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Computational analysis of 
calculated physicochemical and 
ADMET properties of protein-
protein interaction inhibitors
David Lagorce1, Dominique Douguet2, Maria A. Miteva1 & Bruno O. Villoutreix1

The modulation of PPIs by low molecular weight chemical compounds, particularly by orally 

bioavailable molecules, would be very valuable in numerous disease indications. However, it is known 

that PPI inhibitors (iPPIs) tend to have properties that are linked to poor Absorption, Distribution, 

Metabolism, Excretion and Toxicity (ADMET) and in some cases to poor clinical outcomes. Previously 

reported in silico analyses of iPPIs have essentially focused on physicochemical properties but several 

other ADMET parameters would be important to assess. In order to gain new insights into the ADMET 

properties of iPPIs, computations were carried out on eight datasets collected from several databases. 

These datasets involve compounds targeting enzymes, GPCRs, ion channels, nuclear receptors, 

allosteric modulators, oral marketed drugs, oral natural product-derived marketed drugs and iPPIs. 

Several trends are reported that should assist the design and optimization of future PPI inhibitors, 

either for drug discovery endeavors or for chemical biology projects.

Protein-protein interactions (PPIs) represent an essentially untapped source of potential targets for therapeu-
tic interventions. �e modulation of PPIs by low molecular weight chemical compounds, particularly by orally 
bioavailable molecules (i.e., the most convenient, safest and least expensive way to deliver drugs), would be very 
valuable in numerous disease indications1–10. However, it is known that direct orthosteric PPI inhibitors, as they 
most o�en bind to relatively �at surfaces displaying to 3–5 small subpockets, tend to have some physicochemical 
parameters that are correlated to poor PK/PD properties and in some cases to poor clinical outcomes11–25. Along 
the same line of reasoning, the discovery of small molecule chemical probes is critical to gain additional funda-
mental knowledge about the importance of PPI interactions in the health and disease states. For these probes to 
be of interest, they also have to ful�l some ADMET property requirements.

�e analysis of thousands of PPI inhibitors (iPPIs) (hits or molecules that went through optimization cycles) 
reported in several databases15,26,27 indicated that these compounds have in general a high lipophilicity (analyzed 
via log P calculations) and a high molecular weight (MW), properties that are usually not favorable to the devel-
opment of oral drugs (although there are numerous exceptions to these rules11,28,29). While the current state of 
the art investigations performed on iPPIs have essentially focused on physicochemical properties5,14,15,26,27,30–33, 
in the present study, we move beyond these classical physicochemical properties (PC) to also predict several 
Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) parameters using online servers and 
established commercial packages34. In order to outline iPPIs features, computations were carried out on eight 
datasets collected from several databases15,26,35–37. �ese datasets involve compounds targeting enzymes, GPCRs, 
ion channels, nuclear receptors, allosteric modulators, oral marketed drugs (OMD), oral natural product-derived 
marketed drugs (NPD) and iPPIs. As drug-likeness property guidelines were historically derived from data-
sets that did not include natural product molecules38,39, we decided to extract NPD from the OMD group in 
an attempt to gain additional insights on this particular set of compounds. �e present study highlights several 
trends and properties that could be considered to design future PPI inhibitors, either for drug discovery endeav-
ors or for chemical biology projects.
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Results and Discussion
All datasets were prepared and curated using the same protocol including a �ltering step that selects subsets of 
diverse and representative molecules (see the Methods section). �e physicochemical (PC) and ADMET proper-
ties of the di�erent datasets were then computed and compared.

Structural and physicochemical properties. Several research groups have investigated the relationships 
between PC properties, potency and the ADMET pro�le of small compounds23,40–44. �e reasoning behind is that 
PC properties can act on, for instance, e�cacy, safety or metabolism. In addition, small molecule drug candidates 
and chemical probes must be su�ciently soluble and permeable for experimental assays and to reach their site of 
action and engage the primary targets. PC properties can also act on other molecular events as it has been shown 
that target families can be partially di�erentiated on the basis of PC (e.g. GPCR ligands’ mean MW and log P val-
ues were found to be 573Da and 4.8, respectively while for ligands of nuclear receptors the mean MW and log P 
were calculated to be 482Da and 6.945). �us, a better understanding of PC parameters may also assist the design 
of compounds that could bind multiple biological targets and display interesting polypharmacology pro�les, a 
situation that should be bene�cial to the treatment of diseases with complex etiologies45. �e computed PC prop-
erties included in our study are: MW, hydrogen bond donors and acceptors (HBDs and HBAs), log P, log D, the 
topological polar surface area (TPSA), water solubility, the number of formal charges at pH 7 (charges) and rings, 
the maximum size of rings, the topology investigated by the analysis of rotatable bonds, a measure of molecular 
complexity and the number of stereocenters20,23,40–43.

MW is an important property in small molecule drug discovery20,21. Undoubtedly, this property can impact 
various molecular events such as absorption, bile elimination rate, blood brain barrier penetration, interac-
tions with targets (on- and o�-targets) while it is also commonly monitored during the compound optimization 
steps22–25. Our analysis reveals a global trend where iPPIs have on average the highest mean MW (521Da; 95th 
percentile: 731Da) as compared to the other datasets (Table 1). Further, the 95% con�dence intervals (CI) for 
the di�erence between the MW means of the di�erent datasets was computed (Table S1) and we noted that the 
iPPIs mean is statistically signi�cantly di�erent from the means of the other subsets (p <  0.05). �is con�rms a 
well-known tendency of iPPIs that has been previously discussed15,26,27,33. �e “iPPI MW challenge” might how-
ever be partially overcome in the coming years by developing dedicated compound collections that would be 
enriched in molecules with some speci�c 3D characteristics and distribution of properties in space important for 
binding at protein-protein interfaces but independent from properties such as MW or log P46,47.

Lipophilicity, characterized here by computed log P and log D values, plays a crucial role in determining 
several ADMET parameters as well as potency. For instance, solubility and metabolism are more likely to be com-
promised at high lipophilicity values whereas permeability could be decreased when this property is too low48. 
Very hydrophilic compounds are usually not able to di�use passively through membranes, as they hardly enter 
the hydrophobic interior of the lipophilic bilayer while highly lipophilic compounds may poorly permeate mem-
branes as they may get trapped into that bilayer. Furthermore, it has been reported that target promiscuity as well 
as toxicity issues like hERG inhibition, phospholipidosis or cytochrome P450 (CYP) inhibitions are more likely 
to be problematic for compounds with high lipophilicity values22,48. Our analysis shows that iPPIs and nuclear 
receptor compounds have a higher mean log P (4.8; 95th percentile: 7.8 and 7.9, respectively) (Table 1 and S1) 
than the other datasets. Yet, while the two 95% CI overlap (iPPI and nuclear receptor compounds, Table S1), the 
di�erence between the mean log P values are statically signi�cant. �is trend follows for log D values (log P cor-
rected for pKa of ionizable groups) with the highest values for the nuclear receptor compounds and iPPIs (mean 
log D 3.8 and 3.5, respectively, yet the di�erence between the two subset means is not statistically signi�cant). Our 

Enzymes GPCRs Ion Channels Nuclear Receptors Allosterics iPPIs OMD NPD

Mdn M SEM P Mdn M SEM P Mdn M SEM P Mdn M SEM P Mdn M SEM P Mdn M SEM P Mdn M SEM P Mdn M SEM P

MW 396 415 14 673 391 398 13 614 330 337 11 537 396 396 10 569 352 356 11 531 508 521 12 731 316 337 11 540 354 399 16 796

log P 3.1 3.1 0.2 6.4 3.7 3.5 0.2 6.4 3.1 2.9 0.2 5.9 4.6 4.8 0.2 7.9 3.6 3.6 0.2 6.6 4.8 4.8 0.2 7.8 2.8 2.9 0.2 5.7 2.1 2 0.3 6.2

log D (pH 7) 2.3 1.9 0.3 5.5 2.4 2.3 0.3 5.8 2.4 1.8 0.3 5.5 3.9 3.8 0.2 6.2 2.9 2.6 0.3 6.5 3.6 3.5 0.2 7.1 1.5 1.5 0.2 5.2 1.6 1.2 0.4 5.8

TPSA 99 108 5.2 202 69 78 4.6 148 64 71 4.1 149 68 71 3.1 115 64 71 4.1 130 95 101 4 180 70 72 3.8 136 90 103 6.5 214

Rotatable 
Bonds

5 6.5 0.5 16 6 6 0.4 12 4 4 0.3 10 5 5.5 0.4 12 5 5.6 0.5 14 7 7 0.3 12 5 5.3 0.4 11 3 3.9 0.3 10

HBDs 2 2.5 0.2 6 1 1.7 0.2 5 1 1.5 0.1 4 1 1.5 0.1 3 1 1.4 0.2 4 2 2.1 0.2 5 2 1.7 0.1 4 2 2.8 0.3 7

HBAs 6 7 0.3 13 5 5.6 0.3 10 5 4.9 0.2 9 4 4.5 0.2 8 4 4.8 0.3 8 7 7 0.2 11 5 4.9 0.2 9 5 6.5 0.4 15

HBDs +  HBAs 9 9.5 0.5 19 7 7.3 0.4 13 6 6.5 0.3 12 6 6 0.3 10 5 6.1 0.4 12 9 9.1 0.3 15 6 6.6 0.3 12 8 9.3 0.6 19

Rings 3 2.7 0.1 4 3 2.7 0.1 4.5 2 2.1 0.1 3 2 2.4 0.1 4 2 2.2 0.1 4 4 3.7 0.1 5 2 2 0.1 4 1 1.6 0.1 3.5

Aromatic 
Rings

3 2.6 0.1 4 2 2.4 0.1 4 2 2.2 0.1 4 3 2.4 0.1 4 2 2.2 0.1 4 3 3.3 0.1 5 2 1.8 0.1 4 1 0.8 0.1 2.5

Stereocenters 0 1.2 0.2 5 1 1.4 0.2 5 1 1.3 0.2 4 1 1.5 0.2 7 0 0.8 0.1 4 1 1.6 0.2 5 1 1 0.1 4 5 5.7 0.4 18

Fsp3 0.3 0.3 0 0.7 0.4 0.4 0 0.7 0.3 0.3 0 0.8 0.3 0.3 0 0.8 0.3 0.3 0 0.7 0.3 0.3 0 0.5 0.4 0.4 0 0.8 0.6 0.6 0 1

Formal charges 
(pH 7)

0 0.5 0.1 2 1 0.7 0.1 2 0 0.6 0.1 2 0 0.4 0.1 1 0 0.5 0.1 2 1 0.7 0.1 2 1 0.7 0.1 2 0 0.6 0.1 2

Table 1.  Median (Mdn), mean (M), standard error of the mean (SEM) and value at 95% percentile (P) for 

PC computations of all datasets.
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data are similar to previously published ones indicating that our datasets are relevant in representing the di�erent 
compound classes20,21,49.

HBAs and HBDs are other important parameters related to compounds polarity and permeability50. For 
instance, by analyzing PC �uctuation of marketed oral drugs over time51,52, it was found that MW and HBAs have 
signi�cantly increased, whereas lipophilicity and HBDs showed relatively limited changes. �ese results suggest 
that HBDs count may be more crucial than HBAs count20,53 for drug development and may be related to e�orts 
to enhance bioavailability and membrane permeability51. Indeed, it was shown that compounds containing more 
HBAs with less HBDs have favorable pro�le for both these parameters22,53. �is is consistent with previously 
reported notes mentioning that HBDs are o�en the “enemy of medicinal chemists” (i.e., large number of HBDs 
could be the cause of poor permeability, absorption and bioavailability)53,54. Our analysis reveals that NPD mole-
cules display the highest mean count of HBDs (2.8; 95th percentile: 7) than the other populations while the mean 
HBD count for iPPIs was found to be 2.1 and signi�cantly di�erent from those of the other datasets (Table 1). 
Indeed, we note a mean value of 1.7 for the OMD dataset, highly similar to the value reported in ref. 21.

Regarding HBAs, we note that the enzyme dataset and iPPIs have higher values (both datasets are however not 
statically di�erent) with a score of 7 (95th percentile: 13 and 11, respectively).

�e polar surface area (PSA) or the related topological surface area55 (TPSA) is another commonly investi-
gated descriptor related to hydrogen bonding (oxygen and nitrogen atom count) that is important for permeabil-
ity estimation and oral bioavailability20. Numerous predictive models show that these properties decrease when 
TPSA increases56,57 and especially in the case of CNS permeation by passive di�usion where TPSA must be below 
80 Å2 17,58,59. Our analysis shows that enzyme inhibitors tend to have the highest mean TPSA value (108 Å2; 95th 
percentile: 202 Å2) while iPPIs are at 101 Å2 (statistically signi�cantly di�erent from the enzyme datasets (Table 1 
and S1).

�e ionization state of a molecule (acidic, basic… ) plays either a bene�cial or detrimental role on ADMET 
depending on the property involved22. Here, we investigated the formal charges of the compounds and observed 
that OMD, GPCRs and iPPIs tend to have more charged atoms (mean 0.7; 95th percentile: 2) (Table 1). Note that 
iPPIs are statically similar (p-value >  0.05) from OMD, GPCR, ion channels and NPD.

TPSA can be used in combination with rotatable bond count to re�ect molecular �exibility and it was pro-
posed that bioavailability in rat decreases when the number of rotatable bonds and TPSA increase56. In our anal-
ysis, we �nd that iPPIs have the highest mean of rotatable bond count (7; 95th percentile: 12; p <  0.05) (Table 1).

Molecular complexity is another property known to in�uence events such as solubility, oral bioavailability, 
permeability, promiscuity and clinical progression60–62. �is measure accounts for the number of rings and aro-
matic rings, the fraction of carbons that are sp3 hybridized (Fsp3) or the number of stereocenters (these prop-
erties were computed by FAF-Drugs363). For example, more than three aromatic rings in a molecule correlate 
with poorer compound developability and an increased risk of toxicity (hERG and CYP inhibition)61. Further, 
as aromaticity increases log P and a�nity for albumin, it decreases the aqueous solubility as well as the free 
(non-bound) form species62. In our analysis, we note that iPPIs have the highest aromaticity (p <  0.05) with a 
mean count of aromatic rings of 3.3 (95th percentile: 5) (Table 1). �e average Fsp3 value has been shown to posi-
tively correlate with success in drug development as compounds with the highest Fsp3 values are likely to succeed 
at each stage of drug discovery61. Further, this topology descriptor may impact promiscuity and safety since it was 
found that promiscuity decreases as a Fsp3 increases60, although this observation was not con�rmed in a recent 
study64. In their seminal work, Lovering et al. showed that the average Fsp3 was 0.36 for discovery compounds 
and increased to 0.47 for approved drugs. In our analysis, we con�rm this observation as for OMD, the mean Fsp3 
value is 0.4 (95th percentile: 0.8) while it is 0.3 for iPPIs (statically di�erent from the other populations p <  0.05) 
(Table 1). �is observation suggests, as mentioned in46,47,65–67, that tri-dimensionality measured by computing 
Fsp3 values is a parameter that will need to be improved for the development of novel iPPIs.

Solubility in intestinal �uid is another important property of oral drugs since insu�cient solubility may 
limit the intestinal absorption through the portal vein system22,68,69. It is known that the development time of 
poorly soluble molecules tend to require two extra years and ultimately these compounds may lack e�cacy due 
to a lack of exposure20. A strong relationship between solubility and lipophilicity has also been discussed pre-
viously22,38,48,70,71. �e dataset with the highest mean solubility value, expressed as log S, is OMD (− 4.07 and 
light green curve in Fig. 1) followed by NPD (− 4.15) >  ion channels (− 4.2) >  enzymes and allosteric modulators 
(− 4.61) >  GPCRs (− 4.68) >  nuclear receptors (− 5.37) and iPPIs (orange line in Fig. 1) with the lowest mean log 
S value of − 5.62. We also note that solubility on average decreases as MW and log P values increase (computed 
using the pkCSM server72). Solubility is thus another property that will have to be improved for the design of iPPI 
candidates and iPPI focused compound collections.

Drug-likeness rules based on physicochemical properties. Several rules were developed in order 
to guide the selection of compounds in the early phases of drug discovery or to prepare chemical compound 
libraries suitable for drug discovery or chemical biology. Among the �rst applications of combined PC prop-
erties in drug discovery, the rule of 5 (RO5) was formulated in 1997 by Lipinski and colleagues38. �e RO5 was 
derived from the analysis of orally available drugs and clinical candidates but excluded compound classes such 
as antibiotics, antifungals, vitamins and cardiac glycosides. �e RO5 states that a compound is more likely to be 
membrane permeable and easily absorbed via passive di�usion in human intestine if it matches the following cri-
teria log P ≤  5; MW ≤  500; HBAs (O +  N atom count) ≤  10 and HBDs (OH +  NH count) ≤  5. �e RO5 suggests 
that molecules whose properties fell outside some boundaries, would be less likely to be orally absorbed. �ese 
de�ned cuto�s were chosen to capture ~90% of the ranges for the four calculated properties and in the original 
article, it was mentioned that the rule aimed at passive permeation estimation and is violated when two or more 
rules were broken. As a global trend, our analysis shows that 83% of OMD do not violate the RO5 >  ion chan-
nels (81%) >  allosteric modulators (73%) >  enzymes (68%) >  GPCRs (67%) NPD (64%), while only 30% of iPPIs 
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inhibitors displays no violation. If we analyze the iPPIs subset which scores at least two violations (35%), the main 
pair of descriptors involved in RO5 violations is MW-log P (Fig. 1) with a prevalence of 67%. �is observation is 
in line with results reported above as iPPIs are larger and more lipophilic than the other populations.

Another application of the combined analysis of PC properties is the so-called Golden Triangle, a visualization 
tool to help the simultaneous optimization of absorption and the clearance of drugs73. �e approach was sug-
gested to help select molecules that should be potent, metabolically stable and permeable drug candidates. When 
plotting MW versus log D (at pH 7.4) for a series of molecules, it was noticed that compounds with favorable 
permeability and low clearance were concentrated within a triangular shaped area, called the Golden Triangle. 
�is study revealed that in vitro permeable and low clearance compounds are concentrated within a triangular 
area with a log D base-line ranging from − 2.0 to 5.0 at MW =  200Da and a MW apex at 450Da. �ese properties 
were computed for our datasets (Fig. 1) and plots show that iPPIs hardly overlap the Golden Triangle with only 
10.4% of the compounds �tting in the triangle. Similarly, a few 18.4% of the nuclear receptors compounds �t that 
triangle while the other populations have a better match (above 30% with the OMD subset scoring 50%).

Absorption. Absorption can be conceived in simple terms as the process of movement of a drug from an 
extravascular site of administration into the systemic circulation. This process is indeed very complex and 
depends on numerous parameters13,22 of which permeability and compound solubility are crucial ones. As we 
already analyzed the solubility parameter in the previous section, we pursue here with permeability. Considering 

Figure 1. Physicochemical properties. (a) Solubility prediction: Kernel density estimation for water solubility 
(ordinate =  density), expressed by the log S computed by the pkCSM server72. Enzymes (light-blue), ion 
channels (blue), GPCRs (purple), nuclear receptors (yellow), allosteric modulators (brown), iPPIs (orange), 
OMD (light green) and NP (dark green). (b) Rule of 5: Histogram distribution of the number of violations of the 
Lipinski’s RO5. For each dataset we provide the most frequent descriptor pair (and frequency) involved in the 
RO5 violation. (c) Golden Triangle: Golden Triangle representation for each dataset. Molecules (blue points) 
within the golden triangular area are more likely to be more permeable and have a low clearance. In the Golden 
Triangle study, it was reported that in the center of the triangle (log D 1.5, MW 350), 25% of the compounds 
would pass permeability and clearance criteria.
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oral drugs, once they reach the gastro-intestinal tract, they must be able to move through biological membranes 
to enter the systemic circulation. Permeation can occur via transcellular di�usion, paracellular di�usion, and 
transporter-mediated mechanisms, with the former o�en being mimicked in the laboratory using arti�cial mem-
brane assays, such as PAMPA variant, and the latter using MDCK or Caco-2 cell lines22. �e permeability pre-
diction was carried out on our datasets with StarDrop v6.174 updated with a partial least square model built on 
Nordqvist et al. Caco-2 permeability data75 (see Supplementary information Fig. S1). In general, a compound 
is considered to have a high Caco-2 permeability if it has a Papp A →  B >  8 · 10−6 cm/sec. Our results show that 
allosteric modulators, ion channels and nuclear receptors are those which possess the best-predicted permeabil-
ity values (mean log Papp − 4.9; ~ Papp A →  B =  12.5 · 10−6 cm/sec) >  GPCRs (− 4.92) >  OMD (− 4.97) >  NPD 
and iPPIs (− 5.09) >  enzymes inhibitors (− 5.18; ~Papp A →  B =  6.6 · 10−6 cm/sec). Interestingly, these predictions 
indicate that albeit iPPI compounds could be improved with regard to this property, they are not very di�erent 
from the other datasets.

Distribution. �e distribution of drug refers to the distribution of the compound throughout di�erent com-
partments within the body. Some parameters that can be investigated in silico with some degree of accuracy 
include blood–brain barrier (BBB) penetration or central nervous system (CNS) penetration and P-glycoprotein 
(P-gp) e�ux. Moreover, because only the free (unbound) drug is available to interact with the protein target, its 
interaction with plasma proteins has to be monitored during the drug discovery process18.

Plasma protein binding. In Fig. 2, human plasma protein binding (PPB) values were categorized for each 
dataset, and predicted using a proprietary QSAR random forest model implemented in StarDrop v6.174. It can be 
seen that the iPPIs subset displays high binding capacity (90%) and this observation holds for nuclear receptors 
(80%), while OMD scores around 45–50%. For example for iPPIs, this is consistent with high MW, log P22 and 
aromaticity62. �is property may not be problematic for the development of iPPIs as most of the approved drugs 
have a high PPB value (> 50%) and because an equilibrium exists between the free and unbound state (the com-
plex dissociation being proportional to the disappearance of the free form).

Central nervous system penetration. It is known that a high penetration is needed for most of the drugs 
that need to enter the central nervous system (CNS). A molecule must �rst cross the blood-brain barrier (BBB) 
with transcellular passive di�usion and/or active transport mechanisms76. However, BBB penetration should be 
minimized for non-CNS drugs to reduce the possibility of undesired pharmacological events and potential neu-
rotoxicity. It has been suggested that, overall, compared to non-CNS drugs, CNS drugs tend to be more lipophilic 
(a log D value in the range 1–3 is recommended), more rigid, have a lower MW (≤ 450 Da), fewer hydrogen-bond 
acceptors (≤ 5), fewer formal charges (particularly negative charges), and a lower PSA (≤ 80 Å2)59. Here, the clas-
si�cation model of StarDrop v6.174 categorized iPPIs as the dataset with the highest number of compounds (87%) 
which are predicted to not penetrate the CNS as compared to the other datasets following the order: enzymes 
(80%) < GPCRs and NPD (65%) < OMD (58%) < ion channels (55%) < nuclear receptors (52%) and allosteric 
modulators (48%) (Fig. 2). If we take into account the three cuto�s MW (≤ 450), TPSA (≤ 80) and HBAs (≤ 5),  
then only 11% of the iPPI dataset have CNS-like properties.

P-glycoprotein efflux. Transporters play numerous roles in ADMET events, and P-gp is an important mem-
ber that belongs to the ATP-Binding Cassette superfamily. �ese proteins use ATP as an energy source, allow-
ing them to pump substrates against a concentration gradient13,77–79. P-gp is by far the most well-studied drug 
transporter and it is found in cells throughout the body, including those lining the intestine and the blood-brain 
barrier22. P-gp is believed to play an important role in de�ning the extent of distribution of drug molecules as a 
result of its ability to remove/extract a structurally diverse range of molecules from di�erent compartments in 
the body. �is transporter and some related others can reduce drug accumulation in certain tissues22,79. In addi-
tion, if a drug is subject to signi�cant P-gp e�ux, its distribution, absorption and elimination could be altered by 
P-gp inhibitors and evidence for drug-drug interactions due to inhibition of P-gp have been reported in several 

Figure 2. Some properties related to distribution. (a) Plasma protein binding: Plasma protein binding 
classi�cation computed by StarDrop v6.174. Compounds with less than 90% bound were classi�ed as low 
binding molecules while the others are high binders. (b) Blood-brain-barrier penetration: Blood-brain-barrier 
penetration (BBB) classi�cation predicted by StarDrop v6.174. (c) P-gp prediction: P-gp inhibitors classi�cation 
predicted by StarDrop v6.174.
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human clinical studies80. MW and log P are important PC parameters for P-gp e�ux and, in general, when the 
MW increases, the P-gp e�ux increases. P-gp e�ux is reduced for molecules with a log P <  3 or >  522. In order 
to evaluate this property, we decided to predict molecules that could act as P-gp substrates with the statistical 
model implemented in StarDrop v6.1. We note a higher proportion of P-gp substrates for the iPPIs dataset (75%) 
compared to GPCR (60%) >  enzymes (54%) >  ion channels and NPD (43%) >  nuclear receptors (42%) >  OMD 
and allosteric modulators (36%) (Fig. 2).

In conclusion for this section, our study shows that iPPIs are predicted to have high Plasma Protein Binding, 
to not penetrate the CNS and to be potential/likely substrates for P-gp transporters.

BDDCS. �e Biopharmaceutics Drug Distribution and Classi�cation System (BDDCS) attempts to split com-
pounds into four classes based on their permeability and solubility properties. �is system can be helpful in 
predicting the e�ects that drug transporters will have on a drug’s pharmacokinetic pro�le and this classi�cation 
may assist some steps of the drug discovery process81. �e BDDCS is a modi�cation of the Biopharmaceutics 
Classi�cation System (BCS) proposed by Amidon et al.82 that is based on the experimentally determined per-
meability and solubility characteristics of a drug compound. In the BDDCS system, Class I =  High solubil-
ity −  High permeability −  High extent of Metabolism; Class II =  Low solubility −  High permeability −  High 
extent of Metabolism; Class III =  High solubility −  Low permeability −  Poor Metabolism; and Class IV =  Low 
solubility −  Low permeability −  Poor Metabolism. �ere are many additional applications of the BDDCS system 
such as trying to predict drug-drug interactions, elimination routes, central nervous system exposure, toxicity, 
and environmental impacts of drugs to cite a few of them83. Here we decided to compare our datasets with over 
1000 drugs with known BDDCS classes as compiled by Benet et al. and Hosey et al.83,84. To this end, we used the 
DataWarrior v4.4.3 package85 to map compounds on a trivariate plot comprising log P, water solubility (log S) 
and the compound shape index (Fig. 3; the shape index is further described in the �gure legend). First, the gen-
erated plot shows that the combination of these three descriptors can cluster the four BDDCS classes. Although 
it is a visual representation of the data and not a prediction model, we note that the iPPIs dataset (orange dots) 
overlaps primarily class 2 molecules (yellow dots) suggesting that many iPPI compounds belong to the Low sol-
ubility – High permeability – High extent of Metabolism class 2. We also analyzed the other datasets but no clear 
tendencies were noticed except that the nuclear receptor group better overlaps the properties of BDDCS class 2 
compounds while OMD are distributed over the four classes (data not shown).

Metabolism, metabolic stability and clearance. Metabolism is the biotransformation of drugs 
and xenobiotic compounds to facilitate their excretion. Metabolic liability can lead to a number of issues, 
such as poor bioavailability due to enhanced/high clearance; toxic e�ects caused by reactive metabolites and 
drug-drug interactions (DDIs) including enzyme inhibition, induction, and mechanism-based inactivation86. 
Metabolic processes are mainly catalyzed by the so-called phase I (oxidation, reduction, and hydrolysis) and II 
(sulfo-conjugation among others) enzymes, which are, for the most part, produced in the liver. In order to inves-
tigate these events, several experimental approaches can be used. For example, assaying hepatic microsomes that 
contain hepatic enzymes to test the metabolic stability of a molecule. Other assays with hepatocytes or recombi-
nant enzymes usually provide complementary information87. Alternatively, several in silico methods have also 
been published18,22,23,88–91. Finally, the drug elimination process called clearance generally results from both liver 

Figure 3. BDDCS. Mapping of the iPPI population (orange) in a trivariate scatterplot (generated with 
DataWarrior v4.4.385 with log P versus water solubility (log S) versus compound shape index. �e shape index 
is computed by calculating the shortest distance between any two non-hydrogen atoms of the molecule. �e 
distance between any two atoms is the number of atoms in the chain including both chain ends. �e longest 
of these shortest connections divided by the number of non-hydrogen atoms of the molecule gives the shape 
index. �e Biopharmaceutical Drug Disposition Classi�cation System classes are displayed for comparisons: 
class I in green, class II in yellow, class III in red and class IV in blue.
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metabolism and excretion, mostly performed by the kidneys. �e clearance can be estimated using in vivo animal 
models but also by in vitro measurements on liver microsomes or hepatocytes when investigating hepatic clear-
ance alone.

Metabolic stability and total clearance. Metabolic stability can be de�ned as the susceptibility of a 
chemical compound to biotransformation, and is expressed as in vitro half-life (t1/2) and intrinsic clearance. �e 
half-life for our datasets was predicted using StarDrop v6.1 updated with the human liver microsome stability 
model (mainly phase I enzymes) previously developed by Zakharov et al.92. No clear di�erences were noticed 
among the di�erent datasets (see Supplementary information Fig. S2) suggesting that the presently available 
model is possibly not su�ciently accurate to evaluate this property. �e total body clearance (the sum of di�erent 
clearance mechanisms), just like metabolic stability, is known to be a complicated endpoint to model because 
it involves multiple enzymatic reactions and depends on factors such as the extent of plasma protein binding, 
the volume of distribution and the involvement of active transports across membranes92. �e computation of 
total clearance as Log(CLtot) was performed with the pkCSM server72 which predicts the combination of hepatic 
clearance (metabolism in the liver and biliary clearance) and renal clearance (excretion via the kidneys). Some 
di�erences can be noticed between NPD, nuclear receptors and iPPIs (mean 0.57, 0.63 and 0.64 ml/min/kg 
respectively) and the other datasets, especially ion channels (mean 0.80 ml/min/kg) (Fig. S4).

Toxicity. Attrition due to toxicity and clinical safety concerns is a major problem in drug discovery93–95. 
Toxicity is the degree to which a substance can damage an organism or substructures of the organism, such 
as cells and organs, and remains one of the most signi�cant reasons for late-stage drug development failure. 
Early identi�cation of toxicity would thus be very valuable86. Among the di�erent kinds of toxicities, one can 
cite hepatic, hematologic and cardiovascular toxicity, but many other outcomes exist, for instance carcino-
genicity, teratogenicity, reproductive toxicity, cytotoxicity, and phospholipidosis96–98. Toxicity mechanisms can 
be classi�ed into various categories: pharmacophore-induced toxicity (e.g., human ether-a-go-go-related gene 
binding), structure-related toxicity (structural features and physicochemical properties allowing interactions at 
sites distinct from the intended target), metabolism-induced toxicity (e.g., electrophiles can react with nucleop-
hilic functions in endogenous biomolecules and cause organ toxicity) and toxicity linked to dosage (monitored 
by experimental methods like the “Maximum Tolerated Dose”(MTD), “No Observable Adverse E�ect Level” 
(NOAEL) or Oral Rat Lethal Dose (LD50)99. Furthermore, toxicity can also be caused by drug–drug interaction 
(DDI) which can lead to the withdrawal of drugs from the market13,99. Several types of DDI can occur and various 
in silico drug-drug interaction prediction engines have been developed88,100,101. For instance, in silico DDI assess-
ments can be performed by estimating the possible binding of a compound to important proteins that participate 
in DDI such as CYP enzymes102 and transporters (e.g, P-gp)93,103. Overall, toxicity is investigated using various 
experimental approaches but in silico models can also help, although they are di�cult to develop and tend to be 
more reliable when they focus on speci�c endpoints93.

CYP P450s inhibitions. As the cytochrome P450 mono-oxygenase (CYP) enzymes superfamily plays a piv-
otal role in drug metabolism, they have been extensively investigated, especially 2D6, 2C9 and 3A4 which are the 
most important forms in human13,91,104. In order to estimate which compounds in our datasets may be binders for 
the CYP450s, we used StarDrop v6.174 for the 2D6 and 2C9 isoforms while 1A2, 2C19 and 3A4 were investigated 
by using the binary classi�cation of the pkCSM server72. A continuous random forest model is implemented in 
StarDrop to predict 2C9 pKi values while a classi�cation model is present in the package for 2D6 (low (pKi <  5), 
medium (5 <  pKi <  6), high (6 <  pKi <  7) and very high (pKi >  7)). In the order to facilitate the analysis, we 
categorized the predicted 2C9 following the approach used for 2D6. �ese estimations suggest that iPPIs and 
nuclear receptor compounds tend to inhibit both these isoforms. Indeed, these populations score 60% for 2D6 
and respectively 92% and 76% of iPPIs and nuclear receptors bind 2C9 (Fig. 4). We also noted that iPPIs are pre-
dicted to be strong inhibitors of the 3A4 isoform (75%) (Fig. 4). �is subset of compounds displays a low level of 
inhibition for 1A2 and 2C19 (both 9%) while the other datasets are expected to inhibit mainly the 1A2 isoform 

Figure 4. CYP P450s inhibition. Classi�cation of inhibition of 1A2, 2C9, 2C19, 2D6 and 3A4 isoforms 
predicted by the pkCSM web-server72 and StarDrop v6.174.
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(e.g., 65% for ion channels and 61% for OMD). �ese results have to be considered with cautions as pertinent pre-
diction models are di�cult to develop due to the complex molecular mechanisms involved in CYP inhibition18, 
but it allows an overall comparisons among the di�erent classes of molecules.

Hepatotoxicity. Hepatotoxicity remains a major reason for drug withdrawal from pharmaceutical devel-
opment and clinical use. O�en, in vivo screening for hepatotoxicity is performed during the preclinical phases 
of the development process, however, more than 40% of compounds showing liver e�ects in humans did not 
present e�ects in previous animal studies105. In parallel, in vitro testing are also available through assays processed 
on primary human hepatocytes cultures, cultured immortalized cell lines like HepG2 or liver slices. As well, 
perfused livers testing can also be used in order to evaluate cytotoxic induced e�ects such as mitochondrial dam-
age, oxidative stress, covalent binding and intracellular interaction with glutathione106. Some in silico predictive 
approaches have emerged with the MCASE program107 or QSAR models108,109. We here used the pkCSM server72 
to investigate this toxicity endpoint. We note that iPPIs are predicted to be highly hepatotoxic (91%) unlike the 
nuclear receptor (50%) or OMD (40%) compounds (Fig. 5). However, enzymes and GPCRs also hit 80%. In 
comparison, 47% of the drugs listed in the LiverTox Database did not have evidence of hepatotoxicity including 
antineoplastic agents110.

Phospholipidosis. Phospholipidosis (PLD) is an adverse drug reaction in response to cationic amphiphilic 
drugs (e.g., anti-depressants, antibiotics, and cholesterol-lowering agents) that leads to a lipid storage disorder 
due to the accumulation of polar phospholipids in the lysosomes (lysosomotropism)97. �is accumulation of 
drug-phospholipid complexes within the internal lysosomal membranes induces an abnormal accumulation of 
multi-lamellar bodies (myeloid bodies) in tissues. �is adverse side e�ect can for example a�ect the registration 
of new drug entities111,112. We computed this property using our online server FAF-Drugs363 which applies the 

Figure 5. Some properties related to toxicity and structural alerts. (a) Hepatotoxicity classi�cation: 
�e prediction was performed with the pkCSM server72. (b) Phospholipidosis prediction: Classi�cation of 
phospholipidosis inducers according to Przybylak et al. model97,111 (computed with FAF-Drugs363). (c) hERG 
prediction: Classi�cation for compounds that need a speci�c attention (pIC50 ≥  5) and compounds which 
may exhibit some hERG toxicity endpoints (pIC50 ≥  6). (d) QED estimation: Kernel density estimation for 
chemical beauty based on the weighted quantitative estimate of drug-likeness (wQED) computed by StarDrop 
v6.174. Enzymes (light-blue), ion channels (blue), GPCRs (purple), nuclear receptors (yellow), allosteric 
modulators (brown), iPPIs (orange), OMD (light green) and NPD (dark green). (e) Toxicophores: Matrix plot 
of toxicophores detection computed by the FAF-Drugs3 web-server63. Frequency (%) colored as following: 
green <  0.4, 0.4 <  yellow <  2, 2 <  orange <  4, 4 <  red <  6.2, 6.2 <  light pink <  10, 10 <  pink <  15, 15 <  dark 
pink <  30, 30 <  purple <  50.
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SMARTS-based model developed by Przybylak et al.97,111. It can be seen that the percentage of molecules that are 
predicted to be inducers follows the global trend: OMD (30%) >  ion channels (27%) >  GPCRs (24%) >  enzymes 
(20%) >  iPPIs (16.5%) NPD and allosteric modulators (15%) and then nuclear receptors with 7% of inducers 
(Fig. 5). A recent in vitro study predicted 24% of inducers in a set of small drug-like compounds including a high 
proportion of marketed drugs113 and is thus in line with our observation for this category of OMD molecules.

hERG. Several types of cardiovascular toxicity issues have to be considered, but admittedly, promiscuous block 
of cardiac human ether-a-go-go-related gene (hERG) channels by a variety of structurally di�erent low molecular 
weight drugs represents a major therapeutic challenge with profound impacts on human health114–118. �e model 
implemented in StarDrop v6.174 predicts that GPCRs, nuclear receptors and iPPIs have the highest levels of hERG 
pIC50 inhibition with a mean pIC50 of 5.3, while the other datasets are ranked as follow: allosteric modulators 
(5.1) >  ion channels (5.05) >  OMD (5) >  enzymes (4.8) and NPD (4.45) (Fig. S3). With this model, if the value 
is above >  5, it is advised to experimentally test the binding as the compounds are likely to exhibit some toxicity 
endpoints related to this potassium channel114,119. We thus report a categorization histogram (Fig. 5) where one 
can see that 33% of NPD has pIC50 >  5 and 67% and 64% for GPCRs and iPPIs, respectively (both these subsets 
have 29% and 25% of compounds with pIC50 >  6).

Oral Rat pLD50. �e median lethal dose (pLD50) is a standard measurement of acute toxicity (dose causing 
50% death of the treated animals when administered during a given period) used to assess the relative toxicity of 
di�erent molecules. Acute toxicity describes the adverse e�ects of a substance that occur within a short period 
a�er exposure and is an important indicator of the drug safety assessment typically performed during the �rst 
stages of toxicological investigations of unknown substances86,120,121. By computing this property with the pkCSM 
server72, we note a small increase of the mean pLD50 for iPPIs with a –log(LD50) equal to 2.9 compare to the others 
datasets (see Supplementary information Fig. S5). A mean LD50 of 2.7 is computed for ion channels while for 
OMD and NPD the values are lower, 2.5 and 2.4 respectively.

Structural alerts and PAINS. Structural alerts (SA) or toxicophores (between 30–200 described chemical 
moieties) can, directly or upon bioactivation, be linked to toxicity94–96,122–124. In addition, several chemical groups 
and compounds have been described to interfere with biological assays, the so-called PAINS compounds125–131 
(pan-assay interference compounds). �ese are compounds that have been observed to show activity in multiple 
types of assays, o�en by interfering with the assay readout rather than through speci�c compound/target interac-
tions (e.g., covalent binding, metal chelation, redox reactivity, aggregation, �uorescence interference… )127. Some 
structural motifs can form covalent protein/DNA modi�cation and subsequent downstream adverse outcomes 
(i.e. CYP inhibition, in vitro genotoxicity, carcinogenicity or in vivo hepatotoxicity). �e covalent modi�cation 
of endogenous biomolecules, which is the primary issue, could be linked to the inherent chemical reactivity of 
a SA and/or alternatively, appears upon bioactivation through the generation of a reactive metabolite (e.g. ani-
lines)94,95,123. Here we searched for SA and PAINS with our online server FAF-Drugs363, and we show that iPPIs 
do not speci�cally contain many SA (less than 2% and only 2 major chemical moieties are found: alkyl halide 
and aldehyde (Fig. 5). �e datasets that contain more SA are enzymes (15%), OMD (12%), allosteric modula-
tors (11%) and nuclear receptors (9%). In Fig. 5, results are ordered gradually from SA motifs that are the most 
retrieved to the ones that are less found in our datasets starting by the Michael acceptors (18%) then quinone cat-
egories (3%), ortho-anilines (7%) and epoxides (6%). Michael acceptors are electrophilic agents which may form 
covalent bonds with nucleophilic sites on proteins and DNA molecules that can lead to carcinogenicity. Figure 5 
also reveals that NPD are compounds that embed the highest number of substructures (47%) potentially involved 
in covalent binding like the β -lactam ring while nuclear receptors rated 25% and enzymes 23%. Further AMES 
mutagenicity predictions were also performed and some variations are noticed for the di�erent datasets (Fig. S6).

Regarding molecules that may interfere with assays, the major reasons can be compounds that are not speci�c 
to the target (e.g. promiscuous compounds and aggregators132, frequent hitters133, some PAINS127) and/or (2) 
compounds that perturb the assay or detection method (e.g. colored or �uorescent molecules and aggregators). 
In both cases, such molecules are usually poor starting points for lead optimization programs and can cause an 
expenditure of money and loss of time without major bene�ts126,127,129,130,134,135. However, PAINS substructures 
search like PC guidelines must be applied carefully when selecting candidates, because, there are many observed 
exceptions to these rules. Blindly applying such rules can discard from development some interesting molecules. 
For PAINS and SA, it may be better to keep potential metabolic liabilities (easy to substitute during the optimi-
zation phases) rather than to discard a valuable diversity subspace136,137. We searched for PAINS compounds 
with the FAF-Drugs3 sever63 that embeds the original PAINS de�nitions127. �e results indicate that iPPIs are the 
dataset which score highest level (22%) for the presence of PAINS (Fig. S7). Catechol_A (12%) and quinone_A 
(8.5%) (see Supporting information in ref. 127) are the most frequent PAINS found in our datasets. While qui-
none_A substructure is not found in the iPPI dataset, catechol_A is part of the highest retrieved substructure in 
this population (5%), together with anil_NH_alk_B (5.6%) and sulfonamide_A (3.3%).

Toxicity based on rules combining PC properties and/or structural alerts. Whereas several guide-
lines combining physicochemical parameters have been reported to predict ADMET properties, some rules have 
also been suggested to apply directly to toxicity. For instance, the importance of combining two PC properties has 
been recently reported138. In that study, the authors investigated the toxicological outcomes of 245 compounds in 
development at P�zer and found that compounds with log P >  3 and TPSA <  75 Åα were six times more likely to 
show an adverse event in a rat or dog in vivo safety study than a compound with log P <  3 and TPSA >  75 Å2. It 
was also suggested that the combination of high log P with a low TPSA increases the likelihood of promiscuous 
binding to o�-targets. While this rule could be used as guideline and help to select molecules for optimization, 
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it has to be used with caution as recent analyses do not con�rm the initial report64,139. �is again suggests that 
strictly adhering to rules could result in missed opportunities93. A potential reason for these discordances could 
be due to the di�erences in the dataset composition (preclinical, phase I and/or drug candidates), the so�ware 
programs used to calculate properties, or the reported information that described the origin of toxicity (related to 
the primary target or to the compound itself)64. Our analysis shows that more than 50% of the nuclear receptors 
compounds and 45% of allosteric modulators �t in the problematic region of the P�zer 3/75 rule while 30% and 
26% of OMD and iPPIs populates this region, respectively (data not shown).

Recently, Bickerton et al. reported a quantitative measure of drug-likeness39 based on a concept of desirability 
called the quantitative estimate of drug-likeness (QED). �e novelty of this approach stands on the fact that this 
estimation does not only rely on PC parameters but it also involves searching for structural alerts (see below). 
QED ranks compounds according to their similarity to marketed drugs by a continuous measure of drug-likeness 
estimated by calculating eight important properties: MW, log P, number of HBDs and HBAs, TPSA, number of 
rotatable bonds, number of aromatic rings and number of structural alerts. �us, this approach does not strictly 
use a yes–no cut-o� �lter above which compounds are disquali�ed, and probably minimizes probable estimation 
errors in individual computational predictors. A recent analysis places drugs’ QED median value at 0.65103 while 
a value of 0.67 was proposed for the so-called attractive or promising compounds39. �e calculations performed 
with StarDrop v6.174 indicates a median QED value of 0.65 for the OMD subset (Fig. 5). Not surprisingly, iPPI 
compounds (orange line) showed a clear di�erence with the other populations because several PC descriptors 
used to estimate QED are obviously shi�ed in the wrong direction. We note that ion channels display similar 
values than OMD (0.63) and that enzyme binders have lower scores of about 0.48. Overall, iPPIs scored a QED 
comparable to that obtain for the unattractive compounds reported by Bickerton et al. (0.35) indicating that 
chemistry e�orts will be required to improve the quality of the next generation of iPPIs.

Likewise, a recently reported in silico approach that helps the selection of compounds that could enter open 
drug discovery programs is the Eli Lilly MedChem Rules package140. �ese rules involve queries for about 275 
structural alerts including compounds/substructures that are unstable, reactive, interferent, promiscuous, and 
compounds with risks of toxicity or poor in vivo stability. According to these rules, we note that, whatever the 
subsets, between 15 to 30% of the molecules do not comply (regular mode), except for OMD and ion channels 
compounds where only 10 to 15% would be discarded (Fig. 5).

Overall, these toxicity predictions suggest that some iPPIs are associated with toxicity alerts. Indeed, (1) PPI 
inhibitors have the highest predicted levels of hERG pIC50 inhibition and inhibit several CYP enzymes, (2) are 
predicted to be hepatotoxic and (3) may cause few acute toxicities in rats. On the other hand, these compounds 
(1) do not embed many SA, (2) are less inducers of phospholipidosis than OMD and (3) do not induce mutagen-
icity (Fig. S7). Regarding PAINS, four structural alert families have been found in iPPIs, suggesting that, in the 
future, compound collections dedicated to the design of such molecules should be �agged with PAINS �lters.

Conclusion
Inhibition of protein-protein interactions with small molecules using screening or repositioning strategies is of 
high interest for both, the development of new therapy and to explore novel molecular mechanisms involved in 
the health and disease states1–10,141. However, the design of iPPIs is challenging and we were here interested in the 
analysis of predicted PC and ADMET properties for these small molecules that we compared to other datasets 
containing molecules acting on other targets or molecular mechanisms. We �rst note that iPPIs possess border-
line PC values in all calculated properties except for TPSA, HBDs and the number of stereocenters. iPPIs tend to 
violate the RO5 and are most o�en outside the Golden Triangle. With regard to absorption, our results predict a 
relatively good absorption for iPPIs as compared to the other datasets. Further, iPPIs membrane permeability is 
comparable to that of NPD compounds and better than that of enzymes. Regarding distribution, iPPIs are pre-
dicted to bind to PPB as nuclear receptors but this may not be a major issue as most OMD also binds signi�cantly 
to PPB. Yet, for the time being, given the computed properties, it would seem di�cult to develop small molecule 
protein-protein interaction inhibitors for CNS targets while there are obviously major needs in this area. iPPIs are 
potential P-gp binders and this property must be carefully monitored. Data visualization methods suggest that 
iPPIs could belong mainly to the class 2 molecules of the BDDCS system (low solubility, high permeability, high 
metabolism). Regarding metabolism, we noted no major di�erences for the calculated half-life and total clearance 
of iPPIs versus the other datasets. 2C9, 2D6 and 3A4 inhibition have been correlated to MW and log P with a 
contribution of the ionization state. �us, considering values in Table 1, it is consistent that iPPIs and NR share 
these trends and could be highly metabolized or inhibitors of this family of enzymes. For the investigated toxicity 
endpoints, we note that the hepatotoxicity pro�le of iPPIs is high and this observation holds for cardiotoxicity 
investigated via hERG inhibition. iPPIs do not show signi�cant phospholipidosis or mutagenic warnings while 
the mean LD50 is slightly superior to the other datasets. Regarding unwanted structural motifs (Structural Alerts 
and PAINS), known iPPIs do not contain many such substructures as compared to the other datasets. iPPIs are 
not well positioned in term of QED scores but are acceptable when considering the 3/75 toxicity prediction rule. 
Taken together, the reported data should help designing the next generation of iPPIs.

Methods
Datasets preparation. �e iPPIs dataset (compounds with bioactivity below 30 µ M) was built by merging 
all compounds from IPPI-DB26 minus bromodomain’s inhibitors while adding 89 compounds extracted from 
the TIMBAL database15 targeting menin-mixed lineage leukemia (MLL) and neuropilin, and 24 small molecule 
disruptors of the glucokinase–glucokinase regulatory protein interactions142. Regarding the “non-iPPIs” mod-
ulators, all datasets were created using the version 14 of the ChEMBL database categorization36 which is avail-
able at �p.ebi.ac.uk/pub/databases/chembl/Allosterism. We extracted these molecules from the version 20 of 
the ChEMBL database35 with the highest ChEMBL con�dence score of 9 and a bioactivity below 30 µ M143. We 
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formed one category of allosteric molecules (allosteric modulators of kinases, proteases, phosphodiesterases, 
phosphatases, nuclear receptors, ion channels and GPCRs) and four categories of orthosteric molecules (nuclear 
receptors, ion channels, GPCRs and enzymes (proteases, kinases, phosphodiesterases and phosphatases)). From 
the same database, we retrieved the non-allosterics oral bioavailable approved drugs (OMD) and we extracted 
from it the natural product-derived compounds (NPD). We removed from both these subsets putative allosterics 
modulators showing occurrences in the Allosterics ASD database144. �en, all datasets were treated following the 
same �ltering and diversity search protocols. We performed with the FAF-Drugs3 web-server63 the selection of 
compounds within the 150 to 900 Da area (�ltered subset). On these molecules, we applied a clustering protocol 
with the Accelrys Pipeline Pilot FCFP4 �ngerprints (maximum Tanimoto coe�cient of 0.2) where the centroid 
of each cluster was taken to build the diversity subset. In order to have a relatively similar number of chemically 
diverse compounds in each dataset, we kept the entire diversity subset when its amount was below 650 com-
pounds, otherwise we proceeded a random picking a�er diversity searching (random subset). To insure that 
diversity or random subsets represent properly the original �ltered subsets, we visualized the chemical space of 
each subset using the path-based �ngerprints projection visualization tool of StarDrop 6.174. In the same space 
we visualized the �ltered subsets (light blue), the diversity subsets (red) and the random subsets (white) (see 
Supplementary information Fig. S8).

PC computations. We used the FAF-Drugs3 web-server63 to compute physicochemical descriptors: number 
of rotatable bonds, rigid bonds, HBAs, HBDs, rings, charges (formal charges at pH 7), heavy atoms, carbon atoms, 
heteroatoms and stereocenters, MW, log P, log D (at pH 7), TPSA, maximum size of ring, number of rings and 
aromatic rings, �exibility, total charge and Fsp3 61. We also derived the Lipinski’s RO538, the P�zer’s 3/75 rule138 
and the Golden Triangle73. �e estimation of the chemical beauty39 was carried out with StarDrop v6.174 while the 
water solubility was computed with the pkCSM server72.

ADMET predictions. Regarding the ADMET predictions, total clearance, CYP P450 inhibition and hepa-
totoxicity were computed with the pkCSM72 server. PPB, BBB crossing, CYP P450, P-gp classi�cation, hERG 
inhibition and Rat LD50 estimation were obtained with StarDrop v6.174. In addition, this so�ware was updated 
with three free available add-ons: (i) a partial least square (PLS) model of the Caco-2 permeability developed 
by Optibrium Ltd. developers with experimental values75, (ii) a radial basis function (RBF SD) estimating the 
microsomal metabolic stability92 and (iii) a Optibrium Ltd. AMES mutagenicity model built with the StarDrop 
Auto-Modeller module74. Finally, the FAF-Drugs3 server63 predicted phospholipidosis by using the Przybylak  
et al. method97 and was used to detect PAINS and 154 structural alerts.
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