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Abstract  16 

Biological processes are based on molecular networks, which exhibit biological 17 

functions through interactions among the various genetic elements. This study 18 

presents a graph-based method to characterize molecular networks by decomposing 19 

them into directed multigraphs: network motifs. Spectral graph theory, reciprocity, 20 

and complexity measures were utilized to quantify the network motifs. It was found 21 

that graph energy, reciprocity, and cyclomatic complexity can optimally specify 22 

network motifs with some degree of degeneracy. A total of 72 molecular networks 23 

were analyzed, of three types: cancer networks, signal transduction networks, and 24 

cellular processes. It was found that molecular networks are built from a finite number 25 

of motif patterns; hence, a graph energy cutoff exists. In addition, it was found that 26 

certain motif patterns are absent from the three types of networks; hence, the Shannon 27 

entropy of the motif frequency distribution is not maximal. Furthermore, frequently 28 

found motifs are irreducible graphs. These are novel findings: they warrant further 29 

investigation and may lead to important applications. 30 
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 2 

The present study provides a systematic approach for dissecting biological networks. 31 

Our discovery supports the view that there are organizational principles underlying 32 

molecular networks. 33 

Keywords: network motifs, cancer networks, signal transduction networks, cellular 34 

processes, graph theory, information theory, graph energy, network complexity, 35 

entropy 36 

 37 

Background 38 

Biological networks, network motifs, and graphlets 39 

   Molecular networks are the basis of biological processes, in which biological 40 

functions emerge through interactions among the various genetic components. A 41 

network can be modeled by a collection of smaller modules; each module is expected 42 

to perform specific functions, and is separable from the functions of other modules [1-43 

3]. Such modular networks can be decomposed into smaller units, known as network 44 

motifs. These motifs show interesting dynamical behaviors, in which cooperativity 45 

effects between the motif components play a critical role in human diseases. 46 

  We classify network-based analysis into the following major categories: (1) motif 47 

identification and analysis, (2) global architecture study, (3) local topological 48 

properties, and (4) robustness of the network under different types of perturbations. 49 

   For the first category, there are a number of publicly available network motif 50 

detection tools namely, MFINDER [4], MAVISTO
 [5], FANMOD [6], NetMatch

 [7], 51 

and SNAVI [8]. 52 
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   For the second category, many studies have employed random graph theory to 53 

characterize the global structure of molecular networks: for example, whether a 54 

network is assortative or has the small-world property [9-10]. For instance, it has been 55 

shown that protein-protein interaction networks are scale-free or described by 56 

hierarchical network model [11]. 57 

   For the third category, topological graph theory has been utilized to characterize 58 

networks by computing topological parameters, such as betweenness centrality, 59 

closeness centrality, clustering coefficients, and eigenvector centrality [12-16]. 60 

   For the last category, it has been shown that molecular networks are robust under 61 

random perturbation but fragile under attack perturbation [17]. Further work has 62 

demonstrated that molecular networks are also fragile under degree-based, 63 

betweenness-based, and brokering coefficient-based perturbations [18]. 64 

  Besides network motif description, Przulj [19-20] utilized a graphlet-based approach 65 

to examine the network comparison problem.  66 

. It was demonstrated that directed graphlets are superior for comparing directed 67 

networks
 [21] and they are effective for studying brain networks [22]. 68 

Our study focuses on networks composed of regulatory interactions, such as gene 69 

regulation networks and signal transduction networks but not protein-protein 70 

interaction networks (undirected graphs). We work with network motifs directly; 71 

therefore, our method differs from the graphlet approach. 72 
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Although many published works exist on network analysis, many important issues 73 

still remain to be investigated. Most previous studies have utilized graph metrics to 74 

analyze network topology, and so a very relevant question remains unanswered: do 75 

these topological parameters convey enough knowledge about the networks? The 76 

answer seems to be negative. Little is known about the architectures or organizational 77 

principles of molecular networks. For instance, can we have a unique label for 78 

different motifs? Do certain motif patterns occur in a network at a higher frequency?  79 

Seminal works on the use of the concepts of information content, topology, and 80 

entropy in biology were carried out by Dancoff & Quastler [23], Rashvesky [24-25], 81 

and Mowshowitz [26-27]. In particular, Mowshowitz presented an entropy-based 82 

method to measure the complexity of a graph by decomposing it into equivalence 83 

classes. 84 

In this study, it is hypothesized that network motifs are the fundamental building 85 

blocks of a network. In other words, motifs are treated as the core components of a 86 

network. This is similar in spirit to the work of Mowshowitz [27]. Therefore, we 87 

propose that network properties are captured by motifs comprising N nodes, which are 88 

referred to as N-node motifs in the following discussion. To systematically 89 

characterize a large network, one identifies the 3-node motifs, 4-node motifs, up to the 90 

N-node motifs embedded in the network. 91 

For a directed graph, a total of 2, 13, 199, 9364, and 1530843 possible patterns can 92 

be defined for the 2-node, 3-node, 4-node, 5-node, and 6-node motifs, respectively 93 
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[28-29]. Since the problem of identifying N-node motifs in a large network is NP-94 

complete [30], we worked with 3-node motifs and 4-node motifs only. Motifs 95 

composed of five or more nodes are neglected as a first approximation. As we explain 96 

below, this approximation could provide useful insights into dissecting the design 97 

principles underlying molecular networks. Motifs composed of five or more nodes 98 

will be considered in future study. 99 

An earlier work [31] has shown that certain motifs do not appear significantly more 100 

frequently than those appearing in corresponding random graphs; nevertheless, those 101 

motifs still play functional roles. This justifies our approach because the present work 102 

identifies all possible 3-node and 4-node motifs, regardless of their frequency of 103 

occurrence. In other words, we adopt the notion that motifs are the basic building 104 

blocks but do not necessarily occur frequently in a network. 105 

Adami [32] studied undirected colored graphs (in which nodes are labeled with 106 

different colors) and showed that the relative frequency of the colored motifs can be 107 

used to define the information content of the network. In the present work, we 108 

consider motifs that are directed graphs and could possibly contain cycles.  109 

Spectral graph theory, reciprocity, complexity measures, and information theory 110 

   To characterize network motifs, we utilized the following concepts: spectral graph 111 

theory (SGT), reciprocity, and complexity measures. SGT is a powerful approach that 112 

has been applied in many areas, including computer science and computational 113 

biology [33-34]. The eigenvalues of a matrix defined on a graph play an essential role 114 
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in inferring the structural properties of the graph [35]. According to Mowshowitz [36], 115 

the characteristic polynomial of the adjacency matrix of a graph distinguishes 116 

between non-isomorphic graphs. Reciprocity is a parameter that quantifies the degree 117 

of bidirectional connection of a network motif.  118 

Complexity arises from the interactions among the constituent components. Many 119 

complexity measures have been proposed, but there is no standard or formal 120 

definition of complexity metrics that can be applied in all circumstances. Each 121 

complexity measure has strengths and weaknesses [37]. Early work on defining 122 

complexity for directed graphs and infinite graphs can be traced back to Mowshowitz 123 

[38]. The concept of graph complexity indices has been applied to infer the 124 

hierarchical order of chemical structures [39]. Given a network motif pattern, we 125 

make use of two commonly used complexity measures to characterize the motif. 126 

It is possible that some of the network motifs are associated with the same graph 127 

energy (degenerated motifs). Wilson & Zhu [40] have proposed to combine the 128 

spectra of two graph matrices to reduce the cospectrality problem for undirected 129 

graphs and trees. Their results showed that their method can reduce the number of 130 

cospectral pairs of graphs but they are still not completely distinguishable. In addition, 131 

graph descriptors are a useful concept to classify complex networks [41]. In this study, 132 

we used a greedy algorithm to search for an optimal set of parameters that maximize 133 

the removal of degenerate motifs. The parameters we suggested include not only the 134 

motif spectrum but also the graph energy, reciprocity, and complexity measures. 135 
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The concept of information entropy has been applied extensively in cancer biology 136 

studies. For instance, it was reported that cancer networks exhibit high information 137 

entropy [42], as well as increased network entropy [43] and signaling entropy [44]. 138 

We make use of entropy to measure the frequency distributions of the occurrence of 139 

motifs for the three types of molecular network. 140 

In our previous work [45], we already laid a foundation for the present study. In 141 

another recent work [46], we have extended the previous work [45] by developing a 142 

motif finding algorithm, PatternFinder, to identify the 3-node motifs and 4-node 143 

motifs in cancer networks, signal transduction networks, and cellular processes. 144 

 145 

 146 

 147 

 148 

 149 

 150 

 151 

Methods 152 

Workflow of present study 153 

Figure 1 depicts the workflow of the present study. 154 
 155 
 156 
 157 

KEGG – biological networks 
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 179 

       180 Figure 1    The workflow of the present study. 

Input data 181 

Network information was obtained from the KEGG database (August 2017) [47]. 182 

Four families of networks were employed, including: (i) Environmental Information 183 

Processing, (ii) Cellular Processes, (iii) Organismal Systems, and (iv) Human Cancers.  184 

Not every network recorded by KEGG was imported. After inspection, we 185 

disregarded networks composed of several separate components, such as the “Two-186 

component system,” “MicroRNAs in cancer,” “Chemical carcinogenesis,” and “Viral 187 

carcinogenesis”. In addition, we combined the networks labeled with the name 188 

“signaling pathway,” and called them “signal transduction networks (STNs)”. We 189 

note that STNs range across different families in the KEGG classification, including 190 

“Signal transduction,” “Immune system,” and “Endocrine system”. 191 

Network motifs identification 

Spectral graph 
theory, reciprocity 

Complexity 
measures 
 

Information theory-
based measure 
 

Laplacian & 
matrix energy 

Cyclomatic & 
Kolmogorov 
complexity 
 

Frequency of 
network motif 
distributions 

Unique   Unique identifiers for network motifs 
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  In total, we collected 17 cancer networks, 46 STNs, and 9 cellular processes. We 192 

downloaded KEGG pathway KGML files and made use of the KEGGScape [48] and 193 

KEGGparser [49] packages to visualize and save the node and edge information for 194 

each network. 195 

 In Supplementary File 1, Supplementary Table S1 summarizes the nodes, edges, 196 

and motif-associated node information for the 17 cancer networks. The complete list 197 

of node and edge information of the 46 STNs and 9 cellular processes can be found in 198 

Supplementary Table S2 and Supplementary Table S3, respectively, in the same file. 199 

Adjacency matrix  200 

By analyzing the connectivity of each gene, one constructs an adjacency matrix, A, 201 

to represent the interaction network. In total, there are 13 3-node motifs and 199 4-202 

node motifs [3,50]. 203 

It is possible that some motifs are subgraphs of other motifs (structural motifs). In a 204 

previous work [51], such subgraphs are called functional motifs. In a brain network, a 205 

structural motif and functional motif represent an anatomical building block and the 206 

elementary processing mode of a network, respectively. 207 

We have developed an algorithm named PatternFinder to enumerate all possible 208 

functional motifs embedded in the 3-node motifs and 4-node motifs. Details of 209 

PatternFinder are given in Supplementary File 1 – Supplementary Table S4. 210 
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Characterization of network motifs:graph energy, reciprocity and graph 211 

complexity 212 

The energy of a graph is an invariant [52-54], and is equal to the sum of the absolute 213 

values of the eigenvalues of the adjacency matrix A. Originally, the concept of graph 214 

energy introduced by Gutman was applied to study undirected graphs and has been 215 

applied to estimate the π–electron energy of hydrocarbons. 216 

The adjacency matrix A can be expressed in terms of its eigenvectors and 217 

eigenvalues. Since A is a nonsymmetric matrix in general, its eigenvalues may be 218 

complex and all of its eigenvectors are nonorthogonal. Let n, e, and di denote the 219 

number of nodes, number of edges, and degree of the ith node of graph G, 220 

respectively; G is called an (n, e)-graph. The energy of a graph G, E(G), is defined by 221 

∑
=

=
n

i

i
GE

1

||)( α                                                        (1) 222 

where 
i

α  denotes the ith eigenvalue of A. The sum of all of the eigenvalues is always 223 

equal to zero.  224 

Assume that the graph energy eigenvalues are labeled in descending order: that is, 225 

α1 ≥ α2 ≥  … ≥ αn, while the whole spectrum is denoted by Sp(G) = [α1 , α2 ,  … αn]. 226 

The largest eigenvalue is referred to as the spectral radius of graph G [55]. 227 

In spectral graph theory, there are two other matrices—Laplacian [56] and signless 228 

Laplacian [57-58]—that can be defined to characterize graphs. The Laplacian matrix 229 

L and signless Laplacian matrix Q of a graph G are defined as L = D – A and Q = D + 230 
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A respectively, where D is a diagonal matrix in which the diagonal elements are the 231 

node degrees. The Laplacian energy of a graph G, LE(G), is defined by 232 

n

e
GLE

n

i

i

2
||)(

1

−=∑
=

β                                                    (2) 233 

where |
i
β |  denotes the absolute value of the ith eigenvalue of L. There is an 234 

analogy between the properties of E(G) and LE(G), but some significant differences 235 

remain between these two quantities [59]. 236 

The signless Laplacian energy of graph G, QE(G), is defined by 237 

n

e
GQE

n

i

i

2
||)(

1

−=∑
=

γ                                                    (3) 238 

where  |𝛾#|  denotes the absolute value of the ith eigenvalue of Q. 239 

A more general definition of graph energy was suggested by Nikiforov [60-61]. Let 240 

M be an n × n real matrix and the singular values be denoted by s
1
, s

2
, …  sn. The 241 

singular values of M are equal to the positive square roots of the eigenvalues of MMt, 242 

where t denotes matrix transpose. Let M equal A, L, or Q and consider the 243 

eigenvalues of AAt, LLt, and QQt. The total energy, ME, obtained from M, is defined 244 

by 245 

||)(
1

∑
=

=
n

i

i
sGME                                                       (4) 246 

ME(G) is called generalized energy. We extend the definition to consider matrix 247 

products of the form MN
t
, and therefore define three additional energies: ALt, AQt, 248 

and LQ
t. We call these asymmetric generalized energies. The sums of the absolute 249 
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values of the eigenvalues of MM
t

 and M
t
M  are the same. This also holds for MN

t
 and 250 

NM
t. Therefore, one needs to compute MM

t
 and NM

t
 only. The advantages of using 251 

asymmetric generalized energies will be demonstrated later in this article. To the best 252 

of our knowledge, no (or few) previous studies have made use of asymmetric 253 

generalized energies to characterize network motifs. In total, we have devised nine 254 

graph energies to describe the motifs. We also note that Adiga et al. [62] proposed a 255 

parameter named skew energy, obtained from the skew-adjacency matrix, to 256 

characterize directed graphs; however, this parameter does not apply to graphs 257 

consisting of multiple arcs (multigraphs). 258 

  Several studies [63-64] have suggested that reciprocal links in directed networks 259 

play an important role in dynamical processes and network growth. The traditional 260 

definition of reciprocity is R = ↔
L / L , where ↔

L  and L  denote the number of 261 

“edges pointing in both directions” and the total number of edges respectively. This 262 

definition of reciprocity was modified by Garlaschelli and Loffredo [63], who defined 263 

reciprocity r as the correlation coefficient between the entries of the adjacency matrix, 264 

A, given by 265 

∑
∑

≠

≠

−

−−
=

ji ij

ji jiij

aa

aaaa
r

2)(

))((
                                          (5) 266 

where ij
a  equals one if there is an edge from node i to node j; the average, a , is 267 

defined by 268 

)1( −
=
∑ ≠

NN

a
a

ji ij                                                    (6) 269 
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A positive value of r indicates that the motif has bidirectional connections, whereas a 270 

negative r implies that the motif has either an in-connection or out-connection. 271 

   To further understand the connectivity structure of network motifs, we seek metrics 272 

that can be used to measure graph complexity. In software engineering, the 273 

cyclomatic complexity (CC) is a metric developed by McCabe [65] to measure the 274 

complexity of a program by using its control flow graph. CC is defined by the 275 

expression CC = e – N + 2P, where e and N denote the number of edges and number 276 

of nodes of the graph, and P denotes the number of predicate/exit nodes [37,65]. Node 277 

and edge denote a program unit and the execution order of the program. CC depends 278 

only on the global decision structure (the number of edges and nodes) of a program.  279 

In addition to CC, we utilize the algorithmic complexity measure, the Kolmogorov 280 

complexity (KC), to characterize graph complexity. Essentially, the KC of a bit string 281 

is given by the smallest computer program that can generate the string. Given the 282 

adjacency matrix (or the equivalent bit string), we use the block decomposition 283 

method (BDM) [66] to determine the KC for both 3-node [67] and 4-node motifs. A 284 

bit string with a high KC has a higher degree of randomness, contains more 285 

information, and is less compressible. A complete graph has a smaller KC value, 286 

whereas a random graph has higher KC and is less compressible. 287 

Unique identifiers for network motifs 288 

  Every 3-node motif and 4-node motif has a different KC value, so the KC can be 289 

used as a unique identifier. However, given the graph energy, asymmetric graph 290 
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energies, graph energy spectrum, reciprocity, and CC, we seek to determine a minimal 291 

set of parameters that can serve as a label of the network motifs. This set of 292 

parameters describes certain aspects of the motifs differently than the algorithmic 293 

complexity measure. To the best of our knowledge, the concept of using energy, 294 

reciprocity, and CC in labeling network motifs is novel. The pseudocode for 295 

determining the minimal set of parameters is based on a greedy strategy and is 296 

described in Supplementary File 1 – Supplementary Table S5. 297 

Frequently found motifs, network entropy, and network similarity 298 

  Given a molecular network, PatternFinder identifies both the sets of 3-node motifs 299 

and 4-node motifs. Two motifs with the same ID may partially embed the same 300 

genetic element(s); these two motifs are counted twice in our calculations. We expect 301 

that certain motif patterns that occur with higher probabilities are the dominant 302 

underlying network structure. Let 𝑝%
(') denote the frequency (probability) distribution 303 

of a 3-node network motif, where k denotes one of the 13 patterns. The Shannon 304 

entropy for 3-node motifs and 4-node motifs, H3 and H4, of a molecular network are 305 

computed. The normalized Shannon entropies for the 3-node motifs and 4-node 306 

motifs are given by H3R = H3 / log2(13) and H4R = H4 / log2(199), respectively.  307 

Results 308 

  Given the 3-node motifs and 4-node motifs, we used PatternFinder to identify their 309 

subgraphs (all possible functional motifs). For the 3-node motifs, it was found that 310 

motif “id_6” (SIM), motif “id_12” (cascade), and motif “id_36” (MIM) are not 311 
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composed of any 3-node functional motifs. For the 4-node motifs, there are eight 312 

motifs that are not composed of any 4-node functional motifs: motif “id_14” (SIM), 313 

motif “id_28,” motif “id_74,” motif “id_76” (MIM), motif “id_280,” motif “id_328” 314 

(cascade), motif “id_392,” and motif “id_2184”. These eight motifs exhibit the 315 

property of irreducibility. However, each one of the eight motifs is embedded with 316 

exactly one 3-node functional motif. In other words, given the 4-node motifs, the 317 

irreducible property does not apply if we consider motifs composed of three nodes. 318 

Supplementary File 2 summarizes the functional motifs for 3-node motifs, 4-node 319 

motifs, and 3-node motifs embedded in 4-node motifs, where integers “1” and “0” 320 

denote the presence or absence of a functional motif, respectively. 321 

Spectral graph theory, reciprocity, and complexity measures 322 

Table 1 summarizes the results of the nine graph energies and edge information for 323 

the 3-node motifs. First, since some of the matrices, such as L and Q, are asymmetric, 324 

their eigenvalues are complex in general. In fact, among the 3-node motifs, motif 325 

“id_98” has a pair of complex conjugate eigenvalues, and their associated 326 

eigenvectors are composed of complex components.  327 

Table 1.  The results of the nine graph energies and edge information for the 3-node 328 
motifs. 329 

ID E LE QE AAt LLt QQt ALt AQt LQt e 

6 0.00 2.67 2.67 1.41 4.32 4.32 1.41 1.41 3.83 2 

12 0.00 2.67 2.67 2.00 4.34 4.34 2.00 2.00 3.93 2 

14 2.00 4.00 4.00 2.41 6.13 6.13 3.00 3.00 5.45 3 

36 0.00 2.67 2.67 1.41 4.32 4.32 1.41 1.41 3.83 2 

38 0.00 4.00 4.00 2.24 6.39 6.34 2.63 2.37 6.01 3 

46 2.00 5.33 5.33 2.73 8.24 8.16 2.00 3.86 7.59 4 

74 2.00 4.00 4.00 2.41 6.13 6.13 3.00 3.00 5.45 3 

78 2.83 5.33 5.33 2.83 8.00 8.00 3.86 3.86 7.29 4 
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98 3.00 4.29 4.46 3.00 6.29 6.46 4.25 4.36 6.01 3 

102 3.06 5.33 5.56 3.24 8.17 8.25 4.76 5.02 7.57 4 

108 2.00 5.33 5.33 2.73 8.24 8.16 2.00 3.86 7.59 4 

110 3.24 6.67 6.72 3.49 10.09 10.09 5.38 5.70 9.40 5 

238 4.00 8.00 8.00 4.00 12.00 12.00 6.47 6.93 11.21 6 

Second, graph energy is correlated with the number of edges of a motif. For 330 

instance, the graph energies of fully connected 3-node motifs and 4-node motifs are 331 

maximal, despite having different energy definitions. 332 

Third, it is quite common for certain motifs to have the same graph energy; that is 333 

energy-degenerated motifs are rather common. Two motifs are said to be 334 

equienergetic if they have the same total energy. For instance, two pairs of motifs 335 

(“id_6” and “id_36,” and “id_14” and “id_74”) are equienergetic, regardless of the 336 

graph energy definition. The results of the 4-node motif graph energies and 337 

eigenvectors are given in Supplementary File 3. 338 

Fourth, although the results of the nine graph energies are quite similar, there are 339 

differences among them: for instance, the multiplicity of the energy levels is 340 

somewhat different. For the 3-node motifs, the multiplicities of graph energy E, 0, 2, 341 

and 2.83 are 4, 4, and 1, respectively. For QE, there are three energy values, 2.67, 342 

4.00, and 5.33, that are associated with the multiplicity of 3, 3, and 3, respectively. 343 

Fifth, energy-degenerated motifs may or may not have identical spectra, Sp(G). 344 

This suggests that the use of Sp(G) could allow for further distinction between the 345 

motifs. More details are given below in the “Unique identifiers for network motifs” 346 

section. 347 
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In Supplementary File 1, Supplementary Table S6 summarizes the lower (Emin) and 348 

upper (Emax) graph energy bounds and ratios for the 3-node motifs and 4-node motifs. 349 

For the 3-node motifs, the ratios are bounded between 2 and 4.91. These ratios are 350 

slightly larger for 4-node motifs: they are bounded between 3.00 and 6.88. We found 351 

that most of the molecular biological networks are not composed of motifs with large 352 

graph energies; therefore, the maximum ratio cannot be achieved. Details are reported 353 

below in the “Network motifs absent from the network” section. 354 

Reciprocity of motifs 355 

Table 2 depicts the traditional reciprocity R, reciprocity r, and a  for the 3-node 356 

motifs. Most of the R values are zero, which indicates that there is no edge pointing in 357 

both directions. Positive and negative values of r denote the presence of cycles. Of the 358 

13 reciprocity values, nine are negative, meaning that the majority of the 3-node 359 

motifs have either in-connections or out-connections only. We note that motifs 360 

containing one or two cycles can still have negative reciprocity values. The complete 361 

sets of R, r, edges and a  values of the 4-node motifs are given in Supplementary File 362 

4. 363 

Table 2. The results of traditional reciprocity (R), reciprocity (r), edge (e) and average 364 
reciprocity (a ) of the 3-node motifs. 365 

ID R r e	 a  

6 0 -0.5 2 1/3 

12 0 -0.5 2 1/3 

14 0 1/3 3 0.5 

36 0 -0.5 2 1/3 

38 0 -1 3 0.5 

46 0 -0.5 4 2/3 

74 0 1/3 3 0.5 

78 1 1 4 2/3 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 5, 2019. ; https://doi.org/10.1101/536318doi: bioRxiv preprint 

https://doi.org/10.1101/536318
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

98 0 -1 3 0.5 

102 0 -0.5 4 2/3 

108 0 -0.5 4 2/3 

110 0 -0.2 5 5/6 

238 1 1 6 1 

Graph complexity: cyclomatic complexity and Kolmogorov complexity 366 

For the 3-node motifs, Table 3 summarizes the results of the cyclomatic complexity 367 

(CC) and Kolmogorov complexity (KC), and their rankings. The ranges of these CC 368 

and KC values are 0–3 and 23.34–25.50, respectively. The complete sets of CC and 369 

KC values of the 4-node motifs are given in Supplementary File 5, where the ranges 370 

of CC and KC values are 0–8 and 33.80–43.74, respectively. These findings are 371 

compatible with the notion that motifs composed of more nodes have higher 372 

complexity. 373 

Table 3.  The results of the cyclomatic complexity (CC) and Kolmogorov complexity 374 
(KC), and their ranking, for the 3-node motifs. 375 

ID CC KC Rank of CC Rank of KC 

6 3 23.34 11 1 

12 1 23.83 3 3 

14 2 24.30 8 6 

36 1 23.55 3 2 

38 2 24.87 8 8 

46 3 25.50 11 13 

74 0 23.85 1 4 

78 1 25.00 3 9 

98 0 24.82 1 7 

102 1 25.01 3 10 

108 1 25.11 3 11 

110 2 25.25 8 12 

238 3 24.14 11 5 

A network motif with a large CC value suggests a more complex decision structure. 376 

From Table 3, it is apparent that KC can serve as a parameter for distinguishing motif 377 

patterns without any degeneracy. In other words, no two motifs have the same KC; 378 
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this is also true for the 4-node motifs. Motif “id_238” is a complete graph that is 379 

described by the binary string “011101110,” and this string corresponds to lower 380 

algorithmic complexity (5th rank). 381 

Next, we examined the correlations between the two complexity measures. We 382 

ranked CC and KC in ascending order and computed their Spearman Rank Correlation 383 

Coefficients (SRCC).  The correlation is not perfect; for example, motif “id_238” is 384 

associated with the largest CC value (rank), but this is not the case for KC (5th rank). 385 

CC and KC show a relatively weak correlation—0.083 and 0.381—at the 3-node and 386 

4-node levels, respectively. This is because CC and KC have different meanings: CC 387 

measures the complexity of a motif’s decision structure (the number of independent 388 

gene regulation paths), while KC is an algorithmic measure which characterizes the 389 

randomness and compressibility of a bit string. 390 

Lastly, we investigated whether graph energy is proportional to graph complexity. 391 

The results are listed in Supplementary File 1 – Supplementary Table S7. KC exhibits 392 

a modest correlation with all the graph energies at the 3-node and 4-node levels. In 393 

contrast, CC exhibits relatively weak and modest correlations with graph energy, at 394 

both the 3-node and 4-node motif levels. 395 

Supplementary File 1 – Supplementary Table S8 summarizes the results of strength 396 

of SRCC (including minimum, maximum, and ranges) between graph complexity and 397 

graph energy for 3-node and 4-node motifs. Our results suggest that there are 398 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 5, 2019. ; https://doi.org/10.1101/536318doi: bioRxiv preprint 

https://doi.org/10.1101/536318
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

relatively weak (3-node CC) and modest correlations (3-node motif KC and 4-node 399 

motif CC and KC) between graph complexity and graph energy. 400 

Unique identifiers for network motifs 401 

  This section reports the results of determining an optimal parameter combination 402 

that maximizes the removal of degenerated motifs. As shown in Table 4, three cases 403 

are considered. “Case a” makes use of graph energy only, “case b” utilizes graph 404 

energy r and CC, and “case c” employs energy, r, CC, and the energy spectrum. After 405 

including r and CC, we can distinguish more motifs. The use of ALt, r, CC, and 406 

energy spectrum can fully distinguish the 3-node motifs. For 4-node motifs, the use of 407 

LL
t
, QQ

t
 and LQt achieves the best level of distinguishability: 136 out of 199 (68.3%). 408 

Compared with E, LE, and QE, both symmetric and asymmetric generalized energies 409 

serve as superior measures for distinguishing different motif patterns. 410 

Table 4. The number of distinguishable motifs using optimal parameter combination 411 
of graph energy, r, CC, and energy spectrum. “Case a” uses graph energy only, “case 412 
b” uses graph energy, r, and CC, and “case c” uses energy, r, CC, and graph energy 413 
spectrum. 414 

 3-node motifs 4-node motifs 

 case a case b case c case a case b case c 

E 7 11 11 42 57 60 

LE 6 10 11 35 51 96 

QE 9 11 11 51 67 72 

AA
t
 10 12 12 74 86 92 

LL
t
 10 12 12 94 103 136 

QQ
t
 10 12 12 88 96 136 

ALt 10 12 13 117 128 130 
AQt 10 12 12 120 129 131 

LQt 10 12 12 109 117 136 

 415 
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Frequently found network motifs 416 

Among the 17 cancer networks, 46 STNs, and nine cellular processes, there are 15 417 

(88.2%), 40 (87.0%), and 7 (77.8%) networks, respectively, where more than 70% of 418 

nodes are embedded in both 3-node motifs and 4-node motifs. Therefore, motif-419 

associated nodes account for a major portion of each network. 420 

To determine frequently occurring motifs, we tabulate the frequency of occurrence 421 

of each motif pattern, normalize the frequency to one, and compute the average 422 

normalized frequency (probability) across the studied networks. Table 5 summarizes 423 

the top seven most frequently found 3-node motifs and 4-node motifs in cancer 424 

networks. 425 

Table 5. The top seven most frequently found 3-node motifs and 4-node motifs in 426 
cancer networks. SIM denotes simple input module, MIM denotes multiple input 427 
module, and FFL denotes feed-forward loop. 428 

 429 
 ID average 

probability 
reciprocity 

r 

Name, embedded motif ID 

3-node     
1 6 0.421 -1/2 SIM 
2 12 0.414 -1/2 Cascade 
3 36 0.152 -1/2 MIM 
4 38 0.0091 -1 FFL, 12, 36 
5 74 0.0022 1/3 12 
6 14 0.0016 1/3 6 
7 98 0.00092 -1 3-cycle, 12 

4-node     
1 14 0.224 -1/3 SIM 
2 328 0.158 -1/3 Cascade 
3 28 0.148 -1/3 - 
4 74 0.137 -1/3 - 
5 76 0.100 -1/3 MIM 
6 392 0.099 -1/3 - 
7 280 0.0864 -1/3 - 
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For cancer networks, the three most frequently found 3-node motifs are id_6, id_12 430 

and id_36. By examining the top three motifs, we observe the following common 431 

features: (i) they do not contain any subgraphs (irreducible); (ii) they are composed of 432 

a minimal number of edges (N-1 edges for a N-node motif); (iii) the reciprocity r 433 

values are negative (-0.5) and those motifs have no cycles; (iv) they account for at 434 

least 8% of the total number of motifs; and (v) they are associated with the lowest or 435 

the second lowest graph energies, regardless of the graph energy definition. 436 

The motifs ranked 4th to 7th (“id_38,” “id_74,” “id_14,” and “id_98”) are composed of 437 

three edges. Motif “id_38” is the so-called feed-forward loop (FFL), which does not 438 

contain cycles, whereas both “id_74” and “id_14” contain cycles. The 7th-ranked 439 

motif (“id_98”) is the so-called 3-cycle. Motif “id_12” is a subgraph of “id_38,” 440 

“id_74,” and “id_98”, while “id_36” (MIM) is a subgraph of FFL and SIM is a 441 

subgraph of “id_14”.  In other words, the frequently found motifs are the simplest 442 

motifs, and are subgraphs of more complex motifs. 443 

  For 4-node motifs, the above features (i) to (iv) (but not feature (v)) are also valid for 444 

the top seven most frequently found motifs. It is interesting to note that the 445 

irreducible and negative reciprocity value (that is, -1/3) features hold at the 4-node 446 

level. In addition, feature (v) holds if we consider graph energies E, LE, and QE, but 447 

not the other six graph energy definitions. Furthermore, the above five features also 448 

hold for STNs and cellular processes (see Supplementary File 1 - Supplementary 449 

Tables S9 and S10). 450 
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  The ranges of average probability for the top three frequently found 3-node motifs 451 

and the top seven frequently found 4-node motifs are shown in Supplementary File 1 - 452 

Supplementary Tables S11. Other than the 4-node motifs of cellular processes, the 453 

ranges of average probability are quite similar. We note that cellular processes may 454 

differ from the other two families of networks, but it is not clear whether this is 455 

because a relatively small number (nine) of networks is available. 456 

In Table 6, we summarize the top three most frequently found motifs and the top 457 

seven motifs identified among different networks. Cancer networks and STNs exhibit 458 

very similar results, which suggests that the underlying architectures are highly 459 

similar. This indicates that molecular networks are composed of a finite number of 460 

motif patterns—around seven patterns—with an upper graph energy limit. We 461 

conjecture that other molecular networks, such as cell cycles, may demonstrate 462 

similar properties.  463 

Table 6. Comparison of frequently found motifs identified in cancer networks, STNs, 464 
and cellular processes. 465 
 Cancer networks STN Cellular processes 

 Top three most frequently found motifs 

3-node ID 6, 12, 36 12, 6, 36 12, 36, 6 

Rank of 
KC 

1, 3, 2 3, 1, 2 3, 2, 1 

 Top seven most frequently found motifs 

4-node ID 14, 328, 28, 74, 76, 
392, 280 

14, 28, 74, 328, 280, 
76, 392 

392, 328, 76, 280, 2184, 
74, 28 

Rank of 
KC 

1, 7, 3, 5, 6,  
33, 24 

1, 3, 5, 24, 7, 24, 
6, 33 

33, 7, 6, 24, 7, 16, 
5, 3 

Next, we examine the association of frequently found motifs and complexity 466 

measures. From Table 6, we observe that frequently found motifs have a lower KC 467 
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ranking (smaller KC value). A smaller KC value implies a lower degree of 468 

randomness, less information, and higher compressibility.  However, this observation 469 

is not exactly the same at the 4-node level: there are three instances where the rank of 470 

KC is larger. For instance, the rank of KC is as high as 16, 24, and 33 for id_2184, 471 

id_280, and id_392, respectively. No obvious association exists between frequently 472 

found motifs and cyclomatic complexity measures. 473 

In summary, according to the above findings, we hypothesize that there are 474 

underlying organizing principles that lead to the emergence of network structures. 475 

Network motifs absent from the network 476 

  We enumerated all possible 3-node motifs and 4-node motifs for the 17 cancer 477 

networks, 46 STNs, and nine cellular processes. In Supplementary File 1 - 478 

Supplementary Tables S12 summarizes the number of 3-node motifs and 4-node 479 

motifs with a non-zero frequency of occurrence in cancer networks, STNs, and 480 

cellular processes. It is interesting to see that certain motifs are never present in the 481 

three types of networks, except in two of the cellular processes. The first one is the 482 

“adherens junction” network which consist of a 3-node motif (id_110), composed of 483 

three genes: CTNNA1, ACTB, and AFDN. The second one is the “Signaling pathways 484 

regulating pluripotency of stem cells (hsa04550)” network.  We have identified a fully 485 

connected 3-node motif (id_238) with three feedback loops connecting three genes: 486 

Oct4, Sox2, and Nanog. It is well-known that, with the LIN28 genes, these four genes 487 

are liable to reprogram human somatic cells into pluripotent stem cells [68]. 488 
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  As long as there are motifs absent in the cancer networks, STNs, and cellular 489 

processes, there is a graph energy cutoff associated with these three families of 490 

networks.  Supplementary File 1 - Supplementary Tables S13 depicts the results of the 491 

energy cutoffs, maximum graph energies, and their ratios for the cancer networks. 492 

Among the nine graph energy definitions, the ratios may be as high as 0.750 and 493 

0.667 for 3-node motifs and 4-node motifs, respectively. However, they can be as low 494 

as 0.536 (LQ
t
 energy) and 0.481 (AQ

t
 energy) for the 3-node motifs and 4-node motifs, 495 

respectively. The results of the graph energy cutoffs and ratios for the STNs and 496 

cellular processes are given in Supplementary File 1 - Supplementary Tables S14 and 497 

S15.  For cellular processes, the cutoff ratio may be as high as 1.00 for the 3-node 498 

motifs, because we have identified a fully connected 3-node motif (id_238). At the 3-499 

node level, two of the cellular processes exhibit peculiar network structures; this is an 500 

open issue that remains to be investigated. 501 

  Nevertheless, our results suggest that there is an existing energy cutoff or ratio that 502 

constrains the presence of certain motifs embedded in a molecular network. In 503 

addition, the data indicate that the cutoff ratio for 3-node motifs is slightly higher than 504 

that for 4-node motifs. Furthermore, the motif probability distribution density and the 505 

graph energy of a motif obeys an inverse relation, that is, the smaller the probability, 506 

the higher the graph energy. 507 

Characterizing the frequency distributions of motifs using entropy 508 
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We utilized the entropy-based quantity, normalized Shannon entropy, HR, to 509 

quantify the frequency distributions of the occurrence of motifs for the cancer 510 

networks. For randomized distribution, H achieves the maximal values, 3.700 (log2 511 

(13)) and 7.637 (log2 (199)), for 3-node motifs and 4-node motifs, respectively. Table 512 

7 lists the number of 3-node motifs, N3; normalized Shannon entropy, H3R, for the 3-513 

node motifs; number of 4-node motifs, N4; and normalized Shannon entropy, H4R, for 514 

the 4-node motifs. 515 

Table 7. The results of N3, N4, H3R and H4R for cancer networks. 516 
Cancer networks N3 H3R N4 H4R 

Acute_myeloid_leukemia_[hsa05221] 160 0.428 577 0.385 

Basal_cell_carcinoma_[hsa05217] 34 0.323 51 0.273 

Breast_cancer_[hsa05224] 145 0.449 445 0.437 

Choline_metabolism_in_cancer_[hsa05231] 70 0.465 193 0.406 

Chronic_myeloid_leukemia_[hsa05220] 71 0.368 145 0.323 

Colorectal_cancer_[hsa05210] 71 0.467 124 0.403 

Endometrial_cancer_[hsa05213] 45 0.329 60 0.295 

Gastric_cancer_[hsa05226] 87 0.355 153 0.344 

Glioma_[hsa05214] 80 0.410 183 0.390 

Hepatocellular_carcinoma_[hsa05225] 65 0.355 80 0.350 

Melanoma_[hsa05218] 46 0.374 82 0.337 

Non-small_cell_lung_cancer_[hsa05223] 103 0.493 284 0.483 

Pancreatic_cancer_[hsa05212] 74 0.422 131 0.371 

Pathways_in_cancer_[hsa05200] 640 0.473 2795 0.450 

Prostate_cancer_[hsa05215] 102 0.372 357 0.335 

Renal_cell_carcinoma_[hsa05211] 58 0.385 114 0.353 

Small_cell_lung_cancer_[hsa05222] 61 0.362 96 0.318 

For all of the cancer networks we studied, the frequency distributions of the motifs are 517 

not uniformly distributed among the motif patterns; therefore, H3R and H4R are 518 

different from one another. The results of N3, N4 H3R, and H4R for STNs and cellular 519 
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processes are given in Supplementary File 1 -  Supplementary Tables S16 and S17, 520 

respectively. 521 

Supplementary File 1 -  Supplementary Table S18 shows the ranges of H3R and H4R 522 

for cancer networks, STNs, and cellular processes. The ranges of H3R and H4R for 523 

cancer networks and cellular processes are quite similar, whereas STNs show larger 524 

ranges: 0.532 and 0.622. We also note that the HIF-1 signaling pathway [hsa04066] 525 

has very small H3R and H4R. This is because the transcription factor, HIF-1β, functions 526 

as a master regulator of many genes; therefore, the SIM motif is the dominant motif at 527 

both 3-node and 4-node levels. 528 

Discussion and conclusions 529 

  Network motifs play an important role in biological networks. We made use of a 530 

rigorous mathematical and systematic approach—spectral graph theory—to 531 

characterize 3-node and 4-node network motifs. A total of nine graph energies were 532 

introduced to characterize network motifs. In addition, we characterized their 533 

complexity by using two widely accepted complexity measures, CC and KC. 534 

  The concept of a unique identifier was introduced to label network motifs. This 535 

novel idea combines four parameters—graph energy, reciprocity, CC, and eigenvalue 536 

spectrum—to characterize a network motif. 537 

  A foreseeable application of this identifier is to examine the transition between 538 

different motifs. It is possible that the regulatory interactions among the genetic 539 
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elements may be disrupted or activated because of genetic mutation or epigenetic 540 

modification. 541 

  We conjecture that driver mutations are enriched or depleted in certain motif 542 

positions, such as the source node of a motif.  A source node is a node that has only 543 

outgoing edges. In other words, a mutation driver gene acts as an upstreaming 544 

regulator. Several studies have reported that certain motif positions, such as the source 545 

nodes and target nodes, are enriched in cancer-associated genes [69-70]. 546 

  Some of the 3-node motifs and 4-node motifs are interconnected through shared 547 

genetic elements. These types of modules are called coupled motif structures (CMS) 548 

in our previous work [45]. One can merge interconnected motifs to form higher-order 549 

network structures. 550 

  We have extended a developed algorithm to identify complete sets of 3-node motifs 551 

and 4-node motifs for 17 cancer networks, 46 STNs, and nine cellular processes. 552 

Except for a few networks, 3-node motifs and 4-node motifs account for more than 70% 553 

of the nodes in the studied networks. Furthermore, this study discovered the following 554 

features: 555 

(i) The relative entropies of the motif distributions are not equal, or close to, one, 556 

indicating that the identified motifs are not distributed uniformly among the 13 and 557 

199 patterns. 558 

(ii) Biological networks are composed of a finite number of motif patterns, this 559 
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suggest the presence of graph energy cutoffs. 560 

(iii) Irreducible motif patterns are the most frequently found motifs; for instance, the 561 

cascade pattern is the most frequently found motif, followed by the SIM and MIM 562 

motifs. 563 

(iv) All of the three families of networks exhibit the above features, suggesting that 564 

there is a universal organization principle determining the underlying network 565 

architecture. 566 

  In conclusion, this study provides a systematic and rigorous approach to dissecting 567 

the underlying structures of biological molecular networks. SGT serves as a powerful 568 

approach in distinguishing different motif topologies or connectivity patterns, which 569 

inspires our hypothesis that network structures can be understood in terms of the 3-570 

node and 4-node motifs. The next step is to test our hypothesis by analyzing the 5-571 

node motifs. We expect that our efforts may help to elucidate the complex nature of 572 

molecular networks. 573 
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