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Abstract: In the current work, an investigation has been carried out for the Bingham fluid flow in
a channel-driven cavity with a square obstacle installed near the inlet. A square cavity is placed
in a channel to accomplish the desired results. The flow has been induced using a fully developed
parabolic velocity at the inlet and Neumann condition at the outlet, with zero no-slip conditions
given to the other boundaries. Three computational grids, C1, C2, and C3, are created by altering the
position of an obstacle of square shape in the channel. Fundamental conservation and rheological
law for viscoplastic Bingham fluids are enforced in mathematical modeling. Due to the complexity of
the representative equations, an effective computing strategy based on the finite element approach is
used. At an extra-fine level, a hybrid computational grid is created; a very refined level is used to
obtain results with higher accuracy. The solution has been approximated using P2 − P1 elements
based on the shape functions of the second and first-order polynomial polynomials. The parametric
variables are ornamented against graphical trends. In addition, velocity, pressure plots, and line
graphs have been provided for a better physical understanding of the situation Furthermore, the
hydrodynamic benchmark quantities such as pressure drop, drag, and lift coefficients are assessed
in a tabular manner around the external surface of the obstacle. The research predicts the effects of
Bingham number (Bn) on the drag and lift coefficients on all three grids C1, C2, and C3, showing that
the drag has lower values on the obstacle in the C2 grid compared with C1 and C3 for all values of Bn.
Plug zone dominates in the channel downstream of the obstacle with augmentation in Bn, limiting
the shear zone in the vicinity of the obstacle.

Keywords: viscoplastic material; finite element method; fluid forces; yield stress; channel-driven cavity

1. Introduction

Even though the bulk of fluids in the biosphere exhibit Newtonian behavior, most
synthetic and nonsynthetic industrial fluids, as well as biological fluids such as the blood,
and saliva of humans, exhibit non-Newtonian behavior. Cosmetics, paints, soaps, glues,
detergents, and various food items are a few examples. Among these, a substantial class
of non-Newtonian materials known as viscoplastic materials or Bingham plastic has a
yield stress limit that must be accomplished before considerable deformation can occur.
This type of non-Newtonian substance is very important. The viscoplastic fluids include
slurries and chocolate, pastes and margarine, mayonnaise, suspension, and others. These
ingredients have been used in many sectors and culinary processes and are currently an
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area of increased scientific interest because of their excellent functionality, practical use,
and wide-ranging applicability.

The initial idea of yield stress and its technical aspects was communicated by Shwe-
dov [1], who assessed the behavior of flow, composition, and the quality of viscoplastic
materials at various output stress levels. Following Shwedov, an extensive range of experi-
ments was conducted by Bingham, who carried out detailed observations of their fluidity
and plasticity [2]. Since then, the interest in these materials has been growing steadily,
resulting in numerous studies, modeling, and simulations, that examine such materials in
nontrivial flows, either conceptually or experimentally. Several models have such as the
Bingham [2], the Herschel–Bulkley [3], and the Casson model [4], attempted to show the
relationship between stress and strain in these fluids and gain a better understanding of
the physical properties of viscoplastic materials. Thus far, Bingham fluid model seems the
strongest; Bingham accomplished remarkable feats by proposing many viscoplastic paints
and clarifying the plasticity and fluidity of these materials. Subsequently, Bird et al. [5,6]
undertook seminal research, providing a list of several additional materials that exhibit
these features. Several attempts [7–9] have been made to amend Bingham’s modeling of
plastic fluids and create mathematical solutions. Bercovier and Engelmann [7] recognized
the discontinuity found in the Bingham model and provided the corrective by linearizing
the fluid viscosity. Papanastasiou [8] added to the expression of yield stress by introducing
an exponential term. This addition to the model aids in describing yielded and unyielded
areas. Barnes [9] provided a detailed study of fluid viscoplastic behavior, stating that the
behavior of real viscoplastic fluids is more similar to the Papanastasiou’s regularized vis-
coplastic fluid than the behavior of ideal Bingham fluid. Further research on yield-stress
fluids can be found in [10–15].

Much research has been dedicated to the theoretical and practical aspects of the
channel flow using Bingham fluids. For the system overriding the motion, the weak
solutions have been addressed in [16], and in pipes and plane channel Poiseuille flow,
nonlinear stability has been investigated in [17]. For the problem of incoming flow in a
pipe, spatial decay estimations have been studied in [18], and slip conditions are used to
study Couette–Poiseuille flow in a porous channel in [19]. The convective flow of Bingham
fluid in a vertical channel has also been studied; for the Couette–Poiseuille flow, the natural
convection is studied in [20]. In a porous channel, the influence of exterior and internal
heating on the free convective flow has been explored using Pascal’s piecewise-linear law
for Poiseuille flow in [21] and in [22] for mixed convection of non-Newtonian fluids, the
analytic solutions have been produced.

The flow around obstacles is a fascinating fluid mechanics problem from a compu-
tational, experimental, and analytical standpoint. Due to technological developments in
recent years, difficulties with the computational and temporal issues associated with simu-
lations around obstacles have been eliminated. Researchers nowadays focus their efforts
on gaining a better knowledge of fluid movement around obstacles and interpreting it
physically. Schaefer et al. [23] carried out ground-breaking work in this area by studying the
flow characteristics of Newtonian fluid flow around an obstacle. Outcomes for Newtonian
fluid throughout the cylinder accompanied by different physical necessities can be found
in [24–27]. The literature includes limited work on non-Newtonian fluids flowing around
obstacles. C. H. K. Williamson [24] investigated the characteristics of vortex shedding
over a bluff body. Hussain et al. [25] considered continuous and discontinuous Galerkin
approaches for computing incompressible problems and investigated the control of the
mean flux. Kanaris et al. [26] studied the features of the 3D flow field over an obstacle in a
channel and analyzed the confinement only in far wake. Rajani et al. [27] have focused on
describing the viscous flow over a cylinder in a channel. The main findings are validated
against skin friction and Strouhal frequency shedding. Adachi and Yoshioka [28] inves-
tigated the theoretical work in this area. Tokpavi et al. [29,30] examined Bingham fluids
around the circular cylinder, including inertia effects. They examined the flow character-
istics of Bingham fluid experimentally and showed excellent agreement between earlier



Materials 2022, 15, 529 3 of 16

theoretical conclusions and their experimental data. The Bingham fluid was exploited by
Nirmalkar et al. [31] to explain the forced thermal convection effect past a square shape
cylinder. The drag and lift coefficients magnitudes were determined for Reynolds number
(Re) = 45 by Mossaz et al. [32] and Syrakos et al. [33] for different values of Bingham number.
Moreover, Syrakos et al. [34] investigated the idea of an effective Reynolds number for
Bingham fluid.

Abbasi et al. [35] quantitatively evaluated the effects of fluid forces using a cylinder-
based Lattice Boltz–Mann Method (LBM) at low Reynolds numbers. Using P2 − P1 element
pair for finite element approach to a channel-driven cavity, Mahmood et al. [36] examined
the non-Newtonian flow. Khan et al. [37] used the COMSOL solver to impose least-square
FEM computation of viscous fluid flow through a semicylinder block. To tackle a flow
problem, Tomio et al. [38] constructed a numerical approach, second-order, finite difference
schemes. Recently, Afraz et al. [39] provided a full investigation of fluid forces and thermal
analysis of two-dimensional, incompressible, and laminar complicated fluid flow.

The flow of Bingham material has been investigated by many researchers both compu-
tationally and experimentally. However, Bingham flow in the present configuration in the
presence of obstacles is new. The discussion below is organized as follows; in Section 2,
mathematical modeling is explained. The physical configuration and numerical approach
are executed in Section 3. A detailed analysis of results is considered in Section 4, and the
conclusion is offered in Section 5.

2. Mathematical Modeling

In dimensional form, the model Equations for steady, incompressible flows are defined
in [15] as follows:

∇.u = 0 (1)

ρ(u.∇u) = −∇p +∇.τ (2)

where all the symbols have their traditional meanings. Bingham [2] developed a basic
rheological relationship for viscoplastic materials:{ .

γ = 0, τ ≤ τy

τ =
(

τy
.
γ
+ µP

)
, τ > τy

(3)

where the τ,
.
γ, τy and µP denotes the stress tensor, the rate of the strain tensor, the yield

stress, and plastic viscosity, respectively. The strain tensor is defined as

.
γ ≡ ∇u + (∇u)T (4)

Here, u denotes the velocity vector. Defining stress magnitude and strain rate as

τ ≡
[

1
2
(τ) : (τ)

] 1
2
,

.
γ

. ≡
[

1
2
( .
γ
)

:
( .
γ
)] 1

2
(5)

One crucial observation is that the computational domain can be divided into three
areas for viscoplastic fluids, the first where

.
γ 6= 0 defines the shear zone, whereas

.
γ ≡ 0

shows plug zone and U 6= 0. There is a discontinuity inherited by Equation (3) which is
addressed by Papanastasiou [8] using exponential function as

τ =

[
τy
.
γ

{
1− exp

(
−m

.
γ
)}

+ µP

]
.
γ (6)

Here, the parameter m denotes the stress growth. The viscosity, by owing Equation (4),
can be written as

η =

[
τy
.
γ

{
1− exp

(
−m

.
γ
)}

+ µP

]
(7)
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Which for the entire flow domain is valid.
Introducing, u∗, τ∗,

.
γ
∗ and p∗ the nondimensional variables and choosing Lre f and

Ure f as reference length and velocity, respectively, such that

∇.u∗ = 0 (8)

Re u∗.∇u∗ = −∇p∗ +∇.τ∗ (9)

In which

τ∗ =

[
τy
.
γ
∗

{
1− exp

(
−M

.
γ
∗)}

+ 1
]

.
γ
∗ (10)

where Re =
ρUre f Lre f

µP
is Reynolds number and Bingham number is Bn =

τy Lre f
µPUre f

. The

parameter m is now given by M =
mUre f

Lre f
. The nondimensional form of viscosity is

η∗ =

[
Bn
.
γ
∗

{
1− exp

(
−M

.
γ
∗)}

+ 1
]

(11)

M is the nondimensional correspondence of m.
The hydrodynamic forces are accessible, the drag coefficient and lift coefficient CD

and CL are immediately available for postprocessing by a nondimensional analog

CD =
2Fd

ρU2
meanD

(12)

CL =
2Fl

ρU2
meanD

(13)

Here, Umean denotes reference velocity, and D is the diameter of the obstacle.

3. Physical Configuration and Numerical Scheme

A schematic diagram of the channel-driven cavity is shown in Figure 1. An open
square cavity is placed at the bottom of the channel. A parabolic inflow profile is provided
at the channel’s inlet, and at the outlet, a Neumann condition is addressed. The other
walls of the channel-driven cavity is set zero no-slip condition, i.e., u = v = 0. For
more accuracy of hydrodynamic forces, an extra-fine hybrid mesh is developed around
the obstacles. A square shape cylinder is placed by varying the locations with centers
respectively, (0.9, 1.5), (1.5, 1.5), and (2.1, 1.5).

Considering incompressible Navier–Stokes equations given in (1) and (2), together
with the rheological law (3) representing Bingham material, a broad range of flow problems
can be described. These equations describe the natural processes of life and contribute to
understanding the flow of materials in nature. Due to the high nonlinearity of the model,
exact solutions to such problems are rare; therefore, we apply FEM computation for the
numerical approximation of the governing equations. In this direction, the conforming
element pair P2 − P1 is selected for the velocity and pressure approximations. This element
is a stable pair satisfying the inf–sup condition [40–43]. Newton’s method is applied to
solve discrete nonlinear algebraic systems, and the inner linear subproblems are solved
using a direct solver. The nonlinear iteration’s convergence condition is specified as follows:∣∣∣∣Xn+1 − Xn

Xn+1

∣∣∣∣ < 10−6

where X denotes the general component of the solution.
The coarse computational grid for three different obstacle settings C1, C2, and C3 are

shown in Figure 2. Mesh refinement is an important step in validating any finite element
model and enhancing the reader’s trust in the work’s physical outcomes. Since the finite
element method (FEM) is based on a transformation of computational domain into the finite
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number of elements, in Table 1, mesh statistics at different refinement levels for several
elements (# EL), and associated degrees of freedom (# DOF) are enumerated.
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Table 1. Number of Degrees of Freedom at Different Refinement Levels.

Refinement Level # EL # DOF

L1 769 4032
L2 1167 6130
L3 1786 9245
L4 2962 15,171
L5 3590 21,648
L6 6707 33,213
L7 16,139 78,925
L8 39,724 191,180
L9 52,844 250,024
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4. Results and Discussions

Figure 3a–c illuminates momentum distribution by adjusting Bingham number from
Bn = 1 up to 50. The position of the square obstacle is changed, centered at different C1, C2,
and C3. The Bingham fluid flow is seen at a fixed Reynolds number Re = 20. Fluctuation in
velocity near an obstacle and other regions of the channel-driven cavity is noticed because
the induced velocity at the inlet is parabolic, while for other boundaries, there is a no-slip
condition. For all locations C1, C2, and C3, it is observed that velocity decreases with an
increase in Bn, and the plug zone stretches from the channel’s center to the solid walls,
while the shear zone is limited to the immediate vicinity of obstacles.

The pressure changes across the physical domain, particularly in the presence of
obstacles located at three different sites by varying Bn, for restricted value Re = 20, is
plotted in Figure 4a–c. The figure illustrates that pressure behaves nonlinearly near the
obstacle before becoming linear downstream, as predicted in channel flow. Because of
plasticity effects amplified by enhancement in the value of Bn, the parabolic profile given
at the inlet quickly bifurcates at the obstacle and subsequently decreases in the center of
the channel. The maximum value of optimal pressure is observed in the presence of an
obstacle that interacts with the fluid.
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The influence of relevant parameters on viscosity is plotted in Figure 5a–c. By in-
creasing the magnitude of Bn, an increase in viscosity is also observed. Higher viscosity
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values are seen as Bn increases even for different obstacle positions. In addition, around
the obstacle, there are small islands of high viscosity for all obstacle sites, and their size is
growing with increasing Bn.
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Figure 6a–c depicts line graphs expressing velocity variations at various points in
the physical configuration. Because viscosity does not affect injected velocity, a perfect
parabolic peak is achieved at the inlet, as seen in the above illustrations. The fluid flow
through the channel, on the other hand, varies its behavior near the obstacle and above the
cavity. A gradual rise in nonlinearity can also be detected due to Bn growth.
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For increasing values of Bingham number (Bn) and confining Re = 20, Table 2 inter-
prets fluctuation in the pressure across obstacles placed at distinct points in the channel,
such as the centers at C1, C2, and C3. It is enumerated from the numerical data obtained
by increasing Bn pressure drop. The viscosity of Bingham fluids increases as Bn increases,
causing it to contact the obstacle with greater force and thereby increasing pressure drop.
The numeric data obtained for Bn ranging from (1 to 50) indicates that the pressure gradient
approaches 1.144143 at the obstacle’s position G1 and approaches 1.129823 and 1.164679
at the obstacle’s positions C2 and C3, respectively. It is also observed that the obstacle’s
position affects the pressure gradient. The manipulated difference is evidenced by tabulated
values at Bn = 1 for restriction Re = 20, for location C1 of the obstacle, the pressure drop
value is 0.105098, whereas for the same value of Bn and Re at the other two locations, i.e., at
C2 = 0.089917 and C3 = 0.102492 variation in the pressure drop is observed. These findings
show that the maximum pressure near the inlet pressure falls over the cavity pressure
drops with low intensity, followed by the elevation after the fluid crosses from the cavity.
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Table 2. Pressure drop for different positions of obstacle.

Bn
C1 C2 C3

δp = p2 − p1 δp = p2 − p1 δp = p2 − p1

1 0.105098 0.089917 0.102492
5 0.178537 0.161953 0.182264
10 0.277829 0.260403 0.285607
15 0.379743 0.362457 0.391536
20 0.485614 0.471741 0.498451
25 0.590631 0.580957 0.608244
30 0.698603 0.690398 0.718537
35 0.809055 0.799874 0.828990
40 0.920618 0.909552 0.940283
45 1.032414 1.019508 1.052340
50 1.144143 1.129823 1.164679

Table 3 depicts changes in benchmark hydrodynamic parameters such as drag coef-
ficient and lift coefficient on the exterior surface of the obstacle located at C1, C2 and C3.
It is found that increasing the scale of Bn drag and lift, coefficients fluctuate for a fixed
value of Reynold number Re = 20. The negative lift coefficient (CL) value illustrates that
the lift forces are dominant in the upward direction. The cause for the negative value of lift
coefficient is because the obstacle is positioned as if fluid enters the cavity and pushes the
obstacle upward, resulting in a numerical pattern like this. From calculated values of drag
coefficient at C1, C2, and C3, it is realized that the maximum value of drag is 6.5114676 at C1.
By fixing Bn = 1 and Re = 20 as it comes closer to C2, drag value starts to decrease, having
a magnitude of 5.71877 and again increases at C3 as the magnitude is 6.6158896. The lift
coefficient’s contrasting behavior is adjusted so that fluctuation occurs at C1, C2, and C3
as the magnitude of lift coefficient at C1 = −0.24909, at the location C2 decreased value is
noticed of magnitude −0.37351 and again increased to 0.28946 at C3. Because upward lift
forces dominate, negative values are measured when the obstacle is positioned near the
inlet and above the cavity position, while positive values are measured at C3 because lift
forces are active from downward.

Table 3. Drag and Lift Coefficients for Various Bn with Different Centre of Obstacle.

Bn
C1 C2 C3

CD CL CD CL CD CL

1 6.511467 −0.24909 5.718770 −0.373510 6.615889 0.28946
5 12.31288 −0.61309 11.31525 −0.630990 12.61671 0.35282

10 19.78717 −0.90407 18.61922 −0.219770 20.29534 0.72005
15 27.24873 −1.16007 26.00279 0.395369 27.93196 1.21576
20 34.7233 −1.41867 33.41197 0.909717 35.54671 1.75848
25 42.18845 −1.71279 40.81667 1.348083 43.13843 2.30321
30 49.65995 −2.05944 48.21088 1.743551 50.71272 2.83111
35 57.127 −2.43912 55.59006 2.106661 58.27419 3.33006
40 64.58501 −2.82462 62.96177 2.438490 65.82729 3.80311
45 72.04071 −3.20601 70.31964 2.741542 73.36969 4.25363
50 79.48114 −3.58121 77.67343 3.022520 80.90281 4.68517

5. Conclusions

The current study investigates the flow characteristics of a generalized Bingham
material flow in a channel-driven cavity, with an obstacle of square shape positioned at
various locations inside the channel. The physical problem and relevant rheological laws are
transformed into a mathematical form using the Navier–Stokes equation in two-dimension
and boundary constraints. The finite element method, a well-known computational tool,
is required to report both the solution and the physical occurrences. Graphical trends are
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used to present the results. The behavior of the momentum distribution of a Bingham fluid
at entrance, obstacle, and close to exit regions is represented by bar lines. The pressure
variation, as well as the drag coefficient and lift coefficient on the external surface of the
obstacle, are tabulated. The most important findings are listed below.

• As the Bn increases, pressure drops become more vigorous for all obstacle positions.
• The pressure drop is influenced by the placement of the obstacle, which increases at

C1, lowers at C2, and finally boosts at C3.
• Lift coefficient changes sign-on C2 when Bn exceeds the value Bn = 10 while on other

grids, sign change does not occur.
• Negative lift coefficients are obtained when upward forces dominate, while positive

values are obtained when downward forces dominate.
• Pressure has stagnant values at the front of the obstacle where fluid is interacting

with it.
• Plug zone enhances in the channel downstream of the obstacle with augmentation in

Bn limiting the shear zone in the vicinity of the obstacle.
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Nomenclature

τy Yield Stress
µp Plastic Viscosity
τ Stress Tensor
.
γ Rate of Strain Tensor
u Dimensional Velocity Vector
u∗ Dimensionless Velocity Vector
Uin Velocity at inlet
Umean Average Velocity
.
γ Shear Rate
p Dimensional pressure
p∗ Dimensionless pressure
m Dimensional Stress growth parameter
M Dimensionless Stress growth parameter
Re Reynold number
Bn Bingham number
# EL Number of Elements
# DOF Number of degrees of freedom
CD Drag Coefficient
CL Lift Coefficient
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