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ABSTRACT 

 
Present study numerically investigates the effect of oscillation of convergent-divergent nozzle in an ejector using 

ANSYS Fluent.15.5. The nozzle domain will oscillate between two points in the ejector at particular frequency and 

amplitude. The motion of nozzle and movement of the mesh according to the nozzle oscillation is made possible by 

user-defined functions available in ANSYS Fluent 15.5. Variation of entrainment ratio with time has been studied at 

different amplitudes and frequency combination and the same is compared with the stationary nozzle. Even though 

the oscillating nozzle underperforms the conventional one at lower amplitude and frequency, the former one shows a 

trend of increasing with increasing frequency. 

 

1. INTRODUCTION 

 
Ejector is a single piece equipment which entrains fluid with the help of momentum offered by the primary fluid. 

The ejector system has been used for refrigeration systems, petrochemical processes, hybrid vacuum systems, crude 

oil distillation, space simulation and metals vacuum degassing. Ejector refrigeration system is a thermally driven 

technology that has been used for cooling applications industries. The ejector refrigeration cycle has many 

advantages, such as simple structure, low operating, maintenance and installation cost etc. A convergent-divergent 

nozzle (C-D Nozzle), constant area mixing section (CAMC), and diffuser are the main components of an ejector. 

Even though the efficiency of ejector system is relatively less as compared to other conventional devices, this type 

of systems can utilize the waste heat from industry, solar energy, geothermal energy, etc.  

 

Various computational and experimental studies have been conducted to improve the performance of the ejector.  

Main motivation of the researcher is to increase the entrainment of secondary fluid for a given motive flow and 

compress them to the required condenser pressure. These two performance parameters are coupled in nature that is 

increasing entrainment ratio will affect the pressure at the exit of the ejector. 

 

Cizungu et al. (2001) carried out a computational study on ejector refrigeration system using one-dimensional 

analysis. They observed that area ratio (AR) must be less (5<AR<8) when using R134a and R152a as refrigerant but 

lower AR is preferable for refrigerant R717 to achieve higher COP. Selvaraju and Mani (2004) developed a 

computer code based on the 1-D ejector theory to investigate performance of the ejector. They concluded that as 

compression ratio (CR) increases the entrainment ratio (ER), as well as coefficient of performance (COP) decreases 

but ER and COP increases with increase in driving pressure ratio (DR) also R134a perform better than the other 

tested refrigerants. Later the authors (Selvaraju and Mani, 2006) conducted an experimental study using R134a 

refrigerant which had a cooling capacity of 0.5kW. The study concluded that, for a given ejector geometry 

configuration, there exists an optimum primary vapour temperature at a particular condenser and evaporator 

temperatures, which produce maximum ER and COP. Bartosiewicz et al. (2005) carried out a numerical and 

experimental study to investigate the performance of different turbulence models (k−ω SST, k−ε, Realizable k−ε, 

and RNG) to capture real flow characteristics in the ejector that closely represent the experimental observations. 

They concluded that SST model predicts computational results showing best match with experiments. Further, 

Bartosiewicz et al. (2006) conducted a numerical study on ejector using R142b as working fluid. This was the first 

attempt to study the effect of shock wave boundary layer interaction in the ejector using a refrigerant as flow 

medium. Authors point out the need of a combined CFD-experimental investigation to validate the turbulence 
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models, global and local features such as the entrainment ratio, flow separation, recompression etc. Sankarlal and 

Mani (2007) carried out an experimental study on ammonia ejector refrigeration system. The investigation 

concluded that entrainment ratio and coefficient of performance of the ejector increase with increase in expansion 

ratio and area ratio and also increase with decrease in compression ratio. 

 

Chen et al. (2011) conducted a numerical study on natural gas ejector to obtain the optimum geometry factors such 

as inclination angle of mixing chamber, ratio of diameter to length of the constant area mixing chamber, diverging 

angle of the diffuser, etc. In 2012, Yang et al. numerically investigated the effect of different nozzle cross-sections 

on performance of ejector. They considered five different cross-sections of nozzle, such as circular, elliptical, 

square, rectangular and cross-shaped. It has been reported that the square and cross-shaped nozzles give higher 

entrainment ratio than the circular nozzle. However, as far as effect of critical back pressure is concerned, it is found 

that the circular shape performs better than other nozzle shapes. In 2013, Yen et al. proposed a variable throat 

ejector that can be useful in a solar vapour ejector refrigeration system. Authors also conducted a CFD analysis on 

the proposed ejector and observed that ejector which has greater throat area and big solar collector allows ejector to 

operate in a wider range but it is expensive. Also, smaller throat area limits the operating range. So, they have 

derived a relation between operating condition and optimum throat area ratio, using this equation to adjust the throat 

area ratio can operate the refrigeration system at different operating conditions. 

 

Chen et al. (2013) developed a 1-D model to predict the ejector performance and verified against experimental data 

which include different working fluids (R141b, air, propane) and geometries such as circular and rectangular cross-

section. They claimed that the proposed model can accurately predict the performance of the ejector in larger 

refrigeration cycles, at all operating conditions. Arun et al. (2014, 2015, 2017) conducted numerical analysis on 

rectangular ejector using air and R134a. Authors compared the computational results with photographs captured 

from the Schlieren flow visualisation analysis. 

 

Ejector has been subjected to various design changes to improve the performance. Jiautheen et al. (2014) conducted 

a three-dimensional numerical study to evaluate the performance of ejector having a swirl generator in motive 

nozzle. Authors observed that entrainment ratio has been improved with incorporation of swirl by about 6% as 

compared to conventional ejector. Present study numerically investigates the performance of the rectangular section 

ejector equipped with an oscillating C-D nozzle.  

 

 

2. COMPUTATIONAL METHODOLOGY 

 
A rectangular section ejector with oscillating C-D nozzle is tested by two-dimensional computation. The nozzle 

domain will oscillate between points A and B about an axis C as shown in Fig. 1. Mesh has been refined near to the 

wall and at interface between two domains. The movement and reformation of mesh as shown in Fig.2, near to the 

oscillating domain (C-D nozzle) has been made possible by dynamic meshing option available in ANSYS Fluent 

15.5. Centre of rotation of the C-D nozzle is selected as the coordinate corresponds to the throat section.  Mesh has 

been refined near to the interface between the oscillating and stationary domain to ease the computation. Mesh near 

to the oscillating domain will move and reform to a new shape with the movement of oscillating domain. A user-

defined function (UDF) has been developed to oscillate the nozzle about centre of rotation at different angle of 

oscillation and frequency. Present study observed the performance of ejector at different angle of oscillation and 

frequency (angle of oscillation – 2 to 10o and frequency – 2 to 10 Hz). 

 

 
Figure 1: Angle of oscillation 
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Figure 2: Schematic of grid mesh near C-D nozzle 

 

Present study is an unsteady computational analysis as the C-D nozzle is oscillating with respect to time 

consequently entrainment ratio (ER). Present study consider operating temperature as 27o C and primary inlet (Pp = 

3 bar) and secondary inlet (Ps =1bar) is pressure inlet while exit is pressure outlet (Po = 1bar).. The property of 

working fluid, air has been calculated by using ideal gas equations. Position of primary inlet has been chosen as 

shown in Fig. 3 to ease the computation. Also, interface between two domains has been made as circular to 

minimize the mesh movement at the time of computation. Diffusion-based smoothing has been chosen to smooth 

the reformed mesh at each time. Decreasing the diffusivity in larger mesh causes these cells to absorb more of mesh 

motion and therefore better cell quality of small size cells. Using cell-volume-based diffusion. Use of cell-volume 

based diffusion allows to control how the boundary motion diffuses into the interior of domain as a function of cell 

size. This diffusion coefficient can be changed by adjusting the diffusion parameter available in ANSYS Fluent. A 

value of zero specifies that diffusion coefficient equals to one, yields a uniform diffusion of the boundary motion 

throughout the mesh. Higher values of diffusion coefficient result in larger cells absorbing more of the motion than 

smaller cells. 

 

 

 
 

Figure 3: Schematic of ejector domain 

 

A grid independence study has been carried out by plotting centerline pressure (P) and velocity (V) at different mesh 

density. Also, a validation study has been conducted with the experimental results of Arun et al (2017). Turbulence 

effects in the ejector have been modelled using the standard k-epsilon turbulence model (Bartosiewicz et al., 2005). 
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Fixed time step has been chosen to collect the data at each instance of C-D nozzle movement. The operation of 

ejector has been observed at each operating condition for a 10 second of time and mass flow rate of the secondary 

inlets has been added at each time step while calculating ER. 

 

 

3. RESULTS AND DISCUSSIONS 

 
The present study conducted 2-D numerical simulations to investigate effect of C-D nozzle oscillation about an axis 

perpendicular to the view plane. C-D nozzle oscillating at a particular amplitude and frequency creates a serpentine 

motion of the jet will in CAMC of the ejector as shown in Fig. 4. A distinctive character of conventional ejector is 

that secondary fluid gets entrained by means of two possible interactions. It could be shear-turbulence interaction at 

the interface between the primary and secondary stream, referred to as 'momentum exchange' or 'turbulent shear-

turbulent mixing entrainment'. Or dynamic pressure force interaction at the interface between the primary and 

secondary fluids referred to as 'pressure exchange'. 

 

In present case, transfer of energy between primary and secondary fluids is through the intimate contact by the 

serpentine motion of the primary jet. The secondary fluid is captured between the walls of the ejector and successive 

waves of the jet stream as shown in Fig. 4. Longitudinal component of the primary stream offers force to the 

secondary fluid at the interfacial boundary, resulting in transfer of energy between the two fluids. The magnitude of 

this force vector is a function of the differential dynamic pressure between the primary and secondary fluids at the 

interfacial boundary, the primary fluid velocity (V) in the area considered, and the frequency of jet modulation. 

Primary jet-modulation or oscillation frequency will determine the magnitude of longitudinal force vector which is a 

vector component of the total force. The modulated fluid jet progresses through the CAMC at a diminishing 

wavelength, decreasing V, and increasing pressure. 

 

 
 

Figure 4: Flow pattern in oscillating ejector 

 

A two-dimensional computation has been carried out to find the effect of oscillating C-D nozzle on the ejector 

performance using ANSYS Fluent 15.5. The variation of ER with time is plotted in Fig. 5. Yellow line represents 

the variation of ER of ejector with stationary C-D nozzle while another line represents the variation of ER of 

oscillating nozzle with different frequencies and amplitudes. It can be observed that the ejector with C-D nozzle 

shows relatively poor performance than the conventional one at all tested conditions as shown in Fig. 5. Average ER 

of 10 seconds is observed to be always less than the ejector with stationary C-D nozzle even if at some time step the 

former shows higher ER than the latter case. 
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Figure 5: Comparison of secondary flow rate in the ejector with and without 

oscillating nozzle at frequency = 7 Hz, amplitude = 2o to 10o 

        

 

Figure 6 shows the change in ER with the variation of angle of oscillation. It has been observed that entrainment 

ratio decreases with increase of angle of oscillation. It can also be observed that all the curves follow the same trend 

of decreasing magnitude of ER. But the slopes of the curves are decreasing with increasing angle of oscillations. 

Figure 7 shows the effect of variation of ER with change in frequency of oscillation. It is also observed that at lower 

angle of oscillation, change of ER shows an increasing trend. On the other hand, at higher angle of oscillation, ER 

increases with increase in frequency but the rate of increase is small.  

 

 

 
 

Figure 6: (a)Variation of entrainment ratio with angle of oscillation, (b) Variation of entrainment ratio with 

frequency of oscillation 

 

 

 

Figures 7 and 8 show contours of pressure and velocity at two angles of oscillation at a frequency of oscillation, of 

5Hz. Figures 7 a(X), b(X) show the contours when nozzle is at station-A as mentioned in Fig. 1. Figures 7 a(Z), b(Z) 
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represent the contours while nozzle is at station-B and Fig. 7 a(Y), b(Y) represent the nozzle at zero angle of 

oscillation (Station-C). It can be observed from these figures that the serpentine motion created by the oscillating 

nozzle is not sufficient to capture the secondary stream as described. Similarly, Fig. 8 shows the velocity contours of 

ejector flow field. It has been observed that the effect of oscillation prevails up to the exit of ejector. Such an 

unsteady flow behavior affects the condenser performance. Frequency of jet modulation is less due to high forward 

V but it can be increased by increasing the frequency of oscillation of the C-D nozzle. The computational study of 

ejector with high-frequency C-D nozzle oscillation requires large memory as well as computation time. Present 

study also observed that the behavior of shock wave does not change with change in frequency and amplitude of the 

C-D nozzle oscillation as shown in Figs. 7 and 8. 

 

 
 

Figure 7: Pressure contours at Pp= 4.5 bar, Ps= 1 bar, Po=1 bar (a) frequency = 5 Hz and oscillation angle = 2o (b) 

frequency = 5 Hz and oscillation angle = 10o 

 

(Pa) 
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Figure 8: Velocity contours at Pp= 4.5 bar, Ps= 1 bar, Po=1 bar (a) frequency = 5 Hz and oscillation angle = 2o (b) 

frequency = 5 Hz and oscillation angle = 10o 

 

 

Figure 9 shows the streamline patterns from primary and secondary inlets, at two angles of oscillation and a fixed 

frequency of 5 Hz. Figures 9 an(X), b(X) show the contours when nozzle is at station-A as mentioned in Fig. 1. 

Figures 10 a(Z), b(Z) represent the contours while nozzle at station-B and Figs. 9 a(Y), b(Y) represent the nozzle at 

zero angle of oscillation (Station-C). Strong circulation region is observed near the mixing chamber and near the 

walls as shown in Fig. 9. Circulation is observed to be unsteady in nature, i.e. circulation on upper side of the C-D 

nozzle becomes large when nozzle moves towards bottom side and vice versa. Circulation in this region may reduce 

the effective momentum exchange area and thereby the value of ER. However, the ejector presented here should 

work with the principle of pressure exchange concept as discussed earlier. Jet modulation created by the C-D nozzle 

should be of the type shown in Fig. 4. This study can be extended by increasing oscillation frequency for different 

angular amplitudes and combinations of boundary conditions. 

 

(m/s) 
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Figure 9: Streamline pattern in ejector at Pp= 4.5 bar, Ps= 1 bar, Po=1 bar (a) 5 Hz 

and oscillation angle = 2o (b) frequency = 5 Hz and oscillation angle = 10o 

 

 

4. CONCLUSIONS 
 

Present study can be considered as the first step to the movable C-D nozzle to improve the performance of the 

ejector. Numerical investigations show that the oscillating ejector performs inferior to that of ejector with stationary 

C-D nozzle under tested conditions. Streamline pattern shows the circulation near the mixing region that leads to the 

reduction of entrainment ratio (ER). But at higher amplitude and frequency it shows increasing trend gives the 

confidence to extend the study. 

 

 

NOMENCLATURE 
T  Temperature 

ER  Entrainment ratio 

P  Pressure  

  Density 

V  Velocity  
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K  Turbulent kinetic energy  

  Turbulent dissipation 

C-D   Convergent divergent 

CAMC  Constant area mixing chamber 

CR   Compression ratio 

COP  Coefficient of performance 

 

Scripts 

p  Primary 

s  Secondary 

o  Exit 
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