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Abstract  We investigate the heat and mass transfer in a variable-viscosity channel flow simultaneously accounting for 

viscous dissipation, external pollutant injection and Soret-Dufour effects. By adopting the Boussinesq approximation and 

assuming a fully developed uni-direction flow, the set of governing equations are presented. We formulate a finite difference 

scheme which decouples the system and is amenable to parallel computing. Gauss-Seidel solver is adopted for the resulting 

linear systems. The numerical results show that the thermal and solutal Grashof numbers, the viscosity parameter and the 

Darcy number all increase the flow velocity, while the magnetic field and the Prandtl number decrease the flow. It is also 

observed that the concentration and temperature are opposing each other; an increase in one causes a decrease in the other. 

Hence, we concluded that a strategy to mitigate pollution in the considered fluid system is to increase the fluid’s temperature. 

Keywords  Porous channel flow, Finite difference scheme, Temperature-dependent viscosity, Soret effect, Dufour effects, 
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1. Introduction 

Flows through porous media have many applications such 

as in catalytic converters, fischer-tropsch synthesis, oil 

reservoirs and bioheat [1-4]. For instance, ground flows have 

many applications like in oil recovery and energy conversion 

[5]. Other application areas include packed-bed chemical 

reactors, gas turbines and material processing facilities [6]. 

These applications have led to enormous research in the 

flow and transport phenomena taking place in porous 

materials. Studies have been conducted on automobile 

exhaust systems [7], Fischer-Tropsch synthesis [3], in 

transpiration cooling [8], and in human tissues [9]. Heat 

transfer in porous ground is investigated in [10], see also 

[11,12] for coupled transport studies in porous media. 

Bhargava et al. [13] investigated combined heat and mass 

transfer in a porous medium, taking into account mass fluxes 

due to temperature gradients (known as Soret effect) and also 

heat fluxes due to concentration gradients (known as Dufour 

effect). Here, we use the term cross-diffusion to refer to the 

combined presence of both Soret and Dufour effects, see also 

page 62 in [14]. 

Mehmood and Ali [15] investigated slip condition effects 
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on a viscous channel flow, and the study is extended to    

the combined effects of both heat injection and suction    

in [16]. The results show that the flow velocity is enhanced 

by increase in both the Darcy number and thermal  

Grashof’s number. Also, the oscillatory flow of a 
temperature-dependent viscosity Jeffrey fluid in a porous 

channel is investigated in [17]. They assumed no- slip 

conditions, incorporated Soret-Dufour effects, an analytical 

solution is obtained using the homotopy perturbation method. 

Their results show that the magnetic field decreases the fluid 

velocity. Two points to note about their work are (i) a time 

and space dependent problem, as posed by them, requires 

both boundary and initial conditions. But their initial 

conditions were not stated, and (ii) they represented the 

viscous term in the velocity equation as a product of the 

variable viscosity and the second derivative of the velocity. 

This is obviously faulty and can only be true if the viscosity 

were to be a constant. The variable viscosity should appear 

under the derivative, see [18,6,19,20] for example. 

In [21], the steady heat and mass transfer in a Casson fluid 

flow over a porous sheet is considered with cross-diffusion. 

They observed that the Casson parameter decreases skin 

friction. In an earlier study, Makinde and Mhone [22] 

considered the magnetohydrodynamic flow and heat transfer 

in a channel filled with porous material, see also [23] for a 

steady flow. Seth and collaborators [24] investigated the 

effects of Joule heating, viscous dissipation, Newtonian 

heating and thermo-diffussion on the MHD flow of a Casson 

fluid through a porous medium, see also [25]. The numerical 

challenges encountered in the presence of an exponentially 
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time-dependent suction have been investigate in [26,27]. 

Finite volume analysis of heat transfer in the flow of an 

electrically conducting fluid in a cylindrical domain is 

studied in [28], see also [29] for investigations in cylindrical 

annulus. In [30] the channel flow of copper-kerosene 

nanofluid with magnetic field and stretching wall effects is 

investigated. Natural convection heat transfer with heat 

sources in a cylindrical annulus is considered in [31] while 

the homotopy analysis of MHD flow between two porous 

plates intersecting at an angle is studied in [32]. In another 

study, the Maxwell convective heat transfer model is 

coupled with the Navier-Stokes fluid model to investigate 

the flow and thermal characteristics of Titania nanofluids 

using different base fluids [33]. This set of studies which 

were conducted by Mebarek-Oudina and collaborators did 

not consider mass transfer. 

In another series of investigations, Makinde and 

collaborators [34,35] have investigated either heat transfer  

or mass transfer, but not both, in different geometries; 

Kumaresan and co-authors [36] considered the combined 

effects of heat and mass transfer in a Newtonian fluid, and 

derived an exact solution using Laplace transform approach, 

for constant-velocity fluids in porous media. Then, Nwaigwe 

[20] extended the study to incorporate combined heat and 

mass transfer in a concentration-dependent viscosity flow 

with concentration-dependent diffusivity. One of the 

cardinal points in [20] was how to correctly solve the posed 

problem, hence a sequential implicit scheme was formulated 

and compared with a Matlab subroutine. 

Prasad and collaborators [37] investigated the heat  

transfer and porous media flow of a Casson fluid with 

temperature-dependent thermal conductivity. The steady 

flow and mass transfer in a porous solid is considered in [38], 

and extended to the unsteady case in [6] without heat transfer; 

then to the unsteady, temperature-dependent viscosity, 

non-isothermal case is considered in [19] without mass 

transfer. Sharma and coworkers in recent study [39] further 

extended theses studies to investigate the influence of both 

heat and mas transfer in the porous media flow of a 

Newtonian fluid incorporating Soret effects. 

From the above account, it becomes obvious that a full 

incorporation of heat and mass transfer of variable viscosity 

fluids with Soret-Dufour effects and pollutant injection is 

still not complete. In particular, as stated above, the very 

much commendable work of Selvi and Muthuraji [17] is 

incomplete because of the formulation of the viscous term 

and non specification of initial flow fields; their problem is 

thus not closed. Moreover, the study did not consider 

pollutant injection. Secondly, the other impressive work of 

Sharma and colleagues [39] only considered constant 

viscosity fluids, yet Dufour effects are neglected. Moreover, 

both of these studies adopted analytical methods of solution - 

the Homotopy perturbation and the Laplace transform 

methods - which are limited in terms of re-usability and 

extendability, unlike numerical methods. In this study, we 

extend the work of [39] by incorporating variable viscosity 

and Soret-Dufour effects, while we improve some aspects  

of the work of Selvi and Muthuraji [17] by correctly 

representing the viscous term, incorporating pollutant 

injection and posing a correct set of initial flow fields 

consistent with the prescribed boundary conditions. In 

addition, we propose a numerical scheme which can be 

easily extended to-and be re-used for other complicated 

problems. 

The remainder of the paper is organized as follows: we 

present the model equations, including the non-dimensional 

forms, in section 2. The numerical scheme is formulated in 

section 3. The numerical results are presented and discussed 

in section 4 and the paper is concluded in section 5. 

2. Formulation of the Mathematical 
Problem 

We consider a vertical channel filled with a saturated 

porous material and bounded by two impermeable walls 

separated by a distance h, see figure 1. The x  and y  axis 

are as indicated in the figure. We then consider a flow strictly 

along the channel axis, fully developed and driven by 

constant pressure gradient and gravitational and magnetic 

body forces. The two channel walls are immovable and the 

fluid is incompressible with temperature-dependent viscosity. 

A uniform magnetic field is applied perpendicular to the 

walls and viscous dissipation is incorporated. 

 

Figure 1.  Physical set-up of flow in a saturated vertical porous channel  

Further, we assume that the fluid is non-isothermal and 

some substance is being introduced into the fluid at the   

rate of 
 0b c c

e


 per unit volume of the fluid, where 

  0
, ,c c y t c  and b are, respectively, the substance’s 

concentration at point y  and at time, t ; a reference 

concentration; and a constant. We also incorporate 
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cross-diffusion effects, meaning that combined temperature 

variations due to mass diffusion and concentration variations 

due to heat diffusion - the Soret-Dufour effects. Bousinesq’s 
approximation is adopted for the fluid body forces due to 

solutal and thermal variations. 

On the channel wall boundaries, the no-slip condition 

apply, and the temperature and concentration are kept 

constant at Tw and cw respectively. At initial time, the fluid 

velocity has a parabolic profile with maximum value at the 

channel center and vanishes at the walls in line with the 

no-slip conditions. Both the temperature and concentration 

are initially zero within the fluid except at the walls where 

the constant values are maintained. 

Denoting by    , , ,u y t c y t  and  ,T y t  the velocity, 

concentration and temperature, respectively, at point y  

and time t ; and defining    0, 0,
ft

h T
     . 

Then, the problem is governed by the following system 

[18,6,19,20]: 
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Here,  = fluid density, ( )T  = temperature-dependent fluid viscosity, P = fluid pressure, K = permeability of porous 

medium,  = electrical conductivity, B0 = uniform magnetic field intensity, g = acceleration due to gravity, T = 

temperature expansion coefficient, C = concentration expansion coefficient, T0 = reference temperature, D0 = diffusion 

coefficient, 
0  = thermal conductivity, 

pc  = specific heat capacity, 
T  = thermal diffusion ratio, m0 = a constant,    

Tm = mean fluid temperature, 
sc  = the concentration susceptibility, while b1 and b2 are constants. 

2.1. Non-dimensional Formulation 

We define the following dimensionless quantities [18,20,6,19]: 
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Substituting the nondimensional parameters and variables in (5) into (1)-(4), we obtain the following non-dimensional 

equations: 
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where L = pressure-gradient parameter, α = viscosity parameter, M = magnetic field parameter, Da = Darcy number, GT = 

Thermal Grashofs number, Gc = solutal Grashofs number, Sc = Schmidt number, Sr = Soret coefficient, β = injection paramter, 

Pr = Prandtl number, Du = Dufour coefficient, Br = Brinkman number and q0 is a constant [18,6,19]. 

3. Sem-Implicit Numerical Scheme 

Let 1Q   be an integer and t  be given. Define 1
:y

Q
  ; 

iy i y   for 0,1,2, ,i Q ; 
n

t n t   for 

0,1,2,n  ; and 

( , ), ( , ), ( , ).n n n n n n

i i i i i iw w x t x t x t       
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n
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i e
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1/2 :
2

n n
n i
i

  



 . We propose to discretize the coupling and nonlinear source terms 

explicitly, while the variable-coefficient viscous terms are treated in conservative form. This leads to the following 

semi-implicit scheme [40,41] see also [20]: 
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Treating the variable coefficient viscous term in this 

manner allows to avoid derivatives, which may actually not 

exist; it also reduce the computational cost. The resulting 

scheme is decoupled and the solution of each state variable 

can be computed independently, which in turn allows to 

leverage parallel computing architectures. 

4. Numerical Experiments and Results 

The numerical results are now presented and discussed. 

The numerical scheme, (9) - (12), is implemented in an 

in-house C++ code developed by the first author. We use the 

following data for all the computations, except when 

otherwise stated: L = 1.0, α = 0.1, M = 0.3, Da = 0.1, GT = 0.1, 

Gc = 0.1, Sc = 0.24, Sr = 0.6 β = 0.1, Pr = 0.75, Du = 0.03, Br = 

0.1, ∆t = 0.005, q0 = 0.5 and the total duration of simulation 

is T = 0.5 seconds. The variation of the velocity, 

concentration and temperature with the flow parameters are 

considered. The discussion starts with the viscosity 

parameter α and end with the magnetic field parameter M. 

The variation of flow fields with the viscosity parameter α, 

is shown in figure 2. It is observed that increasing α, which 

signifies decreasing the fluid viscosity, leads to increase in 

the flow velocity. The parameter has no effect on the 

temperature or the concentration. 

The effects of the injection parameter β is displayed in 

figure 3. We can see that increase in β causes an increase in 

the concentration and a decrease in the temperature. This is 

obvious because increase in β means addition of the pollutant 

into the system which should naturally increase the 

concentration. In this study we observed that increase in 

concentration is associated with a decrease in the 

temperature and vice-versa. This is due to cross-diffusion 

between the concentration and temperature - where one 

quantity contributes to the flux of the other. Hence, an 

increase of one leads to non-increase of the other. 

 

Figure 2.  Effect of viscosity parameter α on velocity 
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Figure 3.  Effect of pollutant injection parameter β on the flow Fields 

 

Figure 4.  Effect of Brinkman number Br on the flow fields 

 

Figure 5.  Effect of Darcy number Da on the flow fields 
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Figure 6.  Effect of Prandtl number Pr on the flow fields 

 

Figure 7.  Effect of Soret number Sr on the flow fields 
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Figure 8.  Effect of Dufour number Du on the flow fields 

 

Figure 9.  Effect of Solutal Grashof number Gc on the flow fields 
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Figure 10.  Effect of Thermal Grashof number GT on the flow fields 

 

Figure 11.  Effect of Schmidt number Sc on the flow fields 
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An increase in temperature and a slight decrease in 

concentration are observed in figure 4. This is because an 

increase in Br implies an increase in the viscous dissipation. 

This leads to increased temperature which in turn causes a 

decrease in the concentration as a result of cross-diffusion. 

No significant change in velocity is observed and this is due 

to the opposing effects of the increased temperature and 

decreased concentration. 

The effect of Darcy number are shown in figure 5 which 

depicts an increase in velocity and temperature. This is 

because increasing Darcy number implies to increase the 

porosity of the medium which should naturally increase the 

flow, hence the observed increase in velocity. Also, since 

velocity increase results to increase in viscous dissipation 

which in turn increases the temperature, hence the observed 

increase in temperature. 

The impact of the Prandtl number is displayed in figure 6. 

As it can be seen, increasing Pr leads to decrease in 

temperature and velocity but to an increase in concentration. 

This is because increasing this parameter means to reduce 

the fluid’s thermal conductivity which reduces the rate at 

which heat is transported from the heated channel walls into 

the fluid which was initially at zero temperature. The 

temperature increase then leads to a reduction in the fluid 

viscosity hence causing a rise in the velocity. The 

concentration is increased due to the decrease in temperature 

- the cross-diffusion effect. 

The effect of Soret number is shown in figure 7. Increase 

in Sr decreases the temperature but increases the 

concentration. The Soret effect acts as a source to the 

pollutant’s concentration leading to increase in the 

concentration which inturn reduces the temperature due to 

cross-diffusion. Exactly the same effect is observed in figure 

8 in which the Dufour number enhances the concentration 

but decreases the temperature. This shows that the 

Soret-Dufour effects seem to favor the concentration but 

diminish the temperature. The two parameters, Sr and Du  

did not show any influence on the velocity. 

The effects of the solutal and thermal Grashof numbers Gc 

and GT are displayed in figures 9-10. It is observed that both 

parameters increase the velocity and temperature. This is 

expected since an increase in Gc and GT means increasing the 

body force on the fluid which enhances the velocity, and this 

in turn increases the viscous dissipation, hence increasing the 

temperature. There is also a very small (insignificant) 

decrease in concentration, and this obviously due to the 

cross-diffusion effect - the small temperature increase caused 

the very small decrease in concentration see figures 9(b) and 

10(b). 

The variations of flow fields with Schmidt number is 

shown in figure 11. We can see that increasing Sc causes a 

rise in concentration and a decrease in temperature; no 

significant change in velocity is observed. This is because, 

an increase in Sr means to reduce the pollutant diffusivity. 

Since there is a pollutant injection into the fluid, higher 

diffusivity will reduce the concentration, while less 

diffusivity will enhance it. This is why increasing Sr (or 

reducing diffusivity) increases the concentration. As we 

noted above, cross-diffusion causes the temperature to 

decrease. Figure 12 shows that the magnetic field parameter 

decreases the velocity and have no effect on the 

concentration or temperature. 

 

 

Figure 12.  Effect of Magnetic field parameter M on the flow fields 
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Figure 13.  Variation of Skin Friction with α, Da and Pr 
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Figure 14.  Variation of Skin Friction with Gc, GT and M 



 American Journal of Computational and Applied Mathematics 2019, 9(5): 119-132 131 

 

 

The variations of of the skin friction are displayed in 

figures 13 and 14. It is shown that the skin friction increases 

with increase in viscosity parameter α, the Darcy number Da, 

the solutal Grashof’s number Gc and the thermal Grashof’s 
number GT. It also shown that the skin friction decreases with 

increasing magnetic field parameter M and the Prandtl 

number Pr. 

5. Conclusions 

This study presented a heat and mass transfer problem in 

the flow of a temperature dependent viscosity fluid in a 

saturated porous channel. The effects of dissipation, 

pollutant injection and cross diffusion are incorporated and 

the governing equations are solved using a convergent finite 

difference algorithm. The numerical results show that the 

flow parameters have opposite effects on the concentration 

and temperature, meaning that a decrease in one of the two is 

associated with an increase in the other. We conclude that to 

eliminate pollutant from the fluid, an increase in temperature 

might be useful. 
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