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Recent technical developments have enabled the 

transcriptomes of hundreds of cells to be assayed in an 

unbiased manner, opening up the possibility that new 

subpopulations of cells can be found. However, the effects  

of potential confounding factors, such as the cell cycle,  

on the heterogeneity of gene expression and therefore on the 

ability to robustly identify subpopulations remain unclear.  

We present and validate a computational approach that 

uses latent variable models to account for such hidden 

factors. We show that our single-cell latent variable model 

(scLVM) allows the identification of otherwise undetectable 

subpopulations of cells that correspond to different stages 

during the differentiation of naive T cells into T helper 2 

cells. Our approach can be used not only to identify cellular 

subpopulations but also to tease apart different sources of gene 

expression heterogeneity in single-cell transcriptomes.

Single-cell measurements of gene expression, using imaging tech-

niques such as RNA-FiSH (fluorescence in situ hybridization), have 

provided important insights into the kinetics of transcription and 

cell-to-cell variation in gene expression1–3. However, such approaches 

can examine the expression of only a small number of genes in each 

experiment, thus restricting our ability to examine co-expression pat-

terns and to robustly identify subpopulations of cells. Protocols have 

been developed to overcome these limitations by amplifying small 

quantities of mRNA4,5, which, in combination with microfluidics 

approaches for isolating individual cells6,7, have been used to analyze 

the co-expression of tens to hundreds of genes in single cells8,9. These 

protocols also allow the entire transcriptome of large numbers of sin-

gle cells to be assayed in an unbiased way. This was initially done using 

microarrays10,11 but is more often now done using next-generation  

sequencing12–15. Such approaches have been used to model early 

embryogenesis in the mouse16 and to investigate bimodality in gene 

expression patterns of differentiating immune cell types17.

After the generation of single-cell RNA-sequencing (RNA-seq) pro-

files from hundreds of cells, one goal to identify subpopulations that 

share a common gene-expression profile. Some of these subpopulations 

may represent previously unidentified cell types. Additionally, by study-

ing patterns of gene expression in different single cells, insights into the 

regulatory landscape of each cell population can be obtained.

However, methods for identifying subpopulations of cells and 

modeling their gene regulatory landscapes are only now beginning to  

emerge18,19. To fully exploit single-cell RNA-seq data, we have to account 

for the random noise inherent to such data sets20 and, equally important, 

to account for different hidden factors that might result in gene expres-

sion heterogeneity. Although the importance of accounting for unob-

served factors is well established in bulk RNA-seq studies21–23, robust 

approaches to detect and account for confounding factors in single-cell 

RNA-seq studies remain to be developed. Here, we describe a compu-

tational approach that uses latent variable models to reconstruct such 

hidden factors from the observed data. We validate our scLVM using a 

population of staged mouse embryonic stem cells (mESCs), before apply-

ing it to study T helper 2 (TH2) cell differentiation. We show that scLVM 

facilitates the identification of physiologically meaningful subpopulations 

of cells, which cannot otherwise be found.

RESULTS

Cell cycle variation affects global gene expression

Single-cell RNA-seq is now commonly used to study cell differen-

tiation15,24. Here, we reanalyzed data from a single-cell RNA-seq 

experiment that was originally designed to study the differentia-

tion of naive T cells into TH2 cells25. Briefly, a population of naive 

Cd4+ T helper cells were activated and polarized with interleukin 

(IL)-4 to induce differentiation toward a TH2 subtype. At 4.5 d post-

stimulation, cells were sorted into a G4P group (fourth generation,  

IL-13–GFP+ cells) and a G2N group (second generation, IL-13–

GFP− cells). Subsequently, these two groups of cells were pooled in 

equal proportions. From this pool, a set of 96 asynchronously divid-

ing cells (including both fully and partially differentiated cells) was 

captured using the Fluidigm C1 system, and sequencing libraries 

were prepared and processed. After quality control and account-

ing for technical noise, RNA-seq data for 81 cells and 7,073 genes 
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with variation in their expression level above technical noise were 

considered for analysis (Supplementary Fig. 1).

The cell cycle is known to have wide-ranging effects on cellular 

physiology26,27 and can modulate both differentiation and gene 

expression profiles28 (Fig. 1a). Cells that are analyzed during devel-

opment are likely to be in different stages of the cell cycle28. When 

we examined sets of genes whose expression is known to be associ-

ated with different cell-cycle stages, we observed that their expression 

levels varied considerably among single cells (Supplementary Fig. 1). 

Although variation in gene expression that is linked to the cell cycle 

can provide important biological insights, in many contexts such vari-

ation might mask other more physiologically important differences 

in gene expression between cells.

Importantly, variation in gene expression that is linked to the cell 

cycle is not restricted to well-annotated cell-cycle marker genes. When 

we examined a set of moderately to highly variable genes that have 

not previously been associated with the cell cycle, we observed that 

2,881 genes (44%) showed a significant correlation of gene expres-

sion with at least one cell-cycle gene (P < 0.05, Bonferroni adjusted; 

Supplementary Fig. 2). Therefore, merely removing the set of anno-

tated cell-cycle genes before performing downstream analyses is likely 

to be unsuccessful because it would not enable all effects independent 

of the cell cycle to be detected.

Development of scLVM to account for effects of the cell cycle

We used scLVM to address the confounding effects of the cell cycle. 

In this type of computational approach, one first reconstructs the cell-

cycle state (or other unobserved factors) and then uses this informa-

tion to infer ‘corrected’ gene expression levels. This two-step approach 

enables the effect of unobserved factors on gene expression heteroge-

neity to be accounted for in downstream analyses, thereby allowing 

us to study variation in gene expression levels that is independent of 

the cell cycle. Moreover, for each gene whose expression is analyzed, 

our method allows the relative contribution of any reconstructed fac-

tors that affect cell-to-cell variation in expression to be determined.  

A schematic overview of the approach is shown in Figure 1b.

To validate our method, we generated single-cell RNA-seq data 

from mESCs using the Fluidigm C1 protocol, where the cell-cycle 

status of each cell is known a priori. We assayed the transcriptional 

profile of 182 ESCs that had been staged for cell-cycle phase (G1,  

S and G2M) based on sorting of the Hoechst 33342-stained cell area 

of a flow cytometry (FACS) distribution. In the fitting stage, scLVM 

uses the expression profiles of a relatively small set of 892 annotated 

cell-cycle genes (Supplementary Table 1) to recover a covariance 

matrix that accounts for cell-to-cell heterogeneity due to the cell 

cycle (Supplementary Fig. 3). Using alternative annotations for cell-

cycle genes (Supplementary Table 1) yielded very similar results 

(Supplementary Figs. 3–5). Subsequently, for all remaining genes, 

we used scLVM to estimate the proportion of variance in expression 

across cells that is explained by technical noise, biological variability 

and cell cycle. This approach can also be used to create a ‘corrected’ 

gene expression data set, in which the effect of the identified factor(s) is 

removed, which can be used as the input for existing analysis methods. 

scLVM is related to approaches for modeling variability in bulk mRNA 

expression studies21,22 and to methods used in genome-wide associa-

tion studies in which the relatedness between individuals is inferred 

from genotype29 and/or expression levels30 and then accounted for in 

downstream analyses using linear mixed models.

As the cell-cycle stage of each cell is known in our data set, we can 

compare the scLVM estimates of the proportion of variance explained 

by the cell cycle with the gold standard values obtained when using 

the annotation of individual cells based on the Hoechst staining 

(FACS). We observed a striking correlation (r2 = 0.91) between our 

scLVM estimates and the gold standard values, providing confidence 

in the efficacy of our approach (Fig. 2a). The model fit and these 

estimates for the variance explained by the cell cycle were consist-

ent when a much smaller gene set containing only tens of genes was 

used to train the model (Supplementary Fig. 5a–g) and when alter-

native metrics were applied to quantify the proportion of variation 

explained by the cell cycle (Supplementary Fig. 5h). This suggests 

that scLVM can be used to robustly recover and estimate the vari-

ance due to unobserved factors from relatively small gene sets that 

annotate these factors. Additionally, we examined how many pairs of 

genes had significantly correlated patterns of expression across cells 

(i) without cell-cycle correction, (ii) with the scLVM correction and 

(iii) with an ideal correction using the gold standard cell-cycle state.  

b

Fitting stage

Biol. var.

Cell cycle

Tech. var.0.4

0.2

0

–0.2

–0.4
–0.5 0 0.5

Component 1

C
o
m

p
o
n
e
n
t 
2

Observed expression profile

I
II

Expression range of

differentiation gene

Expression range of

differentiation gene

Differentiation 

a

TH2

G1

S

G2MRemoving the effect of cell cycle

Naive

Figure 1 Overview of the scLVM approach. (a) The observed expression profile of differentiation marker genes (upper panel) is the result of the 

differentiation process of interest together with the effects of the cell cycle and other confounding sources of variation. After accounting for cell-cycle 

effects (middle panel), one can uncover gene expression signatures that contribute to the continuous differentiation process more clearly (lower panel). 

(b) scLVM two-stage procedure. First, in the fitting stage, the cell-to-cell covariance matrix that corresponds to the cell cycle is inferred from the 

gene expression profiles of genes with cell-cycle annotation (upper panel). The learnt covariance is then used in downstream analyses, including the 

detection of substructure, the detection of gene-to-gene correlations and the analysis of variance (lower panel). Biol. var., biological variance;  

Tech. var., technical variance.
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The set of significant gene-gene correlations obtained with the scLVM 

correction was much more consistent with a gene correlation net-

work based on the experimental staging than the set generated under 

the no-correction model (Supplementary Fig. 6), with the number 

of false-positive correlations reduced by three orders of magnitude 

(from 72,117 to 77). Finally, we compared the scLVM correction to 

a basic removal strategy, in which cell cycle–annotated genes (892 

genes, Supplementary Table 1) were omitted from the analysis.  

A nonlinear principal component analysis (PCA)31 on the data set from 

which cell-cycle annotated genes were removed yielded a clear separa-

tion of cells according to cell-cycle stage (Fig. 2b). In contrast, when 

repeating the analysis using scLVM-corrected gene expression levels, 

the same separation of cells was not observed, showing that the cell 

cycle–related expression signature was effectively removed (Fig. 2c).  

Further, to show that scLVM is specific in removing the effects of cell 

cycle–related variation, we considered a noncycling cell type (ter-

minally differentiated neurons) as a negative control. Reassuringly, 

scLVM attributed more than 30% of variation to the cell cycle for only 

27 genes, and the maximum proportion of variation attributed to the 

cell cycle for any single gene was 37%. In comparison, when we applied 

scLVM to cycling T cells, for 1,895 genes, more than 30% of varia-

tion was attributed to the cell cycle, with the maximum proportion 

for any single gene being 79% (Fig. 3a and Supplementary Fig. 7).  

These results give additional confidence that the variance estimates 

are accurately inferred. Finally, we repeated the validation of scLVM 

using a second previously published data set of 35 mESCs staged for 

the cell cycle, but prepared for sequencing with an alternative protocol 

(Quartz-Seq)32 and cultured under different media conditions that 

are known to induce reduced variability in expression of cell-cycle 

genes33. Again, direct comparison of variance estimates from scLVM 

with the gold standard derived from the staging information of indi-

vidual cells yielded good agreement (Supplementary Figs. 8 and 9). 

To assess the consistency of the expression signatures that are used 

by scLVM to infer the cell-to-cell covariance, we projected the 35 

mESCs from this published data set onto the larger mESC validation 

data set discussed above. This analysis revealed that the expression 

signatures due to the cell cycle are robust across sequencing protocols, 

studies and experimental batch (Supplementary Fig. 10). In sum, 

these analyses provide confidence that our scLVM approach effec-

tively accounts for latent factors such as the cell cycle.

Application of scLVM to identify cell populations in 

differentiating TH2 cells

We next applied our scLVM approach to study a population of 

 asynchronously differentiating TH2 cells that have previously been 

profiled using single-cell RNA-seq20,25. We observed that the cell 

cycle contributed markedly to gene expression variability, in par-

ticular for the set of genes with medium to high overall nontechnical 

variability (Fig. 3a). Genome-wide, for 1,895 (27%) of these variable 

genes, the cell cycle accounted for more than 30% of the variance 

in expression across cells (Fig. 3a, Supplementary Figs. 11 and 12, 

and Supplementary Table 2), suggesting that the expression of many 

genes is affected by the cell cycle. When comparing the expression 

signatures of cell-cycle genes in the TH2 cell type with those found 

in the mESC validation data set, we found striking agreement of the 

main axes of variation (PC1, r2 = 0.998, Supplementary Fig. 10). 

This result strongly suggests that scLVM robustly captures cell cycle 

effects in the TH2 data set.

Turning next to the question of whether pairs of genes show 

patterns of correlation between cells (gene-gene correlations),  

we observed a striking decrease in significant correlations after 

accounting for the cell cycle (P < 0.05, Bonferroni adjusted; Fig. 3b,c 

and Supplementary Fig. 11). This suggests that many of the gene-

gene correlations observed in the initial data were driven by cell-cycle 

stage. Notably, the much smaller set of genes with significant cor-

relation patterns after correction was enriched for genes involved in 

glycolysis34 and for genes that mark the cellular response to IL-4 stim-

ulation (Supplementary Table 3a), both of which are key processes 

in TH2 cell differentiation. In contrast, gene-gene variation obtained 

using uncorrected data yielded no enrichment for variation in expres-

sion of genes involved in glycolysis but instead identified genes  

that were enriched for cell cycle–related categories (Supplementary 

Table 3b), again indicating that cell cycle, if not accounted for, is a 

major confounder of gene-gene correlations.

Next, we examined whether the cell-cycle correction facilitated by 

the scLVM model enabled a more reliable identification of subpopula-

tions of cells. Without correction, a nonlinear PCA31 revealed little 

structure in the data, with no obvious subgroups of the cells identified 

(Fig. 3d and Supplementary Fig. 11). A similar lack of structure was 

observed when other clustering algorithms, including hierarchical and 

k-means clustering, were applied (data not shown). However, when 

applying the same nonlinear PCA approach to the cell cycle–corrected 

data, two clear subpopulations of cells were identified (Fig. 3e; see 

Supplementary Data 1 for assignment of cells to clusters).

To investigate whether these two populations correspond to 

physiologically distinct subsets, we studied the set of 401 genes 

with significant differences in expression between the clusters 

(P < 0.05, Bonferroni adjusted; Supplementary Table 4). This set 

was heavily enriched for genes that have important roles in TH2 

cell differentiation—Il4ra35, Gata3 (ref. 36), Stat3 (ref. 37), Klf13  

Figure 2 Validation of scLVM on cell  

cycle–staged mESCs. (a) Comparison  

of the estimated proportion of variability  

in the expression of each gene across  

cells due to the cell cycle as inferred  

using scLVM (x axis) or with gold standard 

estimates of the cell-cycle stage derived from 

the Hoechst staining (y axis). The scatter  

plot compares the proportion of variance 

explained by either approach, revealing  

striking concordance (Pearson’s r2 = 0.91).  

(b,c) Nonlinear PCA based on genes not 

annotated as cell cycle (neither GO nor 

Cyclebase) (b) and the same nonlinear PCA process carried out using scLVM-corrected gene expression data (c). Cell-cycle annotation of individual 

cells according to the Hoechst staining is color coded. In the uncorrected expression data, the PCA analysis separates cells according to their cell-cycle 

stage, even when omitting cell-cycle genes. This clear separation is lost when using scLVM-corrected expression levels, showing that scLVM effectively 

removes gene expression signatures that are only associated with cell-cycle effects.
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(ref. 38), Batf (ref. 39) (P < 0.0001, Bonferroni adjusted) and Il24   

(ref. 40) (P = 0.01) are all upregulated in the right-hand cluster (Fig. 3e),  

suggesting that cells contained in that group represent fully differ-

entiated TH2 cells, whereas the left-hand population of cells corres-

pond to a group that is only partially differentiated (Fig. 3e,f and 

Supplementary Fig. 13).

Consistent with this observation, an analysis of 122 manually 

curated ‘TH2 signature’ genes (Supplementary Table 5) revealed a 

significant enrichment in the set of 401 genes that were differentially 

expressed between the identified clusters (P = 0.001, Hypergeometric 

Test). Further, Gene Ontology (GO) enrichment analysis showed 

that the differentially expressed genes contained statistically signifi-

cant enrichments of genes involved in glycolysis, cellular response 

to IL-4 stimulation and positive regulation of B-cell proliferation 

(Supplementary Table 6). To establish whether the genes distinguish-

ing the two clusters act in a coordinated manner, we studied their 

interactions using the STRING database41. This yielded a densely con-

nected network with three major hubs, which were highly enriched for 

glycolysis, translational elongation and T-cell activation, respectively 

(Supplementary Fig. 14). With glycolysis being a hallmark for T-cell 

activation42 and T-cell activation being linked to increased transla-

tional activity43, this provides further evidence that the two clusters 

contain cells at different positions along the trajectory to becoming 

fully differentiated TH2 cells.

Importantly, the cell-cycle correction afforded by scLVM not only 

enabled identification of two cell populations, but was also required 

for characterizing the two clusters. Testing for differential expression 

between the two identified populations of cells using the uncorrected 

data yielded only 7 genes whose transcription differed significantly 

between clusters (compared to 401 with the correction).

Accounting for more than one factor

The scLVM approach can be applied to account for the effects of 

other factors, provided that an informative gene set is available. As 

an example, we extended the analysis of the TH2 cells by simulta-

neously modeling the cell-cycle state and the TH2 differentiation 

process as distinct factors. We used a set of 122 manually curated  

TH2 signature genes (Supplementary Table 5), introduced earlier,  

to fit a TH2 differentiation factor after removing the effects of the cell 

cycle. Although, in general, inference of multiple factors is statistically 

challenging, the much stronger effect of the cell-cycle factor helps to 

ensure that inference results are robust when considering different 

approaches (Supplementary Fig. 15; see Online Methods for a dis-

cussion of practical challenges). The joint analysis with both factors 

offered a more fine-grained decomposition of expression variabil-

ity, attributing expression variation of individual genes to cell-cycle 

effects, TH2 differentiation and interactions between both factors 

(Fig. 4a). The interaction component allows genes that are associ-

ated with TH2 differentiation in a cell-cycle-stage-specific manner 

to be identified (Fig. 4b). Although the overall variance due to these 

interaction effects was small, a set of 375 genes with strong interac-

tions (explained variance >5%; Supplementary Table 7) contained 
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prominent candidates for effectors of the interplay between the cell 

cycle and TH2 differentiation. Several TH2 differentiation markers, 

including Batf and Il2ra, were among these genes (Fig. 4b), and this 

set was enriched for positive cell proliferation and negative regulation 

of apoptosis (Supplementary Tables 8 and 9). This finding is consist-

ent with the known link between differentiation and cell proliferation 

in T helper cells44,45.

Additionally, we investigated the relevance of the TH2 factor when 

testing for gene-gene correlation networks (Fig. 4c). The number of 

significant gene-gene correlations decreased markedly when including 

the additional TH2-related factors (from 17,389 to 2,077), suggesting  

that the cell cycle, TH2 differentiation and their interactions are the 

predominant sources of variation in this population of cells.

In summary, accounting for cell cycle–related variation by using 

scLVM is necessary both for identification and characterization of 

distinct populations of T cells that are at different stages of differentia-

tion into mature TH2 cells. We also applied scLVM to other single-cell 

RNA-seq data sets, including 34 human embryonic stem cells and a set 

of 90 cells from human preimplantation embryos15, which confirmed 

that the cell cycle explains substantial proportions of the variability 

in other contexts. Moreover, correcting for cell cycle as a confounder 

revealed otherwise hidden structure that might correlate with dif-

ferent cell populations in these independently generated, single-cell 

RNA-seq data sets (Supplementary Figs. 16 and 17).

DISCUSSION

We have shown how heterogeneity in gene expression in single cells 

due to factors such as the cell cycle can compromise the interpreta-

tion of single-cell RNA-seq experiments. To overcome this problem 

we present a computational approach that effectively accounts for 

these confounding factors. This method (Fig. 1) builds on exist-

ing approaches for modeling gene expression heterogeneity in bulk 

data22,30, which we here adapt to single-cell transcriptomics. We have 

validated our method using a large mESC data set in which the cell-

cycle stages of individual cells are known a priori (Fig. 2) and dem-

onstrated the utility of our approach by applying it to obtain insights 

into TH2 cell differentiation (Fig. 3). We treated the cell cycle as a 

confounding variable in our study, but cycling-related processes may 

be of high interest in other contexts. This is exemplified in the analysis 

of the interaction between the effects of the TH2 differentiation factor 

and the cell cycle (Fig. 4). More generally, scLVM allows the user to 

model and account for latent factors of other predefined sets of genes, 

enabling the sources of variation in a wide range of single-cell RNA-

seq experiments to be studied. Our analysis of the TH2 differentiation 

process uses a nonlinear PCA approach to uncover the differentiation 

structure. More generally, scLVM can be used to remove variation 

due to the cell cycle and other confounding factors before applying 

alternative downstream analytic strategies, such as Monocle18.

One important challenge when multiple confounding factors are 

considered is to ensure that the model remains statistically identifi-

able, such that the effect of each individual factor can be robustly 

estimated. This may be of particular concern if multiple weak and 

nonindependent factors are present. Finally, we note that there remain 

open questions regarding the best way to process single-cell RNA-seq 

data46. In particular, our scLVM approach could be refined in several 

ways. For example, statistics to formally test for the presence of a par-

ticular factor might be warranted and scLVM could also be coupled 

with methods to reconstruct pseudo-temporal trajectories18. Also, 

comprehensive methods to properly normalize RNA-seq data within 

and across multiple independent single-cell transcriptome experi-

ments are an important area of future work.

METHODS

Methods and any associated references are available in the online 

version of the paper.

Accession codes. mESC data have been deposited at ArrayExpress: 

E-MTAB-2805. RNA-seq data from the TH2 cells have previously been 

described20,25 and are available under at ArrayExpress: E-MTAB-

2512. Cell cycle–corrected and uncorrected expression values for the 

T-cell data as well as the mESC data are provided as Supplementary  

Data 1 and 2. An open source software implementation of scLVM is 

freely available on GitHub: https://github.com/PMBio/scLVM.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Figure 4 Application of scLVM to decompose 

gene expression variability in differentiating 

T-cells, considering both cell cycle and the 

TH2 differentiation factor. (a) For each gene, 

the proportion of variance explained by the 

cell cycle, TH2 differentiation, a multiplicative 

interaction between cell cycle and TH2 

differentiation, as well as technical noise and 

residual biological variance was estimated. 

Genes were binned by the total variance 

explained by factors other than technical noise; 

the bars show average variance contributions 

for genes in a particular bin. (b) Visualization 

of the identified interaction between factors for cell cycle and TH2 differentiation for the gene Batf. Shown is the expression level of Batf (y axis) as 

a function of the inferred cell-cycle stage (x axis), where the level of the TH2 factor is encoded in color. The interaction between the cell cycle factor 

and the TH2 factor can be viewed as the conditional correlation between cell cycle and Batf expression. For fully differentiated cells (high TH2 factor), 

there is a strong correlation between cell cycle and gene expression (red dashed line, steep slope). In contrast, for partially differentiated cells (negative 

TH2 factor) this observed correlation is much weaker (dashed blue line, shallow slope). (c) Effect of accounting for different hidden factors on gene-

gene correlations. The number of significant edges in the gene-gene correlation network (P < 0.05, Bonferroni adjusted) decreased by over an order 

of magnitude after correcting for cell cycle; subsequently accounting for TH2 differentiation resulted in a similar reduction of gene-gene correlations. 

Finally, accounting for the interaction between TH2 and cell cycle yielded an additional reduction of almost 50% of the remaining gene-gene 

correlations, suggesting that cell cycle and TH2 differentiation are the predominant source of gene-gene correlations in this data set.
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ONLINE METHODS
Data sets and processing. Mouse ESC data. A detailed description of cell 

culture, Hoechst staining, single-cell capture and mRNA sequencing as well as 

quality control can be found in the Supplementary Notes and Supplementary 

Figure 18. In brief, Rex1-GFP–expressing mESCs (Rex1-GFP mESCs) were 

cultured on gelatin-coated dishes using serum-free NDiff 227 medium (Stem 

Cells Inc.) supplemented with 2i inhibitors. Hoechst staining (Hoechst 33342; 

Invitrogen) was optimized for Rex1-GFP mESC, and cells were sorted using 

FACS (MO-FLO XDP; Beckmann Coulter) for respective cell-cycle frac-

tions (G1, S and G2M phase). Single-cell RNA-seq was done using the C1 

Single Cell Auto Prep System (Fluidigm; 100-7000). After normalization and 

estimation of technical noise using ERCC spike-ins (see RNA-seq normali-

zation and estimation of technical noise), we retained a set of 9,571 genes 

for analysis with variation above the technical background level (FDR <0.1;  

Supplementary Data 1).

To account for errors in the assignment of a cell-cycle phase using the 

Hoechst staining (e.g., due to cells cycling after FACS sorting), we performed 

an additional filtering step based on the ERCC spike-ins. We reasoned that 

for cells within a cell-cycle phase, the ratio of endogenous reads to total 

mapped reads—which can be interpreted as a proxy for cell size—should 

follow a narrow distribution. Therefore, we excluded cells where the differ-

ence between this ratio and its median within a cell-cycle phase exceeded 

one median absolute deviation (Supplementary Fig. 19). This resulted in a 

filtered set of 59 cells in G1 phase, 58 cells in S phase and 65 cells in G2M phase. 

Analysis results for the unfiltered data are shown in Supplementary Figure 20  

(see Supplementary Notes for full details), leading to consistent overall  

conclusions.

Mouse ESC data (Quartz-Seq protocol). We used the normalized data and 

counts from the primary publication32. These data consist of gene expres-

sion level estimates, obtained using the Quartz-Seq protocol, for 35 mESCs, 

where the cell-cycle state of each cell is known a priori (7 S, 8 G2M and 20 G1 

cells). FACS sorting the distribution of the Hoechst 33342-stained cell area 

with gates corresponding to G1, S and G2/M phases was used to establish the 

cell-cycle state before processing. In this particular data set, technical noise 

cannot be reliably estimated owing to the lack of spike-ins. Consequently, we 

estimated the amount of technical (null) noise expected for genes with variable 

levels of expression using a log-linear fit between the expression mean and 

the squared coefficient of variation between cells, approximating the typical 

fitting procedure when spike-ins are available (Supplementary Fig. 1b). This 

approach yielded a total of 5,546 highly variable genes (FDR< 0.1; see RNA-

seq normalization below).

T-cell data. Generation of the T-cell data has been described in detail previ-

ously20,25. In brief, untouched Naïve CD4+ cells from spleens of IL-13eGFP 

Balb/c mice were negatively selected and differentiated toward TH2 in anti-

CD3/CD28 coated plates. CellTrace Violet staining was performed accord-

ing to manufacturer’s instructions. After 4.5 d of activation cells were sorted 

according to presence/absence of GFP and number of cell division. In par-

ticular GFP-Negative cells that had undergone 2 cycles of cell division and 

GFP-Positive cells that had divided 4 times were then pooled in 1:1 ratio and 

loaded on a C1 machine for capturing. Duplets and cells with low yield or poor 

quality cDNA were removed, yielding 81 cells for analysis. After normaliza-

tion and estimation of technical noise using ERCC spike-ins (see RNA-seq 

normalization and estimation of technical noise), we retained a set of 7,073  

genes for analysis with variation above the technical background level  

(FDR <0.1; Supplementary Data 2).

RNA-seq normalization and estimation of technical noise. For the T-cell data, 

raw read counts were normalized using the approach proposed in DESeq47, 

deriving size factors for each cell from the ERCC spike-ins. Estimates of the 

technical variability were also derived using the ERCC spike-ins, adapting 

the approach in Brennecke et al.20 (Supplementary Fig. 1a). We omitted the 

normalization for cell size as proposed previously20 because the computational 

correction by scLVM yielded much better results (Supplementary Fig. 21). 

This is likely explained by noting that cell size and cell cycle are correlated, 

thus the normalization proposed by Brennecke et al. reduces the amount of 

information available for inferring cell-cell correlations due to cell cycle; see 

also Supplementary Figure 21 and discussion in Supplementary Notes. To 

determine genes with high biological variability, we followed Brennecke et al.20 

and tested against the null hypothesis that the biological coefficient of variation 

is at most 50% (at 10% FDR, Supplementary Notes). This justifies ignoring 

Poisson shot noise because of the large proportion of technical noise of genes 

expressed at low levels (see ref. 20 and details below). For the Quartz-Seq 

mESC data no spike-ins were available; we therefore used fragments per kilo-

base of transcript per million fragments mapped (FPKM) expression estimates 

as provided by the authors. Because there were no spike-ins, we estimated the 

baseline variability using a log-linear fit to describe the relationship between 

mean and squared coefficient of variation overall (Supplementary Fig. 1c). All 

subsequent analyses were carried out on log-transformed normalized count 

values and log-transformed FPKM estimates for the T-cell and newly generated 

mESC data and the Quartz-Seq mESC data, respectively.

scLVM method. The scLVM algorithm is a two-step approach. First, one 

or more covariance structures are inferred from genes that are annotated to 

hidden factors such as cell-cycle progression. Subsequently, these covariance 

structures can be used to account for the hidden factors as random effects 

in a mixed model, allowing the variance in expression for each gene to be 

decomposed into a technical, a biological and a separate component for each 

hidden factor. Additionally, the hidden factors can be accounted for when 

performing pairwise gene-gene correlation analyses, and further allow ‘cor-

rected’ residual gene expression data sets to be generated. scLVM is closely 

related to previous approaches that correct for hidden confounding factors 

in gene expression data21,48 and the inference employed to fit hidden factors 

builds on the PANAMA model30.

Briefly, the fitting process uses Gaussian Process Latent variable models 

(GPLVMs)31, a recent development in machine learning and statistics. The 

approach resembles a PCA on genes annotated to a hidden factor (such as cell 

cycle). However, instead of explicitly reconstructing PCA loadings and scores, 

the GPLVM approach fits a low-rank cell-to-cell covariance to the observed 

gene expression matrix of these genes. Related approaches have been proposed 

to account for relatedness between individuals in the context of expression 

Quantitative Trait Loci (eQTL) studies30, where an individual-to-individual 

covariance is inferred to explain the heterogeneity in gene expression levels 

between individuals rather than cells.

More specifically, for any gene g that is annotated to the hidden factor under 

consideration, its expression profile yg across cells is modeled as

y XX CC
T T

g g g∼ N ( , )m s nn1 + +2 2
II

where X represents the hidden factor (such as cell cycle), C corresponds 

to additional observed covariates (if available) and νg
2 denotes the residual 

variance. Because the same distributional assumptions are shared across a 

large set of genes in the annotated set, the state of the hidden variables X and 

the remaining covariance parameters can be robustly inferred by means of 

standard maximum likelihood approaches (Supplementary Notes). Once X is 

inferred, we calculate the covariance structure between cells, which is induced 

by the hidden factor as Σ = XXT.

An important choice when fitting the model is the dimensionality of the 

hidden factor matrix, X, which corresponds to the rank of the cell-to-cell  

covariance matrix Σ. In the context of distinct factors such as the cell cycle or TH2  

differentiation, we found that a one-dimensional factor (rank one covariance) 

is commonly sufficient (see also the scree plots in Supplementary Fig. 22 and 

Choosing the rank of the cell-cycle factor). In general, the P-value distribution 

of a test statistic on the residual data set48, heuristic selection approaches21 or 

hierarchical modeling to regularize the effective dimensionality of the hidden 

factor22,30 can also be employed (Supplementary Notes).

Alternative fitting approaches, including methods to account for multi-

plicative effects between covariates and hidden factors, are discussed in the 

Supplementary Notes. Once fitted, the covariance matrix Σ can be used for a 

range of analyses, using efficient implementations of linear mixed models29,49 

to decompose variance, test for gene-gene correlations or produce residuals 

corrected for the latent factors under consideration.

Analysis of variance. To estimate the components of variance, scLVM 

employs a linear mixed model that is fitted to the expression levels of each 

gene, decomposing sources of variation. Contributions from hidden factors 

(1)(1)
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such as cell-cycle effects, technical noise and residual biological variation to 

the observed expression variability of gene g are modeled as random effects:

y +g g gh h g g
h

∼ N m s n d1,
2 2 2

1

∑ +










=
∑ I I

H

with σ2
gh, νg

2 and δ 2
g denoting the variance attributable to H hidden factors 

(see section below for a discussion of estimating multiple hidden factors), 

residual biological variability (not related to hidden factors) and technical 

noise/baseline variability respectively. The hidden factor covariance matrices 

Σh are estimated in the GPLVM step and δ 2
g is estimated from spike-ins as 

described above. The parameters σ2
gh, νg

2 and µg are then estimated by maxi-

mum likelihood. Interactions between pairs of factors can be considered by 

combining their previously estimated covariance matrices; see section above 

and Supplementary Notes.

Gene-gene correlation analysis. To estimate pairwise correlation coefficients 

while controlling for hidden factors such as the cell cycle, we introduce an 

additional fixed effect representing the contribution of another gene j

P i j i ij gh
H

ih i i ij j ih
h

H

iy y y y| , , , , , | ,m b s n m b s n2
1

2 2

1
∑ ∑{ }( ) = + +

=
N 1

22
I

h∑










In this linear mixed model, βij can be interpreted as the pairwise correla-

tion coefficient between genes i and j, and its significance can be assessed by  

means of a standard likelihood ratio test. Owing to efficient implementa-

tions of mixed models in applications to GWAS29,49, these correlation tests 

are extremely efficient (Supplementary Notes).

Creating residual expression data sets with the effect of hidden factors 

removed. To facilitate reuse of existing analyses methods, such as clustering, 

visualization or dimension reduction approaches, scLVM facilitates generation 

of a corrected expression data set where the effect of one or multiple hidden 

factors (e.g., the cell cycle) is removed.

For each gene i, the variance component model (see above) implies a pre-

dictive distribution of the cell-cycle component with mean ŷi and predic-

tive variance ỹi. Expression levels that are corrected for the effect of hidden 

factors can then be obtained from the model residuals, that is, yi* = yi − ŷi. 

These corrected gene expression values can be used in the full range of exist-

ing methods, including clustering or nonlinear PCA31. Cell-cycle corrected 

expression values for the T-cell data and the mESC data are available online 

(Supplementary Data 1 and 2).

Applying scLVM to multiple annotated gene sets. In some circumstances, 

scLVM can be used to fit more than a single factor, provided that multiple 

informative gene sets are available. In general, statistical identifiability is a 

major concern and careful choice of the inference approach is important 

(Supplementary Notes). These factors can either be considered independ-

ently or learned by conditioning on one of them if prior knowledge exists as 

to which has a stronger effect (as for the cell cycle). As the cell cycle represents  

the predominant source of variation in our data, the cell-cycle factor can 

be recovered irrespective of other sources of variation. Therefore, we first 

learn the cell-cycle factor Xcc as described above. Then we extend the single  

factor model by conditioning on the inferred factor Xcc and including an 

interaction term, which we define by a point-wise product (Supplementary 

Notes). Alternative analysis approaches are discussed below; see Alternative 

approaches to fit the TH2 factor and Supplementary Figure 15.

Analysis details. Validation of scLVM using mESC data. We used the annotated 

cell-cycle state in the ESC data sets to validate the accuracy of the model-based 

cell-cycle reconstruction carried out by scLVM. Briefly, instead of fitting the 

scLVM covariance from the data, we used the known grouping of cells into 

G1, S- and G2/M-phase as covariates and estimated the proportion of variance 

explained by the sum of all three covariates. In the case of the unfiltered mESC 

data (this study used the C1 protocol; see Data set and processing), the variance 

estimates of scLVM were compared to a model with a cell-cycle covariance and 

an additional factor that explains cell size variation. To estimate cell size we 

used the ratio of endogenous reads to total mapped reads, thereby capturing 

large variations in cell size within individual cell-cycle phases in the unfiltered 

data (Supplementary Notes). These estimates were then compared with the 

variance estimates using scLVM (Fig. 2a). In the same vein, the covariates can 

be included in pairwise gene-gene correlation analyses, again comparing the 

inference results based on the Hoechst staining to estimates obtained using 

the covariance structure inferred by scLVM. Further details on the estimation 

procedure using the gold standard are provided in Supplementary Notes.

Assessment of the effect of alternative cell cycle gene annotations. Unless 

otherwise stated, we considered the union of genes from CycleBase, and GO 

categories annotated as cell cycle related, resulting in 892 genes. Briefly, we 

combined all cell cycle–annotated genes (GO:0007049) in the Gene Ontology 

database along with the 600 top-ranked genes from CycleBase (Supplementary 

Notes). To assess to what extent the gene set annotation affects the perform-

ance of scLVM, we additionally considered either CycleBase genes or the 

GO annotated genes alone (Supplementary Figs. 3–5 and Supplementary 

Table 1), which yielded very similar results. Furthermore, we carried out a 

subsampling experiment, where random subsets of the full set of 892 genes 

were used to fit the cell cycle factor (Supplementary Fig. 5a–g). This showed 

that a relatively small set of 50 genes is sufficient to robustly identify the 

cell cycle. Finally, estimates for the variance explained by the cell cycle were 

consistent when alternative metrics were applied to quantify the propor-

tion of variation explained by the cell cycle (Supplementary Fig. 5h and  

Supplementary Notes).

Identification of subclusters in the ESC and T-cell data. We considered non-

linear PCA31 for the analysis of subclusters in single-cell data sets, which 

has previously been considered for application to single-cell transcriptomics 

data50. When correcting for cell cycle, we used the scLVM residual expression 

data sets (see Choosing the rank of the cell-cycle factor) as input, otherwise 

we used the preprocessed log expression values.

Choosing the rank of the cell-cycle factor. As described above, scree plots 

generated for both the T-cell and the mESC data suggested that the largest  

proportion of variance was explained by the first principal component 

(Supplementary Fig. 22). Consequently, we used a K = 1 rank covariance 

matrix to fit the cell-cycle factor in most experiments. When omitting the 

filtering of cells (quality control, Supplementary Notes), a second component 

(K = 2) was necessary to fully capture the variation in the data. This second 

component likely captures intra cell-phase differences in cell size (see also 

Supplementary Figs. 19–20 and Supplementary Notes).

Alternative approaches to fit the TH2 factor. In order to assess the robust-

ness of the conditional fitting for the TH2 factor as described above (Applying 

scLVM to multiple annotated gene sets), we compared the results with a con-

ceptually simpler ‘iterative approach’, where we first regressed out the cell-cycle 

effects as described above (Gene-gene correlation analysis), before fitting the 

state of the differentiation factor on cell cycle–corrected expression values.

Reassuringly, the TH2 differentiation factor recovered by either of the 

approaches was strikingly correlated (Pearson r2= 0.82, Supplementary 

Fig. 15c) and was consistent with the subclusters of cells identified by the unsu-

pervised PCA approach (Fig. 3e). In the variance decomposition, the factor 

determined by the iterative approach yielded a smaller proportion of variance 

attributable to the TH2 differentiation factor (2.6% versus 5.3%), which can be 

attributed to the assumption of a common parameter for all genes in the con-

ditional approach (the iterative approach allows a gene-specific contribution 

of the cell-cycle factor). Critically, the set of genes identified in the interaction 

component and the GO analysis for the set of genes with a strong interaction 

effect yielded consistent results (Supplementary Tables 8 and 9).
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