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Abstract

Allelic imbalance (AI) is a phenomenon where the two alleles of a given gene are expressed at different levels in a given cell,
either because of epigenetic inactivation of one of the two alleles, or because of genetic variation in regulatory regions.
Recently, Bing et al. have described the use of genotyping arrays to assay AI at a high resolution (,750,000 SNPs across the
autosomes). In this paper, we investigate computational approaches to analyze this data and identify genomic regions with
AI in an unbiased and robust statistical manner. We propose two families of approaches: (i) a statistical approach based on
z-score computations, and (ii) a family of machine learning approaches based on Hidden Markov Models. Each method is
evaluated using previously published experimental data sets as well as with permutation testing. When applied to whole
genome data from 53 HapMap samples, our approaches reveal that allelic imbalance is widespread (most expressed genes
show evidence of AI in at least one of our 53 samples) and that most AI regions in a given individual are also found in at
least a few other individuals. While many AI regions identified in the genome correspond to known protein-coding
transcripts, others overlap with recently discovered long non-coding RNAs. We also observe that genomic regions with AI
not only include complete transcripts with consistent differential expression levels, but also more complex patterns of allelic
expression such as alternative promoters and alternative 39 end. The approaches developed not only shed light on the
incidence and mechanisms of allelic expression, but will also help towards mapping the genetic causes of allelic expression
and identify cases where this variation may be linked to diseases.
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Introduction

In a diploid cell, each gene is present in two copies. The vast

majority of microarray-based or RNA sequencing-based gene

expression studies do not distinguish between the two copies and

measure the sum of the expression of the two alleles. This hides the

fact that the two alleles are not necessarily expressed at equal

levels, a phenomenon called allelic imbalance (AI) [1]. The

complete shut down of one allele results in monoallelic expression

(ME). The most drastic example of ME is X-chromosome

inactivation, where, in females, one of the two copies of the X

chromosome is inactivated and packaged into heterochromatin

[2]. Less drastic is random monoallelic expression, whereby a

randomly selected copy of a gene or chromosomal region is

silenced by epigenetic mechanisms (e.g. methylation). In contrast,

imprinting results in parent-of-origin specific inactivation of the

maternal or paternal allele, depending on the locus. While

monoallelic expression completely silences one of the two alleles,

less drastic allelic expression differences can result from a

heterozygous Aa regulatory site. For example, allele A of a

transcription factor binding site may allow binding and result in

normal expression of the target gene on that chromosome, while

allele a may disrupt the binding site, resulting in lower expression.

While the lower expression of allele a may be compensated by an

increased transcription rate at allele A in heterozygous individuals,

this may not be the case for individuals who are homozygous aa,

which may result in phenotypic variation. Researchers have tried

to identify causative regulatory variants by measuring the total

expression (i.e. expression of both copies) of a particular gene

across multiple individuals, treating this as a Quantitative Trait

Locus (eQTL), and mapping nearby cis-regulatory regions to the

gene expression (reviewed in [3]). A key problem with this type of

approach is that environmental differences across individuals can

affect gene expression, making the mapping problem very

challenging.

Instead, a focus on the relative expression of two alleles within

the same cell has been suggested to factor out environmental

sources of variation, allowing for more sensitive and specific

detection of epigenetic and genetic phenomena related to local

control of gene expression [4]. Combining AI measurements

obtained from a set of individuals with genotyping information

about these same individuals, one can map cis-regulatory

variants [5–8] or detect epigenetic variation in allelic expression

[9,10].
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Past studies with the goal of detecting AI have typically relied

upon panels of SNPs with relatively low density, located in only a

subset of transcribed genes of the genome [10–12]. A simple

threshold for the ratios of expression of the two alleles at a

heterozygous locus is usually established (e.g. 1.5 or 2-fold) and a

gene is called as imbalanced based upon whether or not the SNP(s)

within it exceed this threshold. Optimal AI profiling in a genome-

wide manner would require high-density sampling of expressed

heterozygous sites in the genome. We recently generated the first

large-scale, high-resolution assay of allelic expression [13]. In this

study, Illumina genotyping arrays were used to measure

differential allelic expression at 755,284 polymorphic sites in

lymphoblastoid cell lines (LCL) derived from 53 CEU samples

included in the HapMap project [14]. Because of the noise in

single point AI measurements made at each heterozygous locus,

sophisticated analytical methods are required to make the most out

of this data. In this paper, we develop signal processing approaches

for the accurate identification and delineation of transcripts with

allelic imbalance, either in a single individual at a time, or in a

collection of samples.

To our knowledge, no hypothesis-free computational approach-

es have been proposed for the analysis of this type of data.

Detection of AI in Ge et al. [13] relied heavily upon RefSeq, Vega,

and UCSC gene annotations, and SNPs were first partitioned into

windows corresponding to these annotated regions as well as

intergenic regions and windows with significant AI were reported.

Sophisticated bioinformatics approaches have been developed for

a related, but simpler, problem in the past, that of detecting Copy

Number Variants (CNV) or Loss Of Heterozygosity (LOH) in

cancer cells using array-based Comparative Genomic Hybridiza-

tion (CGH) [15–18] or genotyping arrays [19–25]. These include

the PennCNV program [26] and the QuantiSNP program [27],

that use a Hidden Markov Model related to one of the approaches

considered here. However, CNV or LOH regions have properties

that make them easier to detect than regions of allelic imbalance:

(i) the signal, coming from genomic DNA is generally quite strong,

whereas gene expression can be very low; (ii) the number of copies

of an allele is a small integer, whereas the allelic expression ratio is

a real number; (iii) the regions affected are typically quite large,

whereas AI can affect a single, short gene, or even only part of a

gene. The approaches listed above are thus not easily applicable to

the detection of AI in gene expression. An alternate family of

statistical approaches called changepoint methods has been

proposed for segmenting array CGH data into regions exhibiting

consistent signals [28,29]. These non-parametric, model-free

approaches have the benefit of segmenting real-numbered data

without enforcing discretization. However, they are difficult to

generalize to a situation like ours, where signals come from a

mixture of discrete (sites with no expression, sites with expression

but no imbalance) and continuous (sites with real-valued

imbalance) state space.

In this paper, we introduce a family of signal processing

approaches for the analysis of AI data obtained from genotyping

arrays. We consider both statistical approaches (Z-score compu-

tation) and machine learning approaches (Hidden Markov

Models) to identify transcripts that show AI and to quantify the

latter. We introduce a new type of left-to-right HMM for the joint

prediction of allelic imbalance in the 53 samples considered. Our

algorithms are evaluated using permutation testing and succeed at

identifying regions with known AI. Our approaches reveal that

more than 25% of transcripts (coding or non-coding) are subject to

differential expression between the two alleles and that patterns of

AI are varied and complex. The tools and data sets described here

will help biologists and geneticists to identify regions of allelic

imbalance, understand the mechanisms at play, identify the

genetic or epigenetic causative agents, and associate expression

polymorphisms with disease susceptibility.

Methods

Allelic Imbalance Data
Allelic imbalance was assayed using Illumina Infinium Hu-

man1M/Human1M-Duo SNP bead microarrays. These arrays,

originally designed for genotyping, have probes for approximately

1.1 Million polymorphic sites from HapMap, of which 755284

where used for this study. Each probe estimates the abundance of

each of the two possible alleles in the sample. Normally, genomic

DNA is hybridized onto the chip and the genotypes are easily

inferred from the probe intensities. We have previously described

how one can take advantage of this technology to measure allelic

expression in a high-resolution, genome-wide manner [13].

Briefly, total RNA is extracted and cDNAs are synthesized based

on a protocol on heteronuclear RNA, allowing us to measure

unspliced primary transcripts [8]. The cDNA sample is hybridized

onto the array and each probe estimates the abundance of each of

the two alleles in the sample. In parallel, genomic DNA from the

same cell line is hybridized, which provides the basis for

normalization of the cDNA hybridization while providing us with

the genotype of each sample. Details for the full process of

experimentally obtaining the raw imbalance information, as well

as the sample information, can be obtained from [13].

Data obtained from technical replicates show that although the

total expression level (sum of RNA abundance in both alleles)

measured at a given SNP is highly reproducible (R2 = 0.864),

single point allelic expression ratios are much more noisy

(R2 = 0.632), especially for low expression levels (see 9). This

suggests that careful data analysis is required to extract as much

information as possible.

Let ai~fai1,ai2g be the set of two alleles present at polymorphic

site i in the population, for i~1:::n (the rare cases where three or

more alleles exist at the same site are ignored in this study). For

notational simplicity, we assume that the genome consists of a

Author Summary

Measures of gene expression, and the search for regulatory
regions in the genome responsible for differences in levels
of gene expression, is one of the key paths of research
used to identify disease causing genes, as well as explain
differences between healthy individuals. Typically, exper-
iments have measured and compared gene expression in
multiple individuals, and used this information to attempt
to map regulatory regions responsible. Differences in
environment between individuals can, however, cause
differences in gene expression unrelated to the underlying
regulatory sequence. New genotyping technologies en-
able the measurement of expression of both copies of a
particular gene, at loci that are heterozygous within a
particular individual. This will therefore act as an internal
control, as environmental factors will continue to affect the
expression of both copies of a gene at presumably equal
levels, and differences in expression are more likely to be
explicable by differences in regulatory regions specific to
the two copies of the gene itself. Differences between
regulatory regions are expected to lead to differences in
expression of the two copies (or the two alleles) of a
particular gene, also known as allelic imbalance. We
describe a set of signal processing methods for the
reliable detection of allelic expression within the genome.

Whole-Genome Differential Allelic Expression
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single pair of chromosomes. In reality, the analysis that follows is

repeated separately for each autosome. Genotype phasing consists

of the decomposition of the genotype of an individual into its two

homologous chromosomes. For individual k, let xk~xk
1,xk

2,:::,xk
n

and yk~yk
1,yk

2,:::,yk
n , be these two chromosomes, where xk

i ,yk
i [ai.

Phasing remains a computationally and statistically challenging

problem [30]. In the case of HapMap individuals, phased

genotypes are available, although they are not error free. Removal

of SNPs not phased in CEU HapMap release R22 resulted in

755284 SNPs which were utilized in our study.

Let X k
DNA(ai1) and X k

DNA(ai2) be the intensity read outs obtained

from the probes interrogating site i when hybridizing the genomic

DNA of individual k. If individual k is heterozygous at site i (i.e.

xk
i =yk

i ), then we expect both X k
DNA(ai1) and X k

DNA(ai2) to be large.

When it is homozygous, say for ai1, (i.e. xk
i ~yk

i ~ai1), we expect

X k
DNA(ai1) to be large and X k

DNA(ai2) to be small. The genotype of

an individual can thus be deduced from the ratio of the two

measurements.

Consider now X k
RNA(ai1) and X k

RNA(ai2), the intensity read outs

obtained from the probes interrogating site i when hybridizing

cDNA obtained from whole cell RNA extraction. When heterozy-

gous site i sits in a transcribed region with no allelic imbalance, both

X k
RNA(ai1) and X k

RNA(ai2) will be relatively large. Any difference

between the two may indicate allelic imbalance. Regions that are

not transcribed will obtain low values for both alleles. We consider

the following pair of observations at each site i:

Ek
i ~log

X k
RNA(ai1)zX k

RNA(ai2)

X k
DNA(ai1zX k

DNA(ai2)

� �

measures the total transcript abundance, and

Rk
i ~ log

X k
RNA(ai1)

X k
DNA(ai1)

� �

X k
RNA(ai2)

X k
DNA(ai2)

� �
0
BBB@

1
CCCA,

which measures the fold imbalance between the expression of the

two alleles. Normalization with the DNA sample, which, for

heterozygous sites, is known to be balanced, normalizes for probe

sensitivity and biases.

Values for E and R were collected at 755284 sites. Those sites

are not uniformly distributed in the genome, with genic regions

(exonic and intronic) having roughly 1.3 times the SNP density as

intergenic regions (one SNP per 3.5 kb in genic regions, one SNP

per 4.5 kb in intergenic regions). Figure 1(a) shows the distribution

of E over all genic and intergenic positions. The distribution of

expression levels in gene regions is clearly bimodal: a good fraction

of genes are not transcribed in LCL, and most but not all

intergenic sites are not transcribed. Assuming that 50% of genes

and 10% of intergenic sites are expressed, we can deconvolve these

distributions to obtain the distribution of E for expressed and non-

expressed regions (Figure 1(b)). For two individuals, experiments

were done in triplicates. As seen in Figure S1 (a) and (b), the

technical noise in the measurement of both E and R is quite

significant. As expected, R values are particularly noisy at low

expression levels.

Identification of Transcripts with Allelic Imbalance
The main problem addressed in this study is the statistically robust

identification of genomic regions with significant and consistent allelic

imbalance. We start by noting that the data is too noisy to accurately

call imbalance based on each SNP individually (e.g. by simply using

on Rk
i ), especially for regions whose expression level is relatively low.

We thus consider approaches that take advantage of the fact that

most regions with AI are relatively long and are expected to contain

more than one SNP. Four main approaches were designed,

implemented and compared. Each method aims to robustly assign

a score AI(i) to each SNP i, so that SNPs that belong to transcripts

with significant allelic imbalance obtain large (positive or negative)

scores. In all our AI detection algorithms, AI is detected without

reference to any kind of gene annotation, contrasting with the

annotation-driven approach used by Ge et al. [13], which allows us to

identify regions of AI whose boundaries does not necessarily

correspond to annotated genes. The first three approaches consider

data from each sample individually while the last considers data from

all samples jointly in order to improve the detection of AI in

individual samples. The four approaches considered are first

summarized below and then described in details. The code

implementing each algorithm is available at http://www.mcb.

mcgill.ca/,blanchem/AI/code.zip.

N Simple smoothing refers to the approach where the allelic

imbalance log-ratio of a SNP is taken as the average of its own

log-ratio and that of the m surrounding SNPs on either side.

N The Z-Score approach involves binning SNPs based on

their expression level, assigning each SNP a Z-Score based on

Figure 1. Distribution of E values. (a) Distribution over genic/intergenic regions (b) deconvolutions to expressed/non-expressed regions.
doi:10.1371/journal.pcbi.1000849.g001
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its own allelic imbalance ratio, and then determining the Z-

Scores of windows of consecutive SNPs and assigning this score

to each SNP within the window.

N The ergodic HMM approach models the AI data in a

given individual as being generated by a Hidden Markov

Model whose states correspond to different levels of total

expression and allelic ratios.

N The left-to-right HMM approach is an extension of the

ergodic model that allows using the AI data from all

individuals in order to assess the frequency of AI at each site,

and then use those as site-specific priors on the transition

probabilities to predict AI regions separately for each

individual, but in the context of the data from other

individuals.

Simple Smoothing Approach
Consider heterozygous site i and define window W(i,m) to be the

set consisting of m heterozygous sites to the left of i, m heterozygous

sites to the right of m, and i itself. The simple smoothing approach

estimates AIsmoothing(i)~
P

j[W (i,m) Rj=(2mz1). Any site i with

DAIsmoothing(i)Dwtsmoothing would then be reported as having

imbalance, for some appropriate threshold tsmoothing. Based on

False Discovery Rate assessment (described below), a value of m~4
was determined to be the optimal window size and was used for all

results reported.

Z-Score Approach
At sites with no allelic imbalance, the value of Ri is modeled

adequately using a normal distribution centered at 0. However,

the variance is inversely correlated with the total expression Ei, as

AI is difficult to estimate when the total expression is low (see

Figure S1b). The range of possible values of E are subdivided into

100 bins of equal size and the mean mb and variance s2
b of R values

were determined for SNPs belonging to every expression level bin

b. A site-specific Z-Score Z(i) is assigned to heterozygous site i as

Z(i)~(Ri{mbin(Ei)
)=sbin(Ei). Homozygous sites, being uninforma-

tive with respect to allelic ratios, are excluded from the analysis.

Consider now a collection of w consecutive heterozygous (ignoring

possibly intervening homozygous sites) SNPs i1,i2,:::,iw. We define

the regional Z-score as Z(i1,i2,:::,iw)~

P
k~1:::w

Z(ik)

ffiffiffiffi
w
p . Assuming the

normality of noise in Ri measurements, Z(i1,i2,:::,iw) follows a

Normal(0,1) distribution under the null hypothesis of absence of

allelic imbalance.

Regional Z-Scores are first computed for every possible window

of w~1:::50 heterozygous sites. The region with the highest

regional Z-score (in absolute value), Zmax is selected first and we

set AIzscore(i)~Zmax for all sites heterozygous i within the region.

This region is then masked out and the next highest scoring non-

overlapping window is selected. The process is repeated until all

heterozygous sites have a Z-Score assigned. We note that because

the AIzscore(i) is obtained based on the best window that contains

site i, there is an complex issue of multiple hypothesis testing that

makes that this measure will not follow a Normal(0,1) distribution

under the null hypothesis (i.e. absence of AI). In consequence, one

cannot easily translate AIzscore(i) into a p-value.

We also considered a variant of the Z-Score approach where

each SNP is assigned the Z-Score of the fixed-size window centered

around it. This approach, which can be seen as an improved

version of our simple smoothing approach, indeed improves on the

latter (based on permutation testing and comparison to transcripts

with known AI - see below), but is far from being as accurate as the

proposed Z-Score approach, because it leads to bleeding edges at

transcript boundaries. We also investigated a version of the Z-

Score approach where SNPs are not binned by expression level

prior to Z-Score computation; this resulted in a small but

significant decrease in accuracy, showing that the appropriate

modeling of the dependency between the noise in allelic ratio and

the total expression level is an important feature of our approach.

Single-Sample Ergodic Hidden Markov Model Approach
The linear nature of the data in question lends itself well to a

Hidden Markov Model (HMM) in which each data point

corresponds to a particular SNP, the hidden states correspond to

qualitative descriptions of the allelic imbalance (e.g. positive

imbalance, negative imbalance, no imbalance), and emissions

correspond to the total expression Ei and the allelic log-ratio Ri

observed at site i.

We built an HMM consisting of a total of eight hidden states (see

Figure 2a). Seven of these states correspond to SNPs take belong to

expressed transcripts in the LCL sample in question, with various

levels of imbalance: S~fSzzz,Szz,Sz,S0,S{,S{{,S{{{g,
corresponding to strongly positive imbalance (Szzz), moderately

positive imbalance (Szz), slightly positive imbalance (Sz), balance

(S0), slightly negative imbalance (S{), moderately negative

imbalance (S{{) and strongly negative imbalance (S{{{). There

is also a state (SN ) that corresponds to SNPs located in regions that

are predicted not to be transcribed, and for which allelic imbalance

is meaningless. The emission probability for each state s[S is

modeled with a pair of normal distributions for the E and R values,

with parameters (mE,s, s2
E,s), and (mR,s, and s2

R,s) respectively.

Whereas both total expression E and allelic imbalance measure-

ments R are observed at heterozygous sites, only the expression is

measured at homozygous sites. In the latter case, the imbalance data

is left unobserved (i.e. all 8 states are equally likely to have generated

the R observation). Homozygous SNPs can thus be included in the

model training and predictions, and can help delineating regions of

based on expression levels.

An HMM with a realistic correspondence to the data can in

principle be built with 2Kz2 states, where K§1 represents the

number of levels of positive (and negative) imbalance that the

model represents. Larger values of K should in principle be

favorable as they allow a finer discretization of allelic ratios.

Models with K[f1,2,3,4g were trained and the false discovery rate

measured and compared (see section 0). It was found that K~3
performed better than K~1 and K~2, and similarly to K~4
(Figure S2), so this value was used for both the ergodic and left-to-

right models.

Certain parameters of the HMM are trained using the Baum-

Welch algorithm, while others are fixed. For SN , the emission

probability distribution for E is modeled non-parametrically by

the histogram of Figure 1(b) (black curve) whereas all expressing

states share the same total expression distribution from Figure 1(b)

(red curve). These emission probability distributions are kept

constant during the training procedure. The Baum-Welch

algorithm [31] is used to find maximum likelihood estimators for

mR,s and s2
R,s, for s[S, as well as all transition probabilities and the

initial state probability. The Baum-Welch algorithm is an

expectation-maximization (EM) [32] approach that alternates

between the Expectation step (or E-step), in which the posterior

probability over states is computed for each site using the

Forward-Backward algorithm, and the Maximization step (or M-

Step) where the parameters of the emission and transition

probability distributions are adjusted to best reflect the observed

data given these posterior probabilities. Formulas for updating the

Whole-Genome Differential Allelic Expression
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emission probability parameters and transition probabilities are

adapted straightforwardly from Mitchell [33]. We considered

training one HMM per individual (which would allow the

flexibility to model inter-experiment variation in noise, for

example), or to train a single HMM based on the data from all

individuals (which would have the benefit of being based on more

data). The latter option produced slightly better results and this is

the strategy we used for the rest of the study. We also considered

filtering out sites with low total expression, as their allelic

expression ratio may be less reliable. However, slightly better

results were obtained without any filtering (allowing non-expressed

SNPs to naturally be classified as belonging to state SN ). Training

on the whole data set took less than Baum-Welch 20 iterations and

3 hours to converge on a standard desktop computer (convergence

is defined as two consecutive iterations where no parameter or

transition probability changed by more than 10{5 or 1% of their

value). Restarts from different initial values converged to nearly

the same values.

The Viterbi algorithm [34] can then be used to identify, in each

individual, predicted regions of different levels of positive or

negative imbalance. The Forward-Backward algorithm [35] yields

an estimate of the posterior probability of each state at each site. In

the latter case, a useful summary score for each site is the posterior

expected allelic expression log-ratio, which we use as AI predictor:

AIergodic(i)~
P

s[S Pr½Si~sDE1::n,R1::n�:ms.

Until now we have assumed homogenous transition probabil-

ities, regardless of the distance in base pairs between consecutive

SNPs along the chromosome. However, a more accurate model

would factor in the distance between neighboring SNPs, to

increase the probability of self-loops (i.e. staying in the same state)

when the two sites are nearby but increase the probability of state

change for two distant sites. Such an approach has been used

previously in HMMs designed to detect CNVs [27]. We obtained

a unit transition probability matrix T as the d-th root of the

transition matrix obtained via Baum-Welch training of the

homogeneous model, where d is the average distance (in base

pairs) between two consecutive SNPs in our data. Then, the

transition probability matrix used for a pair of sites separated by l

base pairs will be Tl , which is efficiently computed using the

eigenvalue decomposition of T .

To ensure that our training procedure was not subject to

overfitting, we used 2-fold cross validation (dividing the 53 samples

into one 26-sample data set and one 27-samples data set) and

trained our 8-state ergodic HMM separately on each half the

samples. The parameters and transition probabilities obtained

were nearly identical, and so were the FDR estimates obtained by

running each HMM on the complementary data set, indicating

that overfitting is not an issue.

Multi-Sample Left-to-Right HMM Approach
The previous HMM is called ergodic because it models an

ergodic, homogeneous Markov chain over the state space (i.e. the

set of transition probabilities is independent of the position along

the genome). One limitation of this HMM is that it does not take

full advantage of the fact that data exists for multiple individuals

and that, while not all individuals are expected to have AI in

exactly the same regions, one does expect AI hotspots where a

significant fraction of the individuals would have imbalance. That

would be the case, for example, for genes where one allele is

commonly or always silenced via epigenetic mechanisms, or when

AI is due to a common regulatory variant. The approach proposed

in this section aims at predicting AI regions separately in each

individual, while taking into consideration the data observed in all

individuals. In doing so, we still want to be able to identify AI

regions that are unique to a given individual, but are hoping to

improve the detection of regions with common AI. For example,

AI regions containing only a few SNPs, or those where the

imbalance is only moderate, may be missed when present in a

single individual, but may be detectable if present in a large

fraction of the population. In addition, we may be able to detect

boundaries of AI regions with more accuracy when they are

shared among individuals.

The approach utilized to address this is termed the left-to-right

HMM [35] (see Figure 2 (b)), similar to profile HMMs [36]. Each

site has its own copy of the set of states and transitions can only

occur between states associated with neighboring sites, from left to

Figure 2. Architecture of the two Hidden Markov model used in this study. (a) Ergodic HMM architecture. HistoExp and HistoNoExp refer to
the distributions depicted in Figure 1(b). For readability, states Szzz and S{{{ are not shown. (b) Multi-sample left-to-right HMM architecture.
States Szzz, Szz, S{{, and S{{{ are not shown for clarity. Only transition probabilities are trained. All copies of a given state have the same
emission probability distribution, described on their left.
doi:10.1371/journal.pcbi.1000849.g002

Whole-Genome Differential Allelic Expression
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right. Each copy of a given state shares the same emission

probability distributions that are modeled the same way as with

the ergodic HMM. However, transition probabilities will vary

across positions, making the model non-homogeneous (in contrast

to our ergodic HMM approach). This configuration allows for

greater fine tuning at the level of each individual SNP or region,

though at the cost of a substantially larger set of transition

probabilities to be learned.

The training of our left-to-right HMM is a two stage process.

In the first stage, emission probabilities, transition probabilities,

and start probabilities are estimated for the ergodic version of the

HMM using the Baum-Welch algorithm described above, using

all available individuals. The parameters of the emission

probabilities of the states in the left-to-right HMM will be set

to those obtained on the ergodic training and will not be re-

estimated. The obtained ergodic non-homogeneous distance-

corrected transition probabilities will be used as prior for those of

the left-to-right HMM.

In the second stage, we now switch to learning the transition

probabilities of the left-to-right HMM. We assume that the data set

from each individual is the result of an independent run of the HMM:

Pr((E1,R1),(E2,R2),:::,(Ek,Rk)DHMM)~Pi~1:::kPr(Ei,Ri DHMM),
and we seek to identify the set of transition probabilities of the left-to-

right HMM that maximizes this joint likelihood. Consider a site i that

is not imbalanced in any individual but where site iz1 is positively

imbalanced in a large fraction of the individuals. The maximum

likelihood estimator for the transition from state S0(i) to state

Sz(iz1) will be higher than at other positions where few individual

enter an imbalanced region. Now consider an individual where there

is only weak evidence of AI starting at position iz1. When using an

ergodic HMM for our predictions, the weak AI region will probably

not be detected. However, in the left-to-right HMM, with the

increased transition probability, the AI path becomes more likely, so

provided that there is sufficient imbalance, the most likely path may

now to go through one of the imbalanced state.

Estimating transition probabilities between two sites separated

by l base pairs is done using a simple modification to the standard

Baum-Welch algorithm, where the update rule for transitions is:

t’i,iz1(a,b)~

P
j~1:::k (Pr(S

j
i~a,S

j
iz1~b))zW :Tl(a,b)P

j~1:::k (Pr(S
j
i~a))zW

where Tl

is the l-th power of the unit transition probability obtained

previously and W indicates the pseudocount weight described in

the following paragraph. The regularization obtained by using the

ergodic transition probability as prior reduces the risks of

overfitting while improving the convergence of the training

procedure. In practice, based upon permutation tests and resulting

FDR scores, a parameter of W~1 was determined to be optimal

(data not shown).

Once the left-to-right HMM is trained using the data from all

53 individuals (which took 161 Baum-Welch iterations - less

than 4 hours on a standard desktop computer), the standard

Viterbi or Forward-Backbward algorithms are used to identify

AI regions separately for each individual. As with the case of

the ergodic HMM, we use the posterior expected allelic

expression log-ratio AILtoR(i) to summarize AI evidence at

SNP i.

Overfitting is a possible issue with our left-to-right HMM, as the

number of parameters estimated is much larger than for the

ergodic HMM. We performed 5-fold cross-validation, training on

4/5 of the data and predicting on 1/5. Thanks to our

regularization procedure, the predictions obtained were very

similar to those obtained by training and testing on the full data

set, with only a marginal decrease in FDR.

Cross-Hybridization
Upon study of some of the regions where AI was predicted in

most or all individuals but where not known imprinted regions

existed, we found that nearly half were a likely artifact of cross-

hybridization. All these suspicious regions were the results of a

segmental duplication, where a fragment of a gene was duplicated.

Because the fragments still matches the genic region, sites within

them will appear to be expressed (as they match the transcript of

the paralogous region), and polymorphisms will cause mismatches

between the probe and the true transcript, which will result in

apparent AI. We thus used the human Blastz self-alignment from

the UCSC Genome Browser [37,38] to filter out regions

corresponding to recent duplications. A possible alternate

approach would consist of using the results of the genomic DNA

hybridization to identify probes that match more that one location

in the genome, with the possible added benefit of detecting DNA

possible copy-number variation.

False-Discovery Rate Estimation
Due to the relatively small number of ‘‘gold standard’’ regions

known to exhibit AI, the best available option for comparison of

the various models is through permutation tests. The goal was to

preserve some of the structure of the genome such that only SNPs

with approximately equal expression levels and heterozygosity

would be swapped, i.e., the only factor that is swapped freely is

that of the allelic imbalance ratio. Permuted data sets were

generated as follows. Sites were partitioned into five levels based

on the number of individuals in which they are heterozygous. Five

bins were also assigned based on the average level of expression

seen across all individuals. Each SNP was then finally assigned to

one of 25 bins, with one bin for each of the possible combinations

of heterozygosity frequency and expression levels. Sites were

randomly permuted within each bin, preserving the correspon-

dence between sites in different individuals (in the case of the left-

to-right HMM, the first stage of training of global HMM

parameters was first done on non-permuted data, and then the

second stage of model training was done on permuted data).

Preserving expression levels and heterozygosity is important to

create permuted data sets that are as realistic as possible, in

particular with respect to the fact that expressed sites are found in

contiguous genomic regions rather than dispersed randomly in the

genome.

Each of the prediction methods described produces one AI

score per site and per individual. For each method M, the number

of regions of consecutive SNPs exceeding a given score threshold t,
Nreal(t,M) and Nperm(t,M) was determined in the real and

permuted data, resulting in a False-Discovery Rate of

FDR(t,M)~
Nperm(t,M)

Nreal(t,M)
.

Results

Each of our four approaches was applied to the data set and the

AI predictions for each individual are available at http://www.

mcb.mcgill.ca/,blanchem/AI/AIPredictions.zip.

Illustrative Case Studies
We use two examples to highlight the features of the data and

the methods developed. Figure 3 gives a sample of the raw data

and predictions made by each method in the BLK locus. BLK is a

gene that has previously been described as allelically imbalanced

in LCL [13]. Interestingly, in this individual, two other

neighboring genes have strong allelic imbalance, with FAM167A

showing expression on the opposite allele compared to BLK and

Whole-Genome Differential Allelic Expression
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GATA4 also obtaining strong an consistent signals. Although in

this example the boundaries of allelic expression domains align

nicely with known gene boundaries, this is not the case in general.

As is obvious from the figure, the raw expression and allelic ratio

data are quite noisy. The simple smoothing approach succeeds at

identifying the main regions of allelic imbalance but does so much

less reliably and precisely than the other three approaches. Notice

that this individual has no heterozygous sites in the 59 end of

FAM167A. This results in different behaviors for each method.

The ergodic approach assigns gradually decreasing expected allelic

log-ratios in that region, while the Z-Score approach only predicts

imbalance in the 39 end of the gene. However, the left-to-right

HMM has the benefit of considering data from other individuals,

which have some heterozygous sites in the 59 region of the gene,

which allows it to predict strong and consistent negative allelic log-

ratios over the whole gene, and a sharp transition entering the

BLK transcript. A similar phenomenon is observed for GATA4.

Figure 4 shows the set of predictions made by the Viterbi

algorithm using the left-to-right HMM on the extended GATA3

locus, in all 53 samples. The region exhibits a large diversity of

patterns of AI. In some cases, the region of AI closely matches an

annotated gene (e.g. SFTMBT2 in several individuals). Often, AI

regions do not overlap any known gene (e.g. the region located

upstream of SFMBT2). Such regions, especially when they abut an

annotated gene, may reflect the presence of alternative allele-

dependent promoters. They may also represent completely novel

unannotated transcripts. Another frequently observed pattern is

the presence of AI within annotated transcripts, near the 59 or 39

end (e.g. the 39 end of the ITIH5 gene). Finally, AI regions often

encompass one or more complete genes (e.g. GATA3 and

NM_207423), possibly because of epigenetic modification of one

of the two alleles. We note based on analysis done in [13] that

SFTMBT2 and ITIH5 show evidence of heritable allelic

expression, whereas GATA3 does not show correlation with

common genetic variants and could represent epigenetic modifi-

cation of expression in LCLs.

Evaluation and Validation
The accuracy of the AI predictions made by each method was

evaluated using both permutation testing (in order to assess the

false discovery rate) and comparison to previously characterized

AI transcripts.

Permutation Testing
We first estimated the false-discovery rate (FDR) of each method

using a permutation test where genomic sites are randomly permuted,

subject to some constraints (preservation of heterozygosity and

expression level; see Methods). This randomized data set preserves

Figure 3. Raw data and predictions. Example of genomic region with allelic imbalance. From top to bottom: Raw allelic log-ratio; Simple
smoothing predictions; Z-score predictions; Ergodic 8-state predictions (expected allele log-ratio); Left-to-right 8-state HMM predictions (expected
allele log-ratio); Raw total expression; UCSC known genes track. Data shown is for HapMap individual NA11840. Note: Allelic ratios at homozygous
sites are not shown.
doi:10.1371/journal.pcbi.1000849.g003

Whole-Genome Differential Allelic Expression

PLoS Computational Biology | www.ploscompbiol.org 7 July 2010 | Volume 6 | Issue 7 | e1000849



the level of imbalance observed at each site, but randomly disperses

sites in such a way that few regions are expected to exhibit strong and

consistent allelic ratios over several consecutive sites (as real AI

transcripts should). For each algorithm, the number of genomic

regions with AI score above some threshold t in the real data was

compared to the corresponding number on the permuted data - the

Figure 4. Allelic imbalance in 53 HapMap individual in the GATA3 locus. Each row reports the sites where AI has been predicted by the 8-
state left-to-right HMM with the Viterbi algorithm. Each AI SNP is marked with a vertical black line; the impression of gray levels is an artifact of SNP
density. Genes from RefSeq [44] are illustrated below.
doi:10.1371/journal.pcbi.1000849.g004
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ratio of these two numbers is an estimate of the FDR of the algorithm

(note that the FDR could also be estimated at the individual SNP

level, rather than at the region level; the conclusions are the same).

Figure 5 shows the FDR curves obtained for each method, as a

function of the number of predictions made. All methods are able to

detect the most obvious cases of AI (roughly 200 regions per

individual, where all methods have near-zero FDR). However, as our

threshold decreases and the number of regions predicted increases,

the performance of the four approaches become quite different.

Setting 5% as an acceptable FDR, the simple smoothing, Z-Score,

ergodic HMM, and left-to-right HMMs result in 360, 622, 662, and

954 predicted regions with AI. In other words, at that FDR level, the

best approach, left-to-right HMM, is *160% more sensitive than the

simple smoothing approach and *45% more sensitive than the

second best approach, which is the ergodic HMM. Similar

observations hold for other FDR thresholds. Therefore, the

information obtained from the total expression levels, as well as the

added site-specific transition probabilities are beneficial in terms of

obtaining reliable AI predictions. This is particularly noteworthy for

regions whose AI is weaker (those ranking between the 500 to 1000th

per individual), for which the FDR remains quite low with the left-to-

right HMM but quickly increases with all other methods.

Comparison to Known AI Transcripts
Although no comprehensive set of validated AI transcripts exists to

date, a set of 62 imprinted genes (containing 1099 SNPs in our data

Figure 5. False discovery rates (FDR). obtained by permutation testing at thresholds resulting in different numbers of AI regions being
predicted.
doi:10.1371/journal.pcbi.1000849.g005

Figure 6. Enrichment for SNPs called as allelically imbalanced in imprinted and AI genes. (a) Overlap with regions experimentally verified
to be imprinted. (b) Overlap with experimentally validated imbalanced genes from Verlaan et al. [8].
doi:10.1371/journal.pcbi.1000849.g006
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set) have been collected from the literature and posted on www.

geneimprint.com. Most imprinted regions are easily detected by most

methods, as they affect relatively large genomic regions and their

allelic expression ratios are extremely large. Figure 6 shows how the

enrichment of the overlap between imprinted genes and the

predictions made by each of the four methods varies as a function

of the number of sites being predicted with AI. (The enrichment of

the overlap between a set of predicted AI regions and a set of

annotated regions is the ratio of the size of the overlap to the expected

size of the overlap if AI regions had been selected randomly in the

genome.) Imprinted SNPs are enriched 5 to 20-fold among the top

predictions made by each algorithm (except the Z-Score approach,

which assigns high scores to other types of regions). Focussing on the

left-to-right HMM AI predictions at a 5% FDR threshold (which

consist of roughly 40,000 SNPs per individual), we find that 67%

(resp. 35%) of SNPs in imprinted regions are predicted to have AI in

at least one (resp. five) individual. Manual inspection of imprinted

genes that have gone undetected by any of our methods reveals genes

that are short, contain few heterozygous SNPs, or are expressed at a

very low levels in LCL.

Allelic imbalance resulting from cis-regulatory variation typi-

cally have allele ratios less extreme than imprinted genes and are

thus more difficult to detect. A set of 61 transcripts (containing

1596 SNPs in our data set) with AI resulting from cis-regulatory

variation in LCL have been identified and validated by Verlaan

et al. [8]. Figure 6 (b) shows the fold-enrichment of these SNPs

among those predicted as AI SNPs by each of our methods. Here,

the predictions made by the two types of HMMs perform

significantly better than the Z-Score and smoothing approaches,

detecting approximately 50% and 100% more validated SNPs.

Overall, our best approach is again the left-to-right HMM, which

predicts 87% (resp. 70%) of the 1596 validated SNPS as

imbalanced in at least one (resp. five) individual(s). Inspection of

AI genes that were undetected showed that they exhibited little

evidence of allelic imbalance by our method (see Figure S3). These

represent likely false positives in earlier study as well as more

localized effects caused by few independent AI measurements and

driving the association tests in previous analyses [13].

Distribution of AI in the Genome and Across Individuals
Our predictions allow a first glimpse into the diversity of allelic

expression patterns in the human genome, although a compre-

hensive analysis of AI regions is beyond the scope of this study. We

first observe that AI in LCL samples is widespread, with on

average 9.7% (resp. 5.6%) of an individual’s genes containing at

least one (resp. all) imbalanced SNP (using the left-to-right HMM

with a threshold corresponding to an FDR of 5%). Considered in

total, 54.4% of genes show at least one imbalanced SNP in at least

one individual, and 45.6% of genes have all of their SNPs showing

allelic imbalance in at least one individual. Note that only

approximately 50% of genes in total are detectably expressed in

LCL [39], and hence candidates for being allelically imbalanced.

Thus, the majority of expressed genes show AI in one or more

individuals.

Figure 7 reports the distribution of AI regions across various

types of genomic regions. While a substantial fraction (19%) of AI

Figure 7. Classification of AI regions based on their overlap with annotated protein-coding genes. The classification of an AI region is
done based on a set of simple rules that allow for a sizable margin of error in the boundaries of the AI regions. Intergenic: Little or no overlap with
annotated genes. Multiple transcripts: Overlaps several genes. Exact transcript: The left and right boundaries of the AI region match gene boundaries
within 20 kb. 59 (resp. 39) end of transcript: AI region is at the 59 end (resp. 39 end) of the gene only. Intronic: AI region is within the gene but away
from the gene boundaries. Extended 59 (resp 39): AI region extends upstream (resp. downstream) of the gene.
doi:10.1371/journal.pcbi.1000849.g007
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regions closely match annotated gene boundaries, most exhibit

more complex relationships to annotated protein-coding gene

transcripts, a larger portion of AI regions (28%) are within

annotated genes but cover only a fraction of the transcript. In

nearly half of those, allelic expression is found toward the 39 end of

the gene, possibly because of allele-specific transcription termina-

tion or mRNA degradation, or the presence of an allele-specific

alternate transcription start site within the annotated gene. The

presence of AI regions at the 59 end of the transcript appears

somewhat less frequent. 22% have little or no overlap with

protein-coding genes, although this fraction is enriched for other

types of transcripts such as LINC-RNAs [40].

Our data set affords a first glimpse into the commonality of

allelic imbalance at a given site across individuals. We

calculated the number of individual showing AI (based on the

Viterbi predictions; see Figure 8). The very long tail of this

distribution indicates that a lot of AI is shared among a portion

of the population. In fact, *65% of an individual’s AI regions

are found in at least 10 other individuals. Allelic imbalance,

whether caused by genetic or epigenetic causes, is thus highly

structured in the human population. On the other hand, rare

AI, defined as that seen in at most 10% of our individuals,

constitutes approximately 20% of an individual’s AI regions,

while 4% are unique to that individual. We note however that

because AI regions found in a large number of samples are

easier to detect than those that are less common in the

population, we may underestimate the proportion of AI that is

found in a small number of individuals. We note that the left-to-

right HMM predictions used for this analysis are potentially

biased towards over-predicting sites with common AI and

under-predicting those with rare AI. We thus repeated the

analysis with the ergodic HMM approach, which does not suffer

from this bias. The results were very similar, with only a very

slight shift toward less frequent AI.

Discussion

The recent development of a genome-wide high-density assay of

allelic imbalance based on genotyping arrays has resulted in a vast

improvement in our understanding of this type of variation and in

our ability to map this variation to causative regulatory SNPs [13].

A relatively simple gene-based analysis was sufficient to identify a

significant number of genes with allelic imbalance [13]. However,

taking full advantage of this technology requires advanced signal

processing approaches to accurately detect, delineate and quantify

allelic expression. Furthermore, relying too heavily on known gene

annotation may hide the fact that most AI does not perfectly align

with gene boundaries. Indeed, the approaches proposed here,

which do not make use of gene annotations, reveal that allelic

imbalance is widespread and exhibits complex patterns in relation

to annotated genes. Although our approach was specifically

applied to the analysis of data obtained from high-density

genotyping arrays, it should be readily applicable to studies based

on data obtained next generation RNA sequencing.

Detection of AI based on data from genotyping arrays proves

challenging because of the significant noise in the allelic ratio

measured at individual SNPs and because of the complex patterns

of AI. To our knowledge, our study represents the first in-depth,

statistical and computational analysis of a large scale, genome-

wide allelic imbalance data set. Because of the noise level in allelic

expression ratios at individual SNPs, one must rely on the fact that

transcripts with allelic imbalance will generally contain several

SNPs that are expected to show imbalance. Our Z-Score approach

identifies regions where the allele ratio is significantly different

from the expected one-to-one ratio. An aspect of the data that is

not exploited by the Z-Score approach is that the total expression

and allelic ratio are expected to be consistent across the transcript.

Our two HMM approaches model this explicitly, and obtain

better results in part because of this. An additional improvement in

accuracy of AI detection is obtained by our left-to-right HMM,

which considers jointly the data from all individuals to serve as

prior for the detection of AI in each one. This approach yields

improved detection of AI regions that are shared among many

individuals, while being able to detect those present in only one or

a few samples. This new type of machine learning problem, where

a collection of sequences of observation are expected to have been

derived from a common (but unknown) model but where each

individual can significantly deviate from that model is a situation

that may arise in a number of other situations where our left-to-

right HMM approach may be useful, including for comparative

genomics based gene predictions [41] (where different species are

expected to share some but not all of their exon structure).

Although a detailed biological analysis of allelic imbalance and

its phenotypic consequences is beyond the scope of this paper, our

predictions reveal that AI is widespread, with roughly 10% of

genes showing evidence of AI in a given individual, and with the

majority of genes expressed in LCLs showing AI in at least one of

our 53 samples. Although roughly 60% of AI regions are clearly

related to an annotated transcript, they often reflect the presence

of alternative promoters, splicing, or transcription termination.

An increasing proportion of the genetic burden of disease is

being associated with differences in gene regulation [42]. At the

same time greater complexity of gene regulation and the

transcriptome are being uncovered [43]. Therefore, hypothesis-

free methods detecting allelic imbalance are a prerequisite to

advancing our understanding of population variation in cis-

regulatory control by heritable or epigenetic mechanisms.

Supporting Information

Figure S1 Analysis of the noise using technical replicates. (a)

Replicability of expression value E. (b) Replicability of allelic ratio

R.

Found at: doi:10.1371/journal.pcbi.1000849.s001 (0.14 MB TIF)

Figure S2 Performance of ergodic HMM with different levels of

discretization. False-discovery rate obtained by ergodic HMMs

Figure 8. Commonality of allelic imbalance. Number of SNPs in AI
regions, as a function of the number of individuals with AI at the same
site.
doi:10.1371/journal.pcbi.1000849.g008
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with 4, 6, 8, and 10 states (corresponding to 1, 2, 3 and 4 levels of

positive and negative allelic imbalance).

Found at: doi:10.1371/journal.pcbi.1000849.s002 (0.15 MB TIF)

Figure S3 Analysis of AI data in false-negative regions. Red:

Genome-wide distribution of AI measurements (total expression vs

allelic ratio). Green: AI measurements in genes identified as

imbalanced by Verlaan et al. [8] but not predicted as such by our

approach. These genes show no sign of imbalance in our data.

Found at: doi:10.1371/journal.pcbi.1000849.s003 (0.62 MB TIF)
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