard error of estimate (SEE)and the F value.

Five CoMSIA fields including steric, electrostatic,

hydrophobic, hydrogen bond donor and hydrogen bond

acceptor have been evaluated using the default probe,

charge, and grid spacing which were similar to the CoMFA

model. The column filtering was set to be 3 kcal/mol and

the attenuation factor was set to be 0.3. The subsequent

parameters were obtained in the same way as described

above in CoMFA.

2.4 TopomerCoMFA

TopomerCoMFA, an objective QSAR methodology,

accelerates lead optimization [12]. Being different from the

traditional CoMFA, topomerCoMFA is a No-Alignment

CoMFA [21]. In topomerCoMFA, electrostatic and steric

fields were calculated for the fragments from 3D structural

cleavage.

2.5 Hologram Quantitative Structure–Activity

Relationship

Compared with the traditional 2D fingerprint, HQSAR

encodes more information including branched and cyclic

fragments as well as stereochemistry. The hologram was

constructed by the HQSAR descriptors which encoded

topological and compositional molecular information [22].

In general, the best HQSAR model was obtained by various

hologram lengths and the fragment.

In order to instruct the predictive ability of QSAR

models, the predictive correlation coefficient (r2) was cal-

culated using the following equation based on the test set:

r2 ¼
SD� PRESS

SD

In this equation, SD indicates the sum of square of the

difference between the true values of the test set and the

mean data of the training set; PRESS is the sum of square

of the difference between the predicted and the observed

activities of the test set.

3 Results and Discussion

In this work, 37 artemisinin derivatives were randomly

selected as a training set to generate QSAR models. The

rest of molecules were used to validate the model as a test

set. For an ideal model, the following values with regard to

statistics parameters should be required. The predictive

Table 2 Summary of the statistical results of CoMFA, CoMSIA, topomerCoMFA and HQSAQ models

Method CoMFA CoMSIA Topomer CoMFA HQSAR

Optimum components 7 5 7 6

q2 0.547 0.567 0.559 0.527

SEP 0.579 0.547 0.57 0.581

R2 (training set) 0.980 0.968 0.921 0.921

SEE (training set) 0.122 0.148 0.24 0.238

r2 (test set) 0.787 0.991 0.819 0.743

F-ratio 199.966 189.930 – –

Best length – – – 151

Intercept – – 4.83 –

Field contribution Steric = 0.472

Electrostatic = 0.528

Steric = 0.095

Electrostatic = 0.363

Hydrophobic = 0.312

Acceptor = 0.23

– –
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correlation coefficient r2 of the test set must be greater than

0.50 and the cross-validation squared correlation coeffi-

cient q2 of the training set must better than 0.5. In addition,

Pearson correlation coefficient R2 values and standard error

of estimate (SEE) as well as the former quantity vary in the

range 0–1, of which 1 represents a perfect model and 0

means a model without any predictive ability. The opti-

mum results are listed in Table 2. The statistics parameters

q2, R2 (training set) and r2 (test set) are 0.567, 0.968 and

0.991 respectively, which indicated that the CoMSIA rep-

resented the best model.

PLS analysis was performed using the training and test

sets with pIC50 values. Debugging the column filtering of 3

led to q2 = 0.547 and optimum number of compo-

nents = 7. The statistics parameters of CoMFA model

were listed in Table 2, in which a high R2 (0.98) and a low

SEE (0.122) were obtained from the training set and an

estimated F-ratio value of 199.966. In the model, the steric

and electrostatic fields contributed 47.2 and 52.8%

respectively. These data showed that the CoMFA model is

reasonable.

A series of models were established by random combi-

nation of five fields such as electrostatic (E), steric (S),

hydrophobic (H), hydrogen bond acceptor (A) and hydro-

gen bond donor (D). Among these models, four fields (S/E/

H/A) were selected to establish the best CoMSIA model.

The statistics results in Table 2 showed that the cross-

validation correlation coefficient q2 = 0.567, optimum

number of components = 5, and the SEP = 0.547. The

non-cross-validated coefficient R2 of 0.968 with a low SEE

of 0.148 was obtained. The contributions of S, E, H and A

were 9.5, 36.3, 31.2 and 23% respectively. These values

indicate that a reliable CoMSIA model was constructed

successfully.

In topomerCoMFA, the first step is to split molecules

into fragments from the rotatable bonds. The best data was

obtained by splitting the C-O bonds at the C10 of training

and test sets, as shown in Fig. 2 when compound 14 was

chosen as template. Test set was selected in the same way

as described in CoMFA and CoMSIA models. The

statistics results were listed in Table 2 with q2 = 0.559

when the optimum number of components was set to be 7

and R2
= 0.921 with a low SEE of 0.24. The r2 of 0.819 for

test set was obtained by the equation as mentioned above.

The corresponding predictive activity of the training and

test sets and contribution values of each fragment were

exhibited in Table 3.

The training and test sets were selected in the same

means for CoMFA, CoMSIA and topomerCoMFA models.

QSAR analysis was performed by screening the hologram

lengths of 97, 151, 199, 257, 307 and 353, using the

fragment size of 5–8 to select the best model based on the

least standard error. The best results were summarized in

Table 2, in which a cross-validated q2 = 0.527 with 6

optimal components and a hologram length of 151 were

obtained. The conventional R2 value and standard error of

estimate were 0.921, 0.238 respectively.

3.1 Validation of the QSAR Models

The statistics results of the best models for these four

QSAR methods were collected in Table 2. The experi-

mental data, prediction values and its residues of the

training set of the CoMFA, CoMSIA and HQSAR models

were summarized in Table 4, and the rest of 9 molecules in

the test set were used to verify the predictive capacity of

these models as shown in Table 5. The relevant data of the

best topomerCoMFA was exhibited in Table 3. From the

Table 2, rational r2 values were obtained to validate the

reliability and predictability of the CoMFA, CoMSIA,

HQSAR and topomerCoMFA models (0.787, 0.991, 0.743

and 0.819 respectively). The Fig. 3 graphically explained

the correlation of predicted and experimental data.

These four QSAR models showed that there were good

linear relationships between the true values and predicted

values for the group of the training set and the test set

(Fig. 3). In comparison, the dispersity of the HQSAR is

distinctly higher than the other QSAR models, indicating

that 3D QSAR methods (CoMFA, CoMSIA, and topo-

merCoMFA) are more suitable to provide crucial structural

modificative information than 2D QSAR (HQSAR).

Meanwhile, the CoMSIA model has better predictive

ability than CoMFA and topomerCoMFA models observed

from the Table 2 and the Fig. 3. It is assumed that four

fields (A/H/S/E) from the CoMSIA model are more com-

prehensive than two fields (S/E) from CoMFA and topo-

merCoMFA models.

3.2 Graphical Analysis of QSAR Models

In this work, contour maps were calculated using the PLS

analysis (StDev * Coeff) and the contour plots of 3D

QSAR models with compound 14 as the template areFig. 2 Splitting mode was used in topomerCoMFA
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Table 3 Experimental and predicted data of all compounds using topomerCoMFA with contribution values of each fragment

Compounds pIC50 (exp.) pIC50 (pre.) Res. Contribution of R2

1 4.1 4.0847 0.0153 - 0.7422

2 5.9111 6.156 - 0.2449 1.3291

3 6.1301 5.9517 0.1784 1.1248

4 6.3595 6.3803 - 0.0208 1.5534

5 7.3279 7.4108 - 0.0829 2.5839

6 6.6556 6.5735 0.0821 1.7466

7 6.7645 6.7876 - 0.0231 1.9607

8 6.1791 6.156 0.0231 1.3291

9 6.4389 6.3058 0.1331 1.4789

10 6.514 6.5291 - 0.0151 1.7022

11 4.9746 5.896 - 0.9214 1.0691

12 6.7144 5.9517 0.7627 1.1248

13 7.0705 6.3803 0.6902 1.6066

14 7.4089 7.4108 - 0.0019 2.5839

15 6.8538 6.7876 0.0662 1.9607

16 5.6197 5.53 0.0897 0.7031

17 6.0731 6.1108 - 0.0377 1.2839

18 6.3036 6.1568 0.1468 1.3299

19 5.1469 5.0149 0.132 0.188

20 5.1992 5.5107 - 0.3115 0.6838

21 5.1466 5.2192 - 0.0726 0.3923

22 5.083 5.0012 0.0818 0.1743

23 5.313 5.3631 - 0.0501 0.5362

24 5.334 5.2812 0.0528 0.4544

25 5.3279 5.3531 - 0.0252 0.5262

26 5.3665 5.3472 0.0193 0.5203

27 5.3279 5.2399 0.088 0.413

28 5.337 5.4063 - 0.0693 0.5794

29 5.5228 5.2696 0.2532 0.4427

30 5.3665 5.4498 - 0.0833 0.6229

31 5.337 5.3434 - 0.0064 0.5165

32 5.3187 5.2446 0.0741 0.4177

33 5.3767 5.4738 - 0.0971 0.6469

34 5.3565 5.4058 - 0.0493 0.5789

35 5.2757 5.2608 0.0149 0.4339

36 4.8913 4.9147 - 0.0234 0.0878

37 4.8548 4.8832 - 0.0284 0.0563

38 4.8728 4.8325 0.0403 0.0056

39 5.2146 4.9323 0.2823 0.1054

40 5.134 5.1027 0.0313 0.2758

41 4.793 4.9289 - 0.1359 0.102

42 5.2757 5.1671 0.1086 0.3402

43 5.1157 5.1318 - 0.0161 0.3049

44 5.602 5.5867 0.0153 0.7598

45 4.9625 4.9362 0.0263 0.1093

46 4.7167 4.9712 - 0.2545 0.1443
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shown in Fig. 4. In this section, the molecular skeleton was

labeled as R1, R2, and R3 regions for the sake of contrastive

analysis.

In the steric contour maps, the green contours (80%

contributions) represent that bulk group is a favorable

substituent and the yellow contours (20% contributions)

show that bulk group is an unfavorable substituent at this

position. In the CoMFA model, a big green polyhedron at

the R2 portion means that big groups are useful to improve

the activities, which matches the case that when the groups

like Br, methoxyl replace the hydrogen atom in this posi-

tion, compounds 3, 4, 5, 6, 7 have a higher activity than

compound 2, and compound 15 is higher than compound 8.

Two yellow contours appear in the map, one of which is

near the R3 region and the other is above the C–9 methyl.

The steric contour maps of the CoMSIA (Fig. 4e) and the

Table 4 Experimental dates, prediction values and its residues of the training set used for the CoMFA, CoMSIA and HQSAR

Compounds pIC50 CoMFA CoMSIA HQSAR

Pred. Res. Pred. Res. Pred. Res.

1 4.1 4.078 0.022 4.331 - 0.231 4.204 - - 0.104

2 5.9111 6.049 - 0.1379 5.627 0.2841 5.664 0.2471

3 6.1301 6.188 - 0.0579 6.395 - 0.2649 6.276 - 0.1459

4 6.3595 6.276 0.0835 6.591 - 0.2315 6.116 0.2435

5 7.3279 7.202 0.1259 7.036 0.2919 7.246 0.0819

6 6.6556 6.629 0.0266 6.501 0.1546 6.187 0.4686

7 6.7645 6.841 - 0.0765 6.83 - 0.0655 6.711 0.0535

8 6.1791 6.58 - 0.4009 6.383 - 0.2039 6.514 - 0.3349

9 6.4389 6.309 0.1299 6.426 0.0129 6.481 - 0.0421

10 6.514 6.621 - 0.107 6.896 - 0.382 6.679 - 0.165

11 4.9746 4.915 0.0596 4.848 0.1266 5.429 - 0.4544

12 6.7144 6.637 0.0774 6.693 0.0214 6.276 0.4384

14 7.4089 7.066 0.3429 7.289 0.1199 7.246 0.1629

15 6.8538 6.866 - 0.0122 6.671 0.1828 7.192 - 0.3382

16 5.6197 5.749 - 0.1293 5.633 - 0.0133 5.685 - 0.0653

17 6.0731 6.05 0.0231 5.902 0.1711 5.795 0.2781

18 6.3036 6.35 - 0.0464 6.293 0.0106 6.204 0.0996

19 5.1469 5.118 0.0289 5.17 - 0.0231 5.435 - 0.2881

21 5.1466 5.122 0.0246 5.133 0.0136 5.193 - 0.0464

22 5.083 5.005 0.078 5.075 0.008 5.326 - 0.243

23 5.313 5.335 - 0.022 5.141 0.172 5.26 0.053

24 5.334 5.402 - 0.068 5.329 0.005 5.383 - 0.049

26 5.3665 5.387 - 0.0205 5.543 - 0.1765 5.199 0.1675

28 5.337 5.368 - 0.031 5.312 0.025 5.181 0.156

30 5.3665 5.436 - 0.0695 5.382 - 0.0155 5.244 0.1225

31 5.337 5.281 0.056 5.24 0.097 5.614 - 0.277

33 5.3767 5.373 0.0037 5.405 - 0.0283 5.773 - 0.3963

34 5.3565 5.327 0.0295 5.333 0.0235 5.357 - 0.0005

35 5.2757 5.265 0.0107 5.414 - 0.1383 5.238 0.0377

36 4.8913 4.898 - 0.0067 4.771 0.1203 4.777 0.1143

37 4.8548 4.858 - 0.0032 4.88 - 0.0252 4.844 0.0108

40 5.134 5.225 - 0.091 5.387 - 0.253 4.9 0.234

41 4.793 4.713 0.08 4.787 0.006 4.845 - 0.052

42 5.2757 5.194 0.0817 5.162 0.1137 5.357 - 0.0813

43 5.1157 5.075 0.0407 5.164 - 0.0483 5.087 0.0287

44 5.602 5.628 - 0.026 5.587 0.015 5.484 0.118

45 4.9625 4.98 - 0.0175 4.982 - 0.0195 5 - 0.0375
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topomerCoMFA (Fig. 4c) models are similar with the

CoMFA steric map.

Similarly, in the electrostatic contour maps, the blue

contours (80% contributions) means that the positive

charged groups are good for the active values while the red

contours (20% contributions) indicate that positive charged

groups would decrease the activity in this region. In the

CoMFA model, a large blue contour near the region of R2

indicates that the positive charged groups in this position

are favorable to the activity. Some red contours appearing

at the R1 and R3 suggest that the negative charged groups

were useful to increase the inhibitory activity in this area. It

can be explained that fluorinated and bromine substituent

compounds 3 and 9, 12 have a better activity than non-

Table 5 Experimental dates, prediction values and its residues of the test set used for the CoMFA, CoMSIA and HQSAR

Compounds pIC50 CoMFA CoMSIA HQSAR

Pred. Res. Pred. Res. Pred. Res.

13 7.0705 6.803 0.2675 6.998 0.0725 6.967 0.1035

20 5.1992 5.157 0.0422 5.146 0.0532 5.433 - 0.2338

25 5.3279 5.831 - 0.5031 5.371 - 0.0431 5.192 0.1359

27 5.3279 5.49 - 0.1621 5.394 - 0.0661 5.197 0.1309

29 5.5228 5.147 0.3758 5.378 0.1448 4.949 0.5738

32 5.3187 5.62 - 0.3013 5.358 - 0.0393 5.619 - 0.3003

38 4.8728 5.354 - 0.4812 4.876 - 0.0032 4.596 0.2768

39 5.2146 4.87 0.3446 5.215 - 0.0004 4.843 0.3716

46 4.7167 4.748 - 0.0313 4.689 0.0277 5.343 - 0.6263
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Fig. 3 Scatter diagram analysis using experimental and predicted data of QSAR models. a CoMFA; b CoMSIA; c topomerCoMFA; d HQSAR
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substituted compounds 2 and 8. The electrostatic field

distribution of the CoMSIA and the topomerCoMFA

models are also similar with the CoMFA as shown in

Fig. 4d, f.

Particularly, in the CoMSIA model, the hydrogen bond

acceptor and hydrophobic contour maps are exhibited in

Fig. 4g, h. The favored and disfavored hydrogen bond

acceptor is represented using cyan (80% contributions) and

orange (20% contributions) polyhedrons. There are two

cyan polyhedrons near R1, R3 and an orange contour at the

region of R2 as shown in Fig. 4g. On the other hand, in the

hydrophobic contour maps, the violet regions (80% con-

tributions) means that hydrophobic groups are favorable for

improving activity in this place, where as white regions

(20% contributions) indicate that hydrophobic groups are

disfavored. There is a large violet polyhedron near the R2

of the compound 14, and it means that the hydrophobic

groups in this area are benefic for increasing the bioactiv-

ity. It is exampled by Compounds 6, 7 and 15 with alkoxy

substituent showing good bioactivity in dataset. There is

also a disfavored white contour around the benzene ring

which means that hydrophilic groups improve the bioac-

tivity in this region.

The HQSAR model was performed to reach two major

objectives listed as following: (a) accurate prediction of the

activities of untested compounds; (b) visual display of the

contributions of fragments to the activity of the com-

pounds. The atomic contribution maps which display the

(a)

R1

R2

R3

(e) (f)

(g) (h)

(b)

R1 R1

R1
R1

R1

R1

R1

R2
R2

R3

R3

R2

R3

R2

R3 R3

R2

R2
R2

R3

R3

(c)

(d)

Fig. 4 3D QSAR models contour plots in combination with

compound 14 as the template. a CoMFA steric field; b CoMFA

electrostatic field; c TopomerCoMFA steric field; d TopomerCoMFA

electrostatic field; e CoMSIA steric field; f CoMSIA electrostatic

field; g CoMSIA hydrogen bond acceptor field; h CoMSIA hydropho-

bic field
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individual atomic contributions to the molecule’s activity

by the color of atoms are shown in Fig. 5. Red, red orange

and orange atoms represent negative contribution, while

the white atoms represent medium contributions to the

model. Yellow, green blue and blue exhibit positive con-

tribution. The most and least active molecules as the

template were shown as compound 14 and 1 respectively in

the contribution maps. The common structural fragments of

artemisinin skeleton are displayed by green blue which

contribute positively to the model (Fig. 5).

3.3 Mode to Optimize Structures

Based on the results of QSAR models, the mode to opti-

mize structures with compound 14 as the template was

summarized in Fig. 6. As illustrated in the oval region, the

small groups, positive charged groups and hydrogen bond

acceptor are favorable for improving activity, while using

the bulky hydrophobic groups or hydrogen bond donor at

the rectangle place is beneficial to promote the bioactivity

of the molecules. In addition, it can improve the molecular

bioactivity if using the negative charged groups, small

groups or hydrogen bond acceptor at the circular region.

4 Conclusion

In this study, Four QSAR models (CoMFA, CoMSIA,

topomerCoMFA, HQSAR) were successfully established

based on a series of artemisinin derivatives with known

bioactivity data, which show promising predictive ability

validated by the test set. We found that the 3D QSAR

models are more suitable than 2D QSAR. Structure–ac-

tivity relationship information (A/H/S/E) were established

from the CoMSIA model with a higher predictive ability

(r2 = 0.991) than CoMFA and topomerCoMFA as well as

HQSAR. The topomerCoMFA showed better results than

CoMFA and also take much less time. In addition, the 2D

atomic contribution maps from HQSAR showed the con-

tribution of individual atoms to the activity of each mole-

cule. Thus, this study will provide reasonable suggestions

for design of new artemisinin derivatives with potent

antitumor activities.
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