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Abstract An analysis is presented for the nonlinear steady boundary layer flow and heat

transfer of an incompressible tangent hyperbolic non-Newtonian fluid from horizontal cir-

cular cylinder in the presence of thermal and hydrodynamic slip condition. The transformed

conservation equations are solved numerically subject to physically appropriate boundary

conditions using a second-order accurate implicit finite-difference Keller Box technique.

The numerical code is validated with previous studies. The influence of a number of emerg-

ing non-dimensional parameters, namely Weissenberg number (We), power law index (n),

velocity slip parameter (Sf ), thermal jump parameter (ST), Prandtl number (Pr), magnetic

parameter (M) and dimensionless tangential coordinate (ξ) on velocity and temperature

evolution in the boundary layer regime are examined in detail. Furthermore, effects of these

parameters on surface heat transfer rate and local skin friction are also investigated. Val-

idation with earlier Newtonian studies is presented and excellent correlation achieved. It

is observed that velocity, skin friction and heat transfer rate are reduced with increasing

Weissenberg number (We), whereas, temperature increases slightly. Increasing power law

index (n) increases velocity and heat transfer rate but decreases temperature and skin fric-

tion. An increase in S f , is observed to enhance velocity and heat transfer rate but decreases

temperature and local skin friction. Whereas, increasing ST , is found to decrease velocity,

temperature, skin friction and Nusselt number. The study is relevant to chemical materials

processing applications.
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List of Symbols

a Radius of the cylinder

B0 Externally imposed radial magnetic field

C f Skin friction coefficient

f Non-dimensional steam function

Gr Grashof number

g Acceleration due to gravity

k Thermal conductivity of fluid

K0 Thermal jump factor

M Magnetic parameter

n Power law index

Nu Local Nusselt number

N0 Velocity slip factor

Pr Prandtl number

S f Non-dimensional velocity slip parameter

ST Non-dimensional thermal jump parameter

T Temperature of the fluid

u, v Non-dimensional velocity components along the x- and y- directions,

respectively

V Velocity vector

We Weissenberg number

x Stream wise coordinate

y Transverse coordinate

Greek

α Thermal diffusivity

β The coefficient of thermal expansion

Φ Azimuthal coordinate

φ Non-dimensional concentration

η The dimensionless radial coordinate

μ Dynamic viscosity

ν Kinematic viscosity

θ Non-dimensional temperature

ρ Density of non-Newtonian fluid

ξ The dimensionless tangential coordinate

ψ Dimensionless stream function

Ŵ Time dependent material constant

 Second invariant strain tensor

Subscripts

W Conditions at the wall (cylinder surface)

∞ Free stream conditions
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Introduction

Analysis of non-Newtonian fluids has been the focus of several investigations during the past

few decades because of its extensive engineering and industrial applications. Especially, flow

and heat transfer of non-Newtonian fluids play central role in food engineering, petroleum

production, power engineering and in polymer solutions and in polymer melt in the plastic

processing industries. In nature there are non-Newtonian fluids with different characteristics

and consequently various constitutive equations of non-Newtonian fluids have been pre-

sented. The use of such constitutive equations leads to more complicated and highly nonlinear

systems. The analytic/numerical solutions of such equations present exciting challenges to

the mathematicians, physicists, numerical simulists and modelers. Significant attention has

been directed at mathematical and numerical simulation of non-Newtonian fluids. Recent

investigations have implemented, respectively the Casson model [1], second-order Reiner-

Rivlin differential fluid models [2], power-law nanoscale models [3] and Jefferys viscoelastic

model [4].

The study of magnetohydrodynamic (MHD) flows is quite interesting and useful because

it is used in magnetic wound or cancer tumour treatment causing hypothermia, bleeding

reduction during surgeries, targeted transport of drugs using magnetic particles as drug carries

and MRI (magnetic resonance imaging) to diagnose the disease. Magnetohydrodynamic

refers to the study of the mutual interaction of fluid flow with magnetic fields. MHD viscous

flows with heat and mass transfer has emerged as an important field of study in recent times

due to its application in several different fields of engineering and technology as well as in

astrophysics, geophysics and nuclear sciences [5]. Numerous studies of both an experimental

and numerical nature have been communicated regarding magnetohydrodynamic flow in

chemical engineering [6–8].

Slip effects have shown to be significant in certain industrial thermal problems and

manufacturing fluid dynamics systems. Sparrow et al. [9] presented the first significant inves-

tigation of laminar slip-flow heat transfer for tubes with uniform heat flux. Inman [10] further

described the thermal convective slip flow in a parallel plate channel or a circular tube with

uniform wall temperature. These studies generally indicated that velocity slip acts to enhance

heat transfer whereas temperature jump depresses heat transfer. Many studies have appeared

in recent years considering both hydrodynamic and thermal jump effects. Interesting articles

of relevance to process mechanical engineering include Larrode et al. [11] who studied ther-

mal/velocity slip effects in conduit thermal convection. Spillane [12] who examined sheet

processing boundary layer flows with slip boundary conditions and Crane and McVeigh [13]

who studied slip hydrodynamics on a micro-scale cylindrical body. Further studies in the con-

text of materials processing include Yu and Ameel [14], Crane and McVeigh [15]. Studies of

slip flows from curved bodies include Bég et al. [16] who examined using network numerical

simulation the magneto-convective slip flow from a rotating disk, Wang and Ang [17] who

studied using asymptotic analysis the slip hydrodynamics from a stretching cylinder. Results

assuming that the slip solution was a perturbation of the no-slip solution predicted that the

slip conditions would not affect shear stress, boundary-layer thickness, or heat transfer [18].

In addition semi-analytic results suggested that heat transfer would change in the presence

of slip flow [19]. Additional computations proved that shear stress would as well change

[20]. Several explanations were offered for the contradictory results. The solutions to other

viscous flows considered similar to boundary layer flows, such as Couette, Poiseuille, and

Rayleigh flows, showed a change in heat transfer and shear stress [21]. This led to the sug-

gestion that the mathematical and experimental techniques available at the time lacked the
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accuracy necessary to capture the result. The suggestion was also made that the boundary-

layer equations were not valid for slip flows. Two separate arguments were made. The first

was that the second-order slip boundary condition was of the same order as the terms that

were discarded from the Navier–Stokes equations to create the boundary-layer equations

[22]. A second problem was the Reynolds number scaling of the boundary-layer equations.

Using the definitions of viscosity and the speed of sound, the Knudsen number can be found

as a function of the Mach number and Reynolds number [23]:

K nxα
M

Rex

(I)

This scaling indicates that an incompressible boundary layer, with a Reynolds number of

500 or greater and a Mach number of less than 0.3, is unlikely to have a Knudsen number

large enough for slip to appear. Several decades after these initial results, the development

of microelectromechanical systems led to a renewed interest in slip flows [24]. The correct

scaling of boundary-layer slip was shown to be based on the boundary-layer thickness and

was computed as

K nδα
M

Rex

(II)

This scaling does allow an incompressible boundary layer with a Reynolds number of 500

or greater and a Mach number of less than 0.3 to have a large enough Knudsen number for

slip to appear.

An interesting non-Newtonian model developed for chemical engineering systems is the

Tangent Hyperbolic fluid model. This rheological model has certain advantages over the

other non-Newtonian formulations, including simplicity, ease of computation and physical

robustness. Furthermore it is deduced from kinetic theory of liquids rather than the empirical

relation. Several communications utilizing the Tangent Hyperbolic fluid model have been

presented in the scientific literature. There is no single non-Newtonian model that exhibits

all the properties of non-Newtonian fluids. Among several non-Newtonian fluids, hyperbolic

tangent model is one of the non-Newtonian models presented by Pop and Ingham [25].

Nadeem et al. [26] made a detailed study on the peristaltic transport of a hyperbolic tangent

fluid in an asymmetric channel. Nadeem and Akram [27] investigated the peristaltic flow of

a MHD hyperbolic tangent fluid in a vertical asymmetric channel with heat transfer. Very

recently, Akbar et al. [28] analyzed the numerical solutions of MHD boundary layer flow of

tangent hyperbolic fluid on a stretching sheet.

In many chemical engineering and nuclear process systems, curvature of the vessels

employed is a critical aspect of optimizing thermal performance. Examples of curved bod-

ies featuring in process systems include torus geometries, wavy surfaces, cylinders, cones,

ellipses, oblate spheroids and in particular, spherical geometries. A number of theoretical

and computational studies have been communicated on transport phenomena from cylindri-

cal bodies, which frequently arise in polymer processing systems. Zueco et al [29] examined

the multi-physical and chemical transport from cylindrical bodies. Further, non-Newtonian

models employed in analyzing convection flows from cylinders include micropolar liquids

[30], viscoelastic materials [31], micropolar nanofluids [32] and Casson fluids [1].

The objective of the present study is to investigate the laminar boundary layer flow and

heat transfer of a Tangent Hyperbolic non-Newtonian fluid from horizontal circular cylinder.

The non-dimensional equations with associated dimensionless boundary conditions consti-

tute a highly nonlinear, coupled two-point boundary value problem. Keller’s implicit finite

difference “box” scheme is implemented to solve the problem [33]. The effects of the emerg-
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ing thermophysical parameters, namely Weissenberg number (We), power law index (n),

magnetic parameter (M), thermal jump (ST ), velocity slip (S f ) and Prandtl number (Pr), on

velocity, temperature, skin friction number, and heat transfer rate characteristics are studied.

The present problem has to the authors’ knowledge not appeared thus far in the scientific

literature and is relevant to polymeric manufacturing processes in chemical engineering.

Non-Newtonian Constitutive Tangent Hyperbolic Fluid Model

In the present study a subclass of non-Newtonian fluids known as Tangent Hyperbolic fluid

is employed owing to its simplicity. The Cauchy stress tensor, in Tangent Hyperbolic non-

Newtonian fluid [25] takes the form:

τ =
[

μ∞ + (μ0 + μ∞) tanh
(

Ŵγ̇
)n

]

γ̇ (1)

where τ̄ is extra stress tensor, μ∞ is the infinite shear rate viscosity, μ0 is the zero shear

rate viscosity, Ŵ is the time dependent material constant, n is the power law index i.e. flow

behaviour index and ¯̇γ is defined as

γ̇ =

√

√

√

√

1

2

∑

i

∑

j

γ̇ i j γ̇ j i =
√

1

2
, (2)

where  = 1
2

trac
(

gradV + (gradV )T
)2

. We consider Eq. (1), for the case when μ∞ = 0

because it is not possible to discuss the problem for the infinite shear rate viscosity and since

we considering tangent hyperbolic fluid that describing shear thinning effects so Ŵ ¯̇γ << 1.

Then Eq. (1) takes the form

τ = μ0

[

(

Ŵγ̇
)n

]

γ̇

= μ0

[

(

1 + Ŵγ̇ − 1
)n

]

γ̇

= μ0

[

1 + n
(

Ŵγ̇ − 1
)]

γ̇ (3)

The introduction of the appropriate terms into the flow model is considered next. The resulting

boundary value problem is found to be well-posed and permits an excellent mechanism for

the assessment of rheological characteristics on the flow behaviour.

Mathematical Flow Model

Steady, laminar, two-dimensional, electrically-conducting, incompressible flow of a Tangent

Hyperbolic fluid from a horizontal circular cylinder, is considered, as illustrated in Fig. 1.

We assume that the fluid is subject to a constant transverse magnetic field, B0, which acts

radially i.e. normal to the cylinder surface. The x-coordinate (tangential) is measured along

the circumference of the horizontal cylinder from the lowest point and the y-coordinate

(radial) is directed perpendicular to the surface, with a denoting the radius of the horizontal

cylinder. � = x/a is the angle of the y-axis with respect to the vertical 0 ≤ � ≤ π . The

gravitational acceleration g, acts downwards. Magnetic Reynolds number is assumed to be

small enough to neglect the induced magnetic field. When the fluid moves into the magnetic

fluid, two major physical effects arise. The first one is that an electric field E is induced

123



656 Int. J. Appl. Comput. Math (2015) 1:651–675

g 

a 

y 

x 

Permeable Horizontal Cylinder: Tw 

surface conditions 

T end condition 

Tangent Hyperbolic Fluid 

Wall transpiration

Magnetic Field, B
0

Fig. 1 Physical model and coordinate system

in the flow. We assume that the flow is 2D, and B0. (∇ × V ) = 0. the current density J

is given by Ohm’s law as J = σ (E + V × B0). From the charge conservation law, we

have ∇.J = σ∇.E + σ∇. (V × B0) = σ∇.E + σ B0. (∇ × V ) = 0, and ∇.E = 0 is

satisfied. Neglecting the induced magnetic field also implies ∇ × E = 0. Because both of the

divergence and the curl of the electric fled are zero, the electric field is zero, and the current

density J is given by Ohm’s law as J = σ (V × B0). The second effect is dynamic in nature,

i.e., a Lorentz force J × B0, which acts on the fluid and modifies its motion. This results

in the transfer of energy from the electromagnetic field to the fluid. Hall current and ionslip

effects are also neglected since the magnetic field is weak. We also assume that the Boussineq

approximation holds i.e. that density variation is only experienced in the buoyancy term in

the momentum equation. Additionally the electron pressure (for weakly conducting fluids)

and the thermoelectric pressure are negligible. The radial magnetic field B0 is generated by

passing a steady electric current along the longitudinal parallel to the cylinder, where the

cylinder edges terminate at perfect electrodes that are connected via a load. The magnetic

field, therefore, acts radially to the external boundary layer flow. This has been studied by

Nath [34] and Makinde et al. [35]. An alternative technique to achieve the desired magnetic

field is through the implementation of a permeable core within the cylinder and a permeable

cylinder shell. As such, the magnetic flux lines would close via these circular paths at

significant distances from the regime of interest. The “source” of the magnetic flux would

be discs of permanently magnetized material between the cylinder and the external flow. In

either case, the magnetic field is radial and external to the boundary layer flow regime on

the surface of the cylinder. For the hydromagnetic body force term, we follow the standard

assumptions that the magnetic field acts transverse to the streamwise direction (the length

of the cylinder). An order of magnitude analysis leads to the final linear drag force term for

magnetohydrodynamic effects. Such an approach is further discussed by Aleksandrova [36],

Ishak et al. [37] and EL-Hakiem [38].

Both horizontal cylinder and the Tangent Hyperbolic fluid are maintained initially at the

same temperature. Instantaneously they are raised to a temperature Tw > T∞, the ambient

temperature of the fluid which remains unchanged. In line with the approach of Yih [39]
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and introducing the boundary layer approximations, the equations for mass, momentum, and

energy, can be written as follows:

∂u

∂x
+

∂v

∂y
= 0 (4)

u
∂u

∂x
+ v

∂u

∂y
= ν (1 − n)

∂2u

∂y2
+

√
2νnŴ

(

∂u

∂y

)

∂2u

∂y2
+ gβ sin

( x

a

)

(T − T∞) −
σ B2

0

ρ
u

(5)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
(6)

where u and v are the velocity components in the x- and y- directions respectively, ν = μ
ρ

is the kinematic viscosity of the tangent hyperbolic fluid, β is the coefficient of thermal

expansion, α is the thermal diffusivity, T is the temperature, ρ is the density of the fluid, σ is

the electrical conductivity, B0 is the externally imposed radial magnetic field (i.e. applied in

the y-direction), ρ is the density. The Tangent Hyperbolic fluid model therefore introduces a

mixed derivative (second order, first degree) into the momentum boundary layer equation (5).

The non-Newtonian effects feature in the shear terms only of Eq. (5) and not the convective

(acceleration) terms. The third term on the right hand side of Eq. (5) represents the thermal

buoyancy force and couples the velocity field with the temperature field equation (6). The

fourth term on the right hand side of Eq. (5) represents the hydromagnetic drag.

At y = 0, u = N0
∂u

∂y
, v = 0, T = Tw + K0

∂T

∂y

As y → ∞, u → 0, T → T∞

(7)

Here N0 is the velocity slip factor, K0 is the thermal slip factor and T∞ is the free stream

temperature. For N0 = 0 = K0, one can recover the no-slip case.

The stream function ψ is defined by u = ∂ ψ
∂y

and v = − ∂ ψ
∂x

, and therefore, the conti-

nuity equation is automatically satisfied. In order to render the governing equations and the

boundary conditions in dimensionless form, the following non-dimensional quantities are

introduced.

ξ =
x

a
, η =

y

a
Gr1/4, f =

ψ

νξ
Gr−1/4, θ (ξ, η) =

T − T∞
Tw − T∞

Pr =
ν

α
, Gr =

gβ1 (Tw − T∞) a3

ν2
, We =

√
2νŴxGr3/4

a3
, M =

σ B2
0 a2

ρν
√

Gr

(8)

All terms are defined in the nomenclature. In view of the transformation defined in Eq.

(8), the boundary layer equations (5)–(7) are reduced to the following coupled, nonlinear,

dimensionless partial differential equations for momentum and energy for the regime:

(1 − n) f ′′′ + f f ′′ −
(

f ′)2 + nWe f ′′ f ′′′ + θ
sin ξ

ξ
− M f ′ = ξ

(

f ′ ∂ f ′

∂ξ
− f ′′ ∂ f

∂ξ

)

(9)

θ ′′

Pr
+ f θ ′ = ξ

(

f ′ ∂θ

∂ξ
− θ ′ ∂ f

∂ξ

)

(10)

The transformed dimensionless boundary conditions are:

At η = 0, f = 0, f ′ = S f f ′′ (0) , θ = 1 + ST θ ′ (0)

As η → ∞, f ′ → 0, θ → 0
(11)
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Here primes denote the differentiation with respect to η, S f = N0Gr1/4

a
and ST = K0Gr1/4

a

are the non-dimensional velocity and thermal jump parameters respectively. The skin-friction

coefficient (shear stress at the cylinder surface) and Nusselt number (heat transfer rate) can

be defined using the transformations described above with the following expressions.

Gr−3/4C f = (1 − n) ξ f ′′(ξ, 0) +
n

2
Weξ

(

f ′′(ξ, 0)
)2

(12)

Gr−1/4 Nu = −θ ′(ξ, 0) (13)

The location, ξ ∼ 0, corresponds to the vicinity of the lower stagnation point on the cylinder.

Since
sin ξ

ξ
→ 0/0 i.e. 1. For this scenario, the model defined by eqns. (9) and (10)

contracts to an ordinary differential boundary value problem:

(1 − n) f ′′′ + f f ′′ −
(

f ′)2 + nWe f ′′ f ′′′ + θ − M f ′ = 0 (14)

1

Pr
θ ′′ + f θ ′ = 0 (15)

The general model is solved using a powerful and unconditionally stable finite difference

technique introduced by Keller [40]. The Keller-box method has a second order accuracy

with arbitrary spacing and attractive extrapolation features.

Numerical Solution with Keller Box Implict Method

The Keller-box implicit difference method is implemented to solve the nonlinear bound-

ary value problem defined by Eqs. (9)–(10) with boundary conditions (11). This technique,

despite recent developments in other numerical methods, remains a powerful and very accu-

rate approach for parabolic boundary layer flows. It is unconditionally stable and achieves

exceptional accuracy [40]. This method has been deployed in resolving many challeng-

ing, multi-physical fluid dynamics problems. These include hydromagnetic Sakiadis flow of

non-Newtonian fluids [41], radiative rheological magnetic heat transfer [42], waterhammer

modelling [43], and magnetized viscoelastic stagnation flows [44]. The Keller-box discretiza-

tion is fully coupled at each step which reflects the physics of parabolic systems—which are

also fully coupled. Discrete calculus associated with the Keller-box scheme has also been

shown to be fundamentally different from all other mimetic (physics capturing) numerical

methods, as elaborated by Keller [40]. The Keller box scheme comprises four stages.

1) Decomposition of the N th order partial differential equation system to N first order

equations.

2) Finite difference discretization.

3) Quasilinearization of non-linear Keller algebraic equations and finally.

4) Block-tridiagonal elimination solution of the linearized Keller algebraic equations

Stability and Convergence of Keller Box Method

In laminar boundary layer calculations, the wall shear stress parameter v (x, 0), is commonly

used as the convergence criterion [45]. This is probably because in boundary layer calcula-

tions, it is found that the greatest error usually appears in the wall shear stress parameter.

Different criterion is used for turbulent flows problem. Throughout the study of this paper, the
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convergence criterion is used as it is efficient, suitable and the best. Calculations are stopped

when
∣

∣

∣δv
(i)
0

∣

∣

∣ < ε1

where ε1 is a small prescribed value.

Numerical Results and Interpretation

Comprehensive solutions have been obtained and are presented in Tables 1, 2, 3, 4 and 5 and

Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12. The numerical problem comprises two independent

variables (ξ, η), two dependent fluid dynamic variables ( f, θ) and five thermo-physical and

body force control parameters, namely, We, n, Sf , ST, M, Pr, ξ . The following default

parameter values i.e. We = 0.3, n = 0.3, Sf ,= 0.5, ST = 1.0, M = 0.5, Pr = 7.0,

Table 1 Values of the local heat

transfer coefficient −θ ′ (ξ, 0) for

various values of ξ with

We = 0.0, n = 0.0, M =
0.0, Sf = 0.0, ST = 0.0

NuGr−1/4 = −θ ′ (ξ, 0)

ξ Merkin [46] Nazar et al. [47] Present

0◦ 0.4214 0.4214 0.4213

30◦ 0.4161 0.4161 0.4160

60◦ 0.4007 0.4005 0.4004

90◦ 0.3745 0.3741 0.3742

120◦ 0.3364 0.3355 0.3356

150◦ 0.2825 0.2811 0.2810

180◦ 0.1945 0.1916 0.1917

Table 2 Values of f ′′(ξ, 0) and −θ ′(ξ, 0) for different values of Sf , ST and M (Pr = 7.0, We = 0.3, n =
0.3, ξ = 1.0)

Sf ST M = 0.0 M = 0.5 M = 1.0 M = 2.0

f ′′(ξ, 0) −θ ′(ξ, 0) f ′′(ξ, 0) −θ ′(ξ, 0) f ′′(ξ, 0) −θ ′(ξ, 0) f ′′(ξ, 0) −θ ′(ξ, 0)

0.0 1.0 0.3766 0.6391 0.3343 0.5828 0.3063 0.5431 0.2851 0.5117

0.1 0.3706 0.6486 0.3270 0.5920 0.2978 0.5521 0.2756 0.5204

0.3 0.3585 0.6676 0.3122 0.6105 0.2806 0.5701 0.2563 0.5379

0.5 0.3463 0.6865 0.2972 0.6291 0.2633 0.5881 0.2368 0.5555

0.8 0.3277 0.7148 0.2743 0.6568 0.2368 0.6152 0.2070 0.5819

1.0 0.3150 0.7335 0.2588 0.6753 0.2188 0.6332 0.1869 0.5995

0.5 0.0 0.3968 0.8566 0.3459 0.7899 0.3101 0.7415 0.2819 0.7026

0.5 0.3719 0.7707 0.3219 0.7086 0.2870 0.6639 0.2596 0.6281

1.5 0.3199 0.6042 0.2717 0.5515 0.2389 0.5143 0.2134 0.4849

2.0 0.2924 0.5239 0.2455 0.4761 0.2138 0.4428 0.1893 0.4166

2.5 0.2639 0.4458 0.2183 0.4030 0.1879 0.3736 0.1646 0.3506

3.0 0.2341 0.3701 0.1900 0.3325 0.1611 0.3071 0.1391 0.2873
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Table 3 Values of f ′′(ξ, 0) and −θ ′(ξ, 0) for different values of Sf , ST and M (Pr = 7.0, We = 0.3, n =
0.3, ξ = 1.0)

S f ST M = 2.0 M = 2.5 M = 3.0

f ′′(ξ, 0) −θ ′(ξ, 0) f ′′(ξ, 0) −θ ′(ξ, 0) f ′′(ξ, 0) −θ ′(ξ, 0)

0.0 1.0 0.2681 0.4857 0.2540 0.4634 0.2420 0.4441

0.1 0.2576 0.4941 0.2426 0.4717 0.2297 0.4521

0.3 0.2364 0.5112 0.2195 0.4882 0.2050 0.4682

0.5 0.2149 0.5283 0.1962 0.5049 0.1799 0.4845

0.8 0.1822 0.5540 0.1607 0.5300 0.1417 0.5090

1.0 0.1600 0.5712 0.1366 0.5468 0.1158 0.5254

0.5 0.0 0.2585 0.6699 0.2384 0.6417 0.2208 0.6169

0.5 0.2369 0.5981 0.2175 0.5723 0.2005 0.5497

1.5 0.1924 0.4604 0.1744 0.4395 0.1588 0.4213

2.0 0.1692 0.3948 0.1521 0.3764 0.1373 0.3603

2.5 0.1455 0.3317 0.1293 0.3157 0.1152 0.3018

3.0 0.1211 0.2712 0.1059 0.2576 0.0926 0.2459

Table 4 Values of f ′′(ξ, 0) and −θ ′(ξ, 0) for different values of We, n and Pr (Sf = 0.5, ST = 1.0, M = 1.0)

We N Pr = 7 Pr = 10 Pr = 20 Pr = 25

f ′′(ξ, 0) −θ ′(ξ, 0) f ′′(ξ, 0) −θ ′(ξ, 0) f ′′(ξ, 0) −θ ′(ξ, 0) f ′′(ξ, 0) −θ ′(ξ, 0)

0.0 0.3 0.2751 0.5891 0.2560 0.6717 0.2186 0.8659 0.2067 0.9399

0.5 0.2559 0.5875 0.2392 0.6699 0.2062 0.8639 0.1955 0.9380

1.0 0.2389 0.5859 0.2243 0.6683 0.1950 0.8621 0.1854 0.9362

2.0 0.2098 0.5831 0.1985 0.6653 0.1753 0.8588 0.1675 0.9328

3.0 0.1855 0.5806 0.1769 0.6626 0.1585 0.8559 0.1522 0.9298

4.0 0.1646 0.5784 0.1581 0.6601 0.1438 0.8531 0.1387 0.9270

5.0 0.1463 0.5763 0.1417 0.6579 0.1308 0.8506 0.1268 0.9245

0.3 0.0 0.3059 0.5620 0.2830 0.6404 0.2385 0.8261 0.2244 0.8974

0.1 0.2938 0.5697 0.2724 0.6493 0.2308 0.8373 0.2176 0.9094

0.2 0.2798 0.5783 0.2602 0.6593 0.2218 0.8501 0.2095 0.9230

0.3 0.2633 0.5881 0.2457 0.6706 0.2110 0.8647 0.1998 0.9387

0.5 0.2185 0.6123 0.2059 0.6991 0.1806 0.9021 0.1722 0.9792

0.7 0.1430 0.6464 0.1374 0.7400 0.1255 0.9580 0.1214 1.0403

ξ = 1.0 are prescribed (unless otherwise stated). Furthermore the influence of stream-wise

(transverse) coordinate on heat transfer characteristics is also investigated.

Table 1 presents the values of heat transfer coefficient for different values of ξ and are

compared with those of Merkin [46] and Nazar et al. [47] and are found to be in excellent

correlation.

Tables 2 and 3 document results for the influence of the velocity slip (Sf ) and the thermal

jump (ST) on skin friction and heat transfer rate along with a variation in the Magnetic

123



Int. J. Appl. Comput. Math (2015) 1:651–675 661

Table 5 Values of f ′′(ξ, 0) and −θ ′(ξ, 0) for different values of We, n and Pr (Sf = 0.5, ST = 1.0, M =

1.0)

We N Pr = 50 Pr = 75 Pr = 100

f ′′(ξ, 0) −θ ′(ξ, 0) f ′′(ξ, 0) −θ ′(ξ, 0) f ′′(ξ, 0) −θ ′(ξ, 0)

0.0 0.3 0.1702 1.2171 0.1495 1.4215 0.1353 1.5910

0.5 0.1625 1.2153 0.1435 1.4198 0.1303 1.5895

1.0 0.1554 1.2136 0.1379 1.4182 0.1257 1.5880

2.0 0.1426 1.2103 0.1278 1.4152 0.1172 1.5852

3.0 0.1315 1.2073 0.1188 1.4124 0.1097 1.5827

4.0 0.1216 1.2046 0.1108 1.4099 0.1029 1.5803

5.0 0.1127 1.2021 0.1036 1.4075 0.0967 1.5780

0.3 0.0 0.1817 1.1370 0.1577 1.3680 0.1413 1.5357

0.1 0.1773 1.1810 0.1546 1.3829 0.1390 1.5510

0.2 0.1720 1.1972 0.1508 1.4002 0.1361 1.5689

0.3 0.1655 1.2160 0.1459 1.4205 0.1323 1.5901

0.5 0.1460 1.2656 0.1307 1.4749 0.1200 1.6473

0.7 0.1077 1.3435 0.0992 1.5625 0.0930 1.7414

parameter (M). It has been observed that increasing Sf reduces skin friction but increases

heat transfer rate (Nusselt numbers). Also increasing ST is found to decrease both the skin

friction and heat transfer rate (Nusselt number). These tables also show that an increase in

M is found to decrease both skin friction and heat transfer rate.

Tables 4 and 5, we present the influence of the Weissenberg number (We) and power law

index (n), on skin friction and heat transfer rate (Nusselt number), along with a variation in

the Prandtl number (Pr). It is observed that, increasing We, decreases both Skin friction and

heat transfer rate. Furthermore, an increase in power law index (n) decreases skin friction but

increases heat transfer rate. As increasing Pr is found to reduce skin friction but enhances

heat transfer rate.

Figure 2a, b depict the velocity
(

f ′) and temperature (θ) distributions with increasing

Weissenberg number, We . Very little tangible effect is observed in Fig. 2a, although there

is a very slight decrease in velocity with increase in We. Conversely, there is only a very

slight increase in temperature magnitudes in Fig. 2b with a rise in We. The mathematical

model reduces to the Newtonian viscous flow model as We → 0 and n → 0. The momentum

boundary layer equation in this case contracts to the familiar equation for Newtonian mixed

convection from a cylinder, viz. f ′′′ + f f ′′ − f /2 + θ
sin ξ

ξ
− M f ′ = ξ

(

f ′ ∂ f ′

∂ξ
− f ′′ ∂ f

∂ξ

)

. The

thermal boundary layer equation (10) remains unchanged.

Figure 3a, b illustrate the effect of the power law index, n, on velocity
(

f ′) and temperature

(θ) distributions through the boundary layer regime. It is observed that increasing n, increases

velocity significantly. Conversely temperature is consistently reduced with increasing values

of n.

Figure 4a, b depict the evolution of velocity
(

f ′) and temperature (θ) functions with a

variation in velocity slip parameter, Sf . Dimensionless velocity component (Fig. 4a) at the

wall is considerably enhanced with increasing Sf . There will be a corresponding increase in

the momentum (velocity) boundary layer thickness. The influence of Sf is evidently more
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Fig. 2 a Influence of We on velocity profiles. b Influence of We on temperature profiles

pronounced closer to the cylinder surface (η = 0). Further from the surface, there is a

transition in velocity slip effect, and the flow is found to be accelerated markedly. Smooth

increase of the velocity profiles are observed into the free stream demonstrating excellent

convergence of the numerical solution. These trends in the response of velocity field in

external thermal convection from a cylinder were also observed by Wang and Ang [17]

and Wang [48]. Furthermore, the acceleration near the wall with increasing velocity slip

effect has been computed by Crane and McVeigh [15] using asymptotic methods, as has
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Fig. 3 a Influence of n on velocity profiles. b Influence of n on temperature profiles

the retardation in flow further from the wall. The switch in velocity slip effect on velocity

evolution has also been observed for the case of a power-law rheological fluid by Ajadi et

al. [49]. Figure 4b shows that an increase in Sf , significantly reduces temperature in the

flow flied and thereby decreases thermal boundary layer thickness. Temperature profiles

consistently decay monotonically from a maximum at the cylinder surface to the free stream.

All profiles converge at large value of radial coordinate, again showing that convergence has

been achieved in the numerical computations. A similar pattern of thermal response to that
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Fig. 4 a Influence of Sf on velocity profiles. b Influence of Sf on temperature profiles

computed in Fig. 4b who has indicated also that temperature is enhanced since stresses and

this permits a more effective transfer of heat from the wall to the fluid regime.

Figure 5a, b depict the evolution of velocity
(

f ′) and temperature (θ) functions with a

variation in thermal jump parameter, ST. The response of velocity is much more consistent

than for the case of changing velocity slip parameter (Fig. 4a). It is strongly decreased for all

locations in the radial direction. The peak velocity accompanies the case of no thermal jump

(ST = 0). The maximum deceleration corresponds to the case of strongest thermal jump

(ST = 3). Temperatures (Fig. 5b) are also strongly depressed with increasing thermal jump.
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Fig. 5 a Influence of ST on velocity profiles. b Influence of ST on temperature profiles

The maximum effect is observed at the wall. Further into the free stream, all temperature

profiles converge smoothly to the vanishing value. The numerical computations correlate well

with the results of Larrode et al. [11], who also found that temperature is strongly lowered

with increasing thermal jump and that this is attributable to the decrease in heat transfer from

the wall to the fluid regime, although they considered only a Newtonian fluid.

Figure 6a, b depict the profiles for velocity
(

f ′) and temperature (θ) for various values

of the magnetic parameter, M. An increase in M from 0 (non-magnetic case) to 2, strongly

decelerates the flow i.e., reduces velocity values. In all profiles a peak arises near the surface
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Fig. 6 a Influence of M on velocity profiles. b Influence of M on temperature profiles

of the cylinder and this peak is displaced progressively closer to the wall with an elevation in

M values. Here M = σ B2
0 a2

ρν
√

Gr
and embodies the relative effect of hydrodynamic (Lorentzian)

drag force to the viscous hydrodynamic force in the regime. It is a form of Hartmann number

familiar from MHD. Clearly, higher M values correspond to stronger applied magnetic field

(B0) acting normal to the cylinder longitudinal axis. The linear magnetic drag force,−M f ′,
featured in the non-dimensional momentum boundary equation (9), is directly proportional

to M and, in turn, M is directly proportional to B0 for constant electrical conductivity (σ ),
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Fig. 7 a Influence of ξ on velocity profiles. b Influence of ξ on temperature profiles

cylinder radius (a), fluid density (ρ), kinematic viscosity (ν) and Grashof number (Gr).

Therefore, a greater retarding effect is generated in the flow with greater M values (i.e.,

stronger magnetic field strengths), which causes the prominent depression in velocities. For

M = 1 the magnetic drag force will be of the same order of magnitude as the viscous hydro-

dynamic force. For M > 1, hydromagnetic drag will dominate and vice versa for M < 1.

Therefore, in magnetic materials processing the flow can be very effectively controlled with

a magnetic field. However, increasing M is found to accelerate the temperature.
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Fig. 8 a Influence of We on skin friction coefficient result. b Influence of We on Nusselt number result

Figure 7a, b depict the velocity ( f ′ and temperature (θ) distributions with dimensionless

radial coordinate, for various transverse (stream wise) coordinate values, ξ . Generally velocity

is noticeably lowered with increasing migration from the leading edge i.e. larger ξ values

(Fig. 7a). The maximum velocity is computed at the lower stagnation point (ξ ∼ 0) for low

values of radial coordinate (η). The transverse coordinate clearly exerts a significant influence

on momentum development. A very strong increase in temperature (θ), as observed in Fig.

7b, is generated throughout the boundary layer with increasing ξ values. The temperature
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Fig. 9 a Influence of n on skin friction coefficient result. b Influence of n on Nusselt number result

field decays monotonically. Temperature is maximized at the surface of the spherical body

(η = 0, for all ξ ) and minimized in the free stream (η = 25). Although the behaviour at

the upper stagnation point (ξ ∼ π) is not computed, the pattern in Fig. 7b suggests that

temperature will continue to progressively grow here compared with previous locations on

the cylinder surface (lower values of ξ ).
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Fig. 10 a Influence of Sf on skin friction coefficient result. b Influence of Sf on Nusselt number result

Figure 8a, b show the influence of Weissenberg number, We, on the dimensionless skin

friction coefficient
(

(1 − n) ξ f ′′ (ξ, 0) + nWe

2
ξ

(

f ′′ (ξ, 0)
)2

)

and heat transfer rate
(

θ ′ (ξ, 0)
)

at the cylinder surface. It is observed that the dimensionless skin friction is decreased with

the increase in We i.e. the boundary layer flow is accelerated with decreasing viscosity effects

in the non-Newtonian regime. The surface heat transfer rate is also substantially decreased

with increasing We values.
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Fig. 11 a Influence of ST on skin friction coefficient result. b Influence of ST on Nusselt number result

Figure 9a, b illustrate the influence of the power law index, n, on the dimensionless skin

friction coefficient and heat transfer rate. The skin friction (Fig. 9a) at the cylinder surface is

reduced with increasing n, however only for very large values of the transverse coordinate,

ξ . However, heat transfer rate (local Nusselt number) is enhanced with increasing n, again at

large values of ξ , as computed in Fig. 9b.

Figure 10a, b present the influence of the velocity slip, Sf , on the dimensionless skin

friction coefficient and heat transfer rate at the cylinder surface. With an increase in Sf ,
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Fig. 12 a Influence of M on skin friction coefficient result. b Influence of M on Nusselt number result

wall shear stress is consistently reduced. This trend was observed by Wang and Ang [17] and

Wang [48] using asymptotic methods. There is a progressive migration in the peak shear stress

locations further from the lower stagnation point, as wall slip parameter is increased. The

impact of wall slip is therefore significant on the boundary layer characteristics of the fluid

flow from a cylinder. With an increasing Sf , the local Nusselt number considerably increased

and the profiles are generally monotonically increasing. The minimum local Nusselt number
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arises at the cylinder surface and is maximised with proximity to the lower stagnation point

i.e. greater distance from the upper stagnation point.

Figure 11a, b present the effect of thermal jump, ST, on the dimensionless skin friction

coefficient and heat transfer rate at the cylinder surface. Increasing ST , is found to decrease

both skin friction coefficient and local Nusselt number.

Figure 12a, b show the influence of the magnetic parameter, M, on the dimensionless skin

friction coefficient and heat transfer rate at the cylinder surface. It is observed from these

figures that both skin friction coefficient and heat transfer rate decreases considerably owing

to the retarding effects of magnetic field on the fluid flow. Intense amount of magnetic field

inside the boundary layer literally increase the Lorentz force which significantly opposes the

flow in the reverse direction. Thus, skin friction coefficient and heat transfer rate diminishes.

Conclusions

Numerical solutions have been presented for the buoyancy-driven flow and heat transfer of

Tangent Hyperbolic flow external to a horizontal cylinder. The Keller-box implicit second

order accurate finite difference numerical scheme has been utilized to efficiently solve the

transformed, dimensionless velocity and thermal boundary layer equations, subject to realistic

boundary conditions. Excellent correlation with previous studies has been demonstrated

testifying to the validity of the present code. The computations have shown that:

1. Increasing Weissenberg number, We, decreases velocity, skin friction (surface shear

stress) and heat transfer rate (Nusselt number), whereas increases temperature.

2. Increasing power law index, n, increases velocity and heat transfer rate, for all values of

radial coordinate i.e., throughout the boundary layer regime whereas, decreases temper-

ature and skin friction.

3. Increasing velocity slip, Sf , increases velocity and heat transfer rate but decreases tem-

perature and skin friction.

4. Increasing thermal jump, ST, decreases all the four i.e., velocity, temperature, skin friction

and hear transfer rate.

5. Increasing magnetic parameter, M, decreases velocity, skin friction and heat transfer rate

but increases temperature.

6. Increasing transverse coordinate (ξ) generally decelerates the flow near the cylinder

surface and reduces momentum boundary layer thickness whereas it enhances temper-

ature and therefore increases thermal boundary layer thickness in Tangent Hyperbolic

non-Newtonian fluids.

Generally very stable and accurate solutions are obtained with the present finite difference

code. The numerical code is able to solve nonlinear boundary layer equations very efficiently

and therefore shows excellent promise in simulating transport phenomena in other non-

Newtonian fluids.
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