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Abstract

Background: Comprehensive mutational profiling data now available on all major cancers have led to proposals of

novel molecular tumor classifications that modify or replace the established organ- and tissue-based tumor typing.

The rationale behind such molecular reclassifications is that genetic alterations underlying cancer pathology predict

response to therapy and may therefore offer a more precise view on cancer than histology. The use of individual

actionable mutations to select cancers for treatment across histotypes is already being tested in the so-called

basket trials with variable success rates. Here, we present a computational approach that facilitates the systematic

analysis of the histological context dependency of mutational effects by integrating genomic and proteomic tumor

profiles across cancers.

Methods: To determine effects of oncogenic mutations on protein profiles, we used the energy distance, which

compares the Euclidean distances of protein profiles in tumors with an oncogenic mutation (inner distance) to that

in tumors without the mutation (outer distance) and performed Monte Carlo simulations for the significance

analysis. Finally, the proteins were ranked by their contribution to profile differences to identify proteins

characteristic of oncogenic mutation effects across cancers.

Results: We apply our approach to four current proposals of molecular tumor classifications and major

therapeutically relevant actionable genes. All 12 actionable genes evaluated show effects on the protein level in the

corresponding tumor type and showed additional mutation-related protein profiles in 21 tumor types. Moreover,

our analysis identifies consistent cross-cancer effects for 4 genes (FGFR1, ERRB2, IDH1, KRAS/NRAS) in 14 tumor

types. We further use cell line drug response data to validate our findings.

Conclusions: This computational approach can be used to identify mutational signatures that have protein-level

effects and can therefore contribute to preclinical in silico tests of the efficacy of molecular classifications as well as

the druggability of individual mutations. It thus supports the identification of novel targeted therapies effective

across cancers and guides efficient basket trial designs.
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Background
Next-generation sequencing has facilitated comprehen-

sive mutational profiling of all major cancers and has led

to the discovery of oncogenic driver mutations, many of

which can be targeted therapeutically [1–3]. Following

the conventional organ- and tissue-based WHO classifica-

tion of tumors and standard clinical trial design, precision

therapies targeting these driver mutations are usually eval-

uated for a specific cancer type. However, sequencing data

has shown that actionable mutations, albeit with different

frequencies, occur across cancers, which has raised the

question about histotype-independent therapies and novel

ways of tumor classifications no longer relying on hist-

ology but on genetic profiles. Recent studies propose such

molecular tumor classifications, which extend or even re-

place the histology-based tumor typing as implemented by

the World Health Organization (WHO) [4, 5]. Although

different, these approaches share the common idea that

molecular (mutational) profiles govern tumor pathology

and should therefore replace histotyping in diagnostics

and therapy selection [6]. That targeted therapies against

the same single molecular alteration can be effective

across cancers, as shown, for instance, by the efficacy of

anti-Her2 therapy in both gastric and breast cancers [7, 8]

or the clinical benefit from inhibition of mutated cKIT in

gastrointestinal stromal tumors (GIST) and melanoma or

mastocytosis [9, 10]. However, the fact that inhibition of

BRAF mutated at V600 is effective in melanoma but

not in colorectal cancer [1, 11, 12] is a prominent ex-

ample against the general transferability of knowledge

on a single actionable mutation from one histological

tumor type to another. This observation is corroborated

by recent basket trials that point to histology as an import-

ant predictor of response to targeted therapy against ac-

tionable mutations [13, 14].

The reasons for the variable therapeutic utility of

genetic aberrations across cancers is likely due to the

complex molecular “background” observed in many tu-

mors. Using mutational profiles or just single genetic

aberrations, as is the case in the current basket trials, is

unlikely to cover the full scope of (tissue-specific) mo-

lecular effects including epigenetic mechanisms and

downstream regulation such as post-translational modi-

fications. However, it would be highly desirable for

therapy selection in individual patients and clinical trial

design to predict genes with similar functional effects

across histotypes.

To this end, we developed a computational approach

that integrates genomic and proteomic data from 3590

tumors to analyze the impact of genetic aberrations on

protein profiles and gauge the functional effects of muta-

tional profiles across 32 different cancers. We apply our

approach to evaluate the (functional) relevance of the

abovementioned molecular tumor classifications and

systematically analyze the effects of all major driver

mutations on protein profiles across all major cancers.

Figure 1 provides an overview of our approach and

compares it to traditional tumor classifications.

Methods
Genetic data

Two TCGA data types were used: protein expression

and somatic mutations. Data of all diseases available

without limitation was used. For somatic mutation data,

we used data processed with Oncotator [15]. TCGA data

was downloaded from Broad Institute [16] via GDAC

firehose http download. For pan-organ protein expres-

sion analysis, we used TCPA data [17] (https://

www.tcpaportal.org/tcpa/; TCGA-PANCAN16-RBN.csv).

Batch removal

To remove possible TCGA batch effects on protein ex-

pressions influencing our analysis, we excluded 21

batches with a total of 393 TCGA cases (details given in

Additional file 1: Table S1). To identify problematic

batches, we used the R package of mbatch (http://

bioinformatics.mdanderson.org/tcgambatch/). For each

histological tumor type, we sequentially removed batches

until the value of the Dispersion Separability Criterion

(DSC) was below 0.3 and the corresponding p value was

below 0.05. The batch to remove next was chosen by

iteratively removing one of the current batches, calcu-

lating the DSC value for a remaining set of batches,

and adding the batch again. The batch with the low-

est DSC for the remaining batches after its removal

was chosen.

Tumor classifications

Tumor classifications proposed by Ciriello et al. [4] and

Hoadley et al. [5] were investigated. We also tested a clas-

sification we published earlier based on the definition of a

nearest mutational neighbor by Heim et al. [18]. The fourth

classification we analyzed is based on the genes TP53,

TTN, and BRAF. These three genes were chosen after a

principal component analysis of mutational profiles showed

they identify the coarse cluster structure of the data when

mutational profiles are represented as two-dimensional

vectors (more details given in Additional file 1, section

“Genetic complexity reduction”). Additionally, classes com-

prising of cases with typical alterations in actionable genes

such as BRAF V600 were evaluated. The classifications

based on actionable genes are binary; this means for each

actionable gene, the classification has two classes—one

class is comprised of cases having that actionable mutation

the other of those without. All analyses described in this

paper were performed for each classification separately.
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Discriminability analysis

To test whether there are differences in protein expression

between cases of different classes from the same tumor,

we computed the energy distance of the two groups com-

posed by those cases. Energy distance measures the

homogeneity of protein expression of group A (for ex-

ample, skin cancer melanoma BRAF V600E-positive

cases) and group B (skin cancer melanoma BRAF

V600E-negative cases) separately and compares it to the

homogeneity of cases from A to B taken together. A

smaller (negative) energy distance indicates the protein

expressions of the cases from the two groups are discrim-

inable. Let c1;A
1 to c1;A

i be the group g1, A of i cases with

histological tumor type A assigned to class 1, c2; A
1 to c2;A

j

be the group g2, A of j cases with histological tumor type A

assigned to class 2, and let d(cx, cy) be the

Euclidean distance of two cases in protein space, than the

energy distance de1A, 2A of the two groups g1, A and g2,

A is defined as:
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To test whether the distance between two groups is sig-

nificant or within random range, we ran Monte Carlo sim-

ulations (1 million runs) to determine the p value

corresponding to the measured distance. In each run, we

Fig. 1 Graphical abstract/flow diagram of study. Top: In the WHO classification, tumors are typed by their histomorphological properties which

are refined by additional molecular markers based on which targeted therapies are selected if actionable mutations are found. Middle: Novel

molecular tumor classifications propose to ignore histological properties and fully rely on comprehensive molecular profiling dominated by

genomic techniques based on which targeted therapies are selected, which are, however, not always effective if histotypes are ignored. Bottom:

The approach we propose complements genomic profiling by the integration of proteomic data to estimate the functional relevance of

mutations and predict the efficacy of targeted therapies. Our results show that actionable mutations are associated with distinct proteomic

profiles and are indicative of drug response in cell line data

Heim et al. Genome Medicine           (2018) 10:83 Page 3 of 17



calculated the energy distance of two groups, which were

randomly created from the same cases as originally used

and having the same sizes i and j as the original groups.

The frequency of the two random groups having a lower

or equal energy distance (stronger or equal differences in

protein expressions) than the groups based on the original

genetic classes yields the p value. Benjamini-Hochberg

procedure (p values given in the text are unadjusted) and

p value thresholding (p < 0.05) were used to find the pairs

of genetic classes with significantly different protein ex-

pressions for each histological tumor type. This results in

a list of pairs of groups (a pair of groups are two groups of

cases from the same histotype with different genetic clas-

ses) with significant differences in protein expressions be-

tween the two groups. As a trade-off between the

reliability of results and investigating as many classes as

possible, we compared only groups with five or more

cases.

Determine characteristic proteins

For each pair of groups with significant differences in pro-

tein expression, we also calculated the contribution of

each protein to the total energy distance of the two

groups. Therefore, the energy distance of the two groups

is calculated as described above, with the modification

that the distance of two cases is not given by their Euclid-

ean distance in protein space but by the difference in ex-

pressions for a specific protein only. Calculated for each

protein separately, the contribution of each protein to the

distance is known. As a result, we were able to filter for

those proteins that have the strongest effect on the dis-

criminability of the two different groups. The proteins

with the strongest contribution to the difference of the

two groups are those with the most negative contribution

values. Proteins with a negative contribution value are

considered to be characteristic proteins if the absolute

value of the contribution of the protein is higher than the

highest positive contribution value among all proteins.

We chose this dynamic threshold as it can be considered

as an estimate for the maximum noise of the contribution

signals. Characteristic proteins are then divided into two

sets by calculating their mean values among the cases of

the two groups. The proteins with higher mean values in

group A are considered to have significantly increased ex-

pression values in group A cases compared to group B

cases and vice versa. We chose this test for characteristic

proteins over, for example, the U test because it puts em-

phasis on the proteins with larger differences rather than

proteins with smaller yet significant differences between

the two groups of cases.

Definition of cross-cancer effects

To address the question of how mutational differences

between two classes affect protein expressions in more

than one histotype in the same way, we performed a

cross-cancer effect analysis. We therefore searched the

list of discriminable group pairs for group pairs with the

same classes but different histological tumor types. The

result would be two group pairs pA = (g1, A, g2, A) and

pB = (g1, B, g2, B). Associated with each pair of groups are

two sets of characteristic proteins. Set sA1 is the set of

characteristic proteins for pA that are increased for class

1, set sA2 is the set of characteristic proteins for pA that

are increased for class 2, set sB1 is the set of characteristic

proteins for pB that are increased for class 1, and set sB2
is the set of characteristic proteins for pB that are in-

creased for class 2. We then compute the number of inter-

secting characteristic proteins by ni ¼ jsA1 ∩s
B
1 j þ jsA2 ∩s

B
2 j

and use one-tailed Fisher’s exact test to determine whether

the number of intersecting characteristic proteins is sig-

nificant relatively to the number of characteristic proteins

of both groups and the total number of proteins used

(120). The p value for all group and histological tumor

type pairs were also false positive corrected with the

Benjamini-Hochberg procedure.

Results

Proteomic profiles are more histotype-specific than

genomic profiles

The attempts to propose novel molecular tumor classifi-

cations are mainly based on the observation that gen-

omic profiles show substantial similarities across

histological tumor types and are often inconsistent with

histology [4, 18]. Because this study aims at evaluating

the functional relevance of these molecular classifications

based on proteomic profiles, we first studied whether the

observed inconsistencies between genomic and histo-

logical typing also exist on the level of proteins by

re-applying the analysis presented by Heim et al. [18] to

corresponding reverse-phase protein array data available

through The Cancer Protein Atlas (TCPA) [17].

Our analysis showed that mutational and histological

tumor types agreed for only 45% of the 3590 cases, for

which both protein and mutational data were available

(47% if combining colon and rectal cancer as a single

histotype). For protein profiles, the analysis demon-

strates a consistency with histotypes in 94% of the cases

(95.6% if colon and rectal cancer combined, Fig. 2). The

only relevant cross-cancer similarities on the protein

level exist for colon and rectal cancer (1.6% of all cases)

and, moreover, lung squamous and adenocarcinoma

(1%), which arise in the same organ.

To further examine the proteogenomic relations and

to test if distinct mutations converge on similar pro-

tein profiles, we performed a gene set enrichment ana-

lysis that evaluated if the used gene set contains a

significant number of genes corresponding to
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differentially expressed proteins. We found such rela-

tions in 24 out of 76 pair-wise molecular class compar-

isons, all of which were histotype-dependent (for

details about the method, see Additional file 1, section

“The relation between mutational and protein pro-

files,” and for results, see Additional file 2: Table S2).

Moreover, we tested if the fact that TCGA/TCPA of-

fers only a limited panel of less than 200 proteins may

introduce a bias when comparing cross-cancer similarities

between genomic and proteomic data. Also, evaluating

functional groups of genes may show different patterns of

genetic profiles. To address these issues, we first re-per-

formed our similarity analysis for only the genes with cor-

responding proteins in the TCPA/RPPA data. Second, we

assigned genes to the c6 gene set (oncogenic signaling)

from MSigDB (Broad Institute). These controls showed

that apart from minor quantitative differences, the overall

pattern of substantial cross-cancer similarities is consistent

between both approaches and our original findings shown

in Fig. 2 (for details, see Additional file 1, section “Cross-

cancer similarities for different gene sets”).

In summary, while substantial genetic cross-cancer

similarities exist, our analysis points to a pronounced

organ-type specificity of the observed protein profiles.

At this point, it is unclear whether the reason for this in-

consistency between genetic and protein profiles is the

differential translation of genetic profiles into protein levels

in different cancer types, or organ- and tissue-specific pro-

tein base levels that are modulated by mutations—or a

combination of both.

Histotype specificity of genetic classifications and pan-

cancer effects

Based on the findings that global genetic cross-cancer

similarities are not reflected in corresponding protein

pattern similarities, we evaluated to what extent tumor

classifications based on molecular alterations are impact-

ing protein profiles. We systematically compared if, and

which, genetic classes affect proteins (i.e., which classes

are discriminable on the level of protein profiles) for 3

molecular cancer classification approaches [4, 5, 18] and

a computational approach based on reducing genetic

complexity for 30 different histological tumor types.

Subsequent to the identification of molecular classes

with impact on the protein level as an indicator of func-

tional relevance within each histotype, we also compared

the molecular class discriminability on the protein level

across histological tumor types to determine which of

the molecular classes found to be functionally relevant

in one histotype, are relevant also in another. To this

end, the following aspects are addressed for each

classification.

Fig. 2 Mutational and proteomic cross-cancer similarities. Chord diagrams show the cross-cancer similarities for somatic mutations (left) and

protein profiles (right) by computing for each case the closest molecular neighbor among all 3590 tumors for which mutational and proteomic

data were available. Chords connecting two histological tumor types indicate the number of tumors of a certain cancer that are—on the level of

mutations or protein profiles—more similar to tumors of the other type than to their own, indicating a disagreement of molecular and histological

type. Hill-like structures, on the other hand, indicate the amount of cases where molecular and histological classes are identical. It is obvious that a

substantial disagreement exists only for mutational profiles (similar results for copy number variation, Additional file 1: Figure S4) showing agreement

between mutational and histological tumor types in only 45% of the cases, whereas protein profiles are consistent with histological tumor types in

over 94%
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First, we provide a descriptive comparison between

genetic and histological classifications by evaluating the

distribution of genetic classes across the different histo-

logical classes.

Secondly, we introduce the classification effectivity

score (CES) which indicates to what extent different mu-

tational classes can be discriminated by their protein

profiles assuming that classifications are more effective

and thus clinically relevant if their (genetic) classes are

visible also on the protein level. The CES integrates the

results of the different subtests (a subtest is the pair-wise

comparison of two genetic classes with respect to their

protein profiles) into one score to describe the accuracy

of the classification with which individual classes can be

discriminated by protein profiles (i.e., the percentage of

evaluated class vs. class subtests where the protein pro-

files were found to be significantly different from each

other). The CES can be also evaluated class-wise (only

subtests using a specific class are evaluated) to describe

to what extent protein profiles of the specific class differ

from those of all other classes. In analogy to this, the

histotype-wise CES evaluates all subtests for a specific

histotype.

Thirdly, in addition to the global CES, we define the

discriminability score sdis for pairwise class comparisons.

The discriminability score measures to what extent pro-

tein profiles of histological tumor type X differ between

class A and class B (as sdis the describes the difference in

protein levels of two classes, the score is more negative

the more distinct the profiles of the two sets are). For

those subtests, we also identify those proteins for which

the profiles deviate most between two classes.

Finally, we analyze the cross-cancer protein profile ef-

fects for each classification. A cross-cancer effect is re-

ported when two genetic classes can be distinguished

from each other in protein profiles in at least two histo-

logical tumor types and if protein effect directionality is

similar across histotypes.

Overall, the four tested molecular classifications de-

fine classes that are associated with distinct protein pro-

files in some tumor types. However, protein profiles are

affected similarly across tumor types for only two class

Fig. 3 Relations of molecular classes and histological tumor types in each classification. The diagrams show the number of cases from each

histotype (top) assigned to the molecular classes (bottom). The molecular classification by Hoadley et al. is largely consistent with histotyping as a

molecular class contains cases from only 1.5 histotypes on average. Ciriello et al. shows 2.5 histotypes per molecular class, whereas the classifications

based on Heim et al. and genetic complexity reduction are substantially more distinct from histotyping as a molecular class is comprised of cases of

5.4 respectively 10.75 different histological tumor types
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pairs, and for most classes, protein profile discriminability

is dependent on tumor type.

In the proposal by Ciriello et al. [4], tumors are classi-

fied by the presence of somatic mutations and copy

number alterations in cancer-related pathways. Molecu-

lar classes are composed of, on average, 2.5 different

histotypes (range 2 to 6), and histotypes are assigned to

7.2 different molecular classes on average (range 2 to

15). For details about histotype and molecular class con-

gruence, also see Fig. 3.

The global classification effectivity score (CES) is 17%.

The highest effectivity score for a specific histotype is

Fig. 4 Reproducibility of molecular tumor classes on the level of protein profiles. The heatmaps show for each molecular tumor classification and

all histotypes the degree with which a molecular class is distinguishable from other classes based on protein profiles. Blank matrix entries indicate

fewer than five cases which were excluded from the analysis. In the classification by Ciriello et al., gynecological cancers (breast, uterine and

ovarian) show highest protein-level effects of genetic classes, whereas the molecular classes based on Heim et al. have less impact on proteins

overall. The genetic complexity reduction classification has relatively distinct protein profiles for histological tumor types. Hoadley et al. propose

classes well discriminable by protein profile (however, due to the high agreement with histotypes, only a few classes contain sufficient cases to

evaluate protein level effects)
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found for breast cancer with 36.6%. The molecular clas-

ses, which show the highest classification effectivity in

breast cancer, are C11 (66%) and C7 (60%). Yet, both

classes are separable from other classes in hardly any

other histological type (C11: CES = 11%, C7: CES = 9%

over all other histotypes). For histological tumor types

other than breast cancer, the mean classification effectiv-

ity score is 10%. Highest histotype-specific classification

effectivity scores apart from breast cancer are found for

colorectal adenocarcinoma (CES = 13%), ovarian cancer

(CES = 9%), and endometrial carcinoma (CES = 20%),

with CES = 36% for breast cancer being the highest

score, followed by endometrial carcinoma with 20% and

10% for other histotypes. Our results indicate that the

Ciriello classification is to some extent focused on breast

cancer. An overview on class and histotype classification

effectivity scores is also given in Fig. 4.

The highest molecular class discriminability score is that

within breast cancer cases for classes C11 and M1 with a

score of sdis = − 6.38 (p = 2.1e−3, based on a Monte Carlo

simulation with 1e6 random class assignment runs result-

ing in an average discriminability score srand = − 3.5e−4).

Comparing the protein expression of the two classes

shows that the average expression of Cyclin_B1 is signifi-

cantly increased for class C11 cases whereas PR, GATA3,

ER-alpha, Bcl-2, and Caveolin-1 expression values are sig-

nificantly higher for M1 cases. Interestingly, high Cyclin-

B1 and low PR expression indicate a (more aggressive)

basal subtype of breast cancer in the PAM50 profile which

indicates that the proteomic profiles at least partially cor-

relate with gene expression-based subtyping although this

cannot be comprehensively tested here due to the small

panel of available proteins.

The least pronounced but still significant class dis-

criminability is achieved for classes C12 and C5 in breast

cancer (sdis = − 0.31, p = 4.4e−3; srand = − 8.0e−5). Class C12

has significantly increased mean expression/phosphoryl-

ation for Syk, p70S6K, HER2_pY1248, EGFR_pY1068, and

HER2; class C5 is enriched for higher expression of PR,

ER-alpha, GATA3, and Cyclin_D1.

To search for consistent effects of genetic alterations

on protein profiles not just within a histological tumor

type but across tumor types, we evaluate the overlap of

proteins with altered expressions/phosphorylation for

all molecular classes that are discriminable in more

than one histotype. Pairs of molecular classes that are

discriminable in more than one histological tumor type

and therefore candidates for such an effect are, in

principle, classes C11 and M4 in breast cancer and

endometrial carcinoma, classes C11 and M5 in breast

cancer and endometrial carcinoma, and classes C3 and

M5 in breast cancer and endometrial carcinoma. How-

ever, no significant intersection of characteristic pro-

teins between breast cancer and endometrial carcinoma

can be found for any pair of classes, and therefore, no

cross-cancer effects are present for the Ciriello classifi-

cation (complete results are available in the

Additional file 3).

The classification proposed by Hoadley et al. [5] consists

of 13 different classes based on comprehensive proteoge-

nomic information. A molecular class comprises, on aver-

age, 1.5 different histological types (min 1; max 3). Classes

3, 4, 5, 6, 8, 9, and 10 comprise only of cases of a single

histotype. Cases from one histotype are assigned to 1.3

different classes on average (range 1 to 3). Compared to

Ciriello et al., the Hoadley proposal has a substantial over-

lap with the histological tumor types. In particular, five or

more cases were assigned to more than one molecular

class only for lung squamous cell carcinoma, breast can-

cer, and urothelial bladder carcinoma. Because subtests

are conducted for pairs of molecular classes within the

same histotype, only five subtests can be performed. Four

of those five class pairs show significant differences in pro-

tein expression resulting in an overall classification effect-

ivity score (CES) of 80% (urothelial bladder carcinoma

66%, breast cancer 100%, and lung squamous cell cancer

100%). The discriminability score is sdis = − 4.24 (p = 0.0;

srand = 8.1e−5) in breast cancer for molecular classes 3

and 4. The proteins with significant expression differ-

ences responsible for discriminability of classes 3 and 4

are INPP4B, ER-alpha, GATA3, PR, AR, Bcl-2, and

Cyclin_B1. Significant differences in protein expres-

sion (sdis = − 0.58; p = 1.6e−5; srand = 3.5e−5) are also

found for lung squamous cell carcinoma cases

assigned to molecular classes 1 and 2. For urothelial

bladder carcinoma, classes 1 and 8 (sdis = − 1.34; p = 7.0e−5;

srand = 2.6e−5) are discriminable as well as classes 2 and 8

(sdis = − 1.41; p = 0.0; srand = 3.2e−5). Because no pairs of

molecular classes are discriminable in more than one histo-

logical tumor type, no cross-cancer effects can be found.

Heim et al. [15] compute mutational profile similarity

classes across all tumors based on somatic mutations.

For example, a breast cancer case with a mutational pro-

file that is most similar to an ovarian carcinoma case is

assigned the class toOv. On average, cases from one his-

totype are assigned to 5.4 different classes (min 1, max

16), and one class consists of cases from 5.1 different

histological tumor types. As reported in [18] for each

“to-histotype” class, the majority of assigned cases be-

longs to this tumor type (toBRCA consists of 50% breast

cancer cases for instance).

With CES = 2%, the overall classification effectivity

score of this classification is the lowest among all tested

classifications indicating that global comparisons based

on somatic mutations only are not effective in classifying

tumors in a meaningful way if the available protein

profiles are considered relevant. Histotype-specific

classification effectivity scores are highest for breast
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cancer (2.5%), low-grade glioma (10%), gastric cancer

(7%), and thyroid carcinoma (30%). Of all classes in

this classification, toTHCA (the class consisting of

cases that have a mutation profile most similar to thy-

roid carcinoma) had the highest classification effectiv-

ity score of 8%.

For this classification, class discriminability sdis is high-

est between class toLGG (cases that are most similar to

low-grade glioma cases by their mutation profile) and

class toPRAD for low-grade glioma (LGG) (sdis = − 3.26;

p = 0.0; srand = − 6.1e−5; characteristic protein profiles in-

creased in toLGG: p70S6K_pT389; increased in ToPRAD:

YAP_pS127, HER2_pY1248, HER2, EGFR_pY1068,

EGFR_pY1173, Src_pY416, and Cyclin_D1). Also, breast

cancer cases which are similar to gastric cancer can be dis-

criminated from cases that are similar to thyroid carcin-

oma with a discrimination score of sdis = − 2.01 (p = 9.1e−5;

srand = 3.0e−4). For breast cancer cases, similar to gastric

cancer, characteristic proteins are ASNS and Cyclin_B1,

whereas for cases similar to thyroid carcinoma, charac-

teristic proteins with increased expression are Caveolin-1,

Collagen_VI, PR, MAPK_pT202_Y204, and ER-alpha.

Classes toSTAD and toTHCA can also be separated for

gastric cancer with proteins characteristic to class toS-

tad being Cyclin_B1, Caspase-7_cleavedD198, and

Claudin-7 whereas toTHCA cases have significantly in-

creased expression/phosphorylation of NF-kB-p65_p

S536 and Caveolin-1.

A cross-cancer effect is present for the histotypes

breast cancer and gastric cancer as classes toSTAD

and toTHCA show overlapping characteristic proteins

Cyclin_B1 and Caveolin-1 (p = 0.02) for those two his-

totypes. No other cross-cancer effects can be found.

In addition to the three previously published methods,

we evaluated a classification which is based on a nonlin-

ear principal component analysis of mutational profiles

which yielded the genes TP53, TTN, and BRAF as indi-

cators of high-level molecular types (Table 1). While it is

obvious that these genes are not sufficient to establish a

comprehensive molecular classification (particularly with

respect to the controversial gene TTN [19–21]), they

may be regarded as a very basic molecular typing system.

This classification scheme assigns most cases to class 0

(48% of all cases). Classes 2, 4, and 6 (no BRAF muta-

tion) are also very well populated from cases of different

histological tumor types (13%, 20%, 11%). Overall, a

molecular class on average includes cases from 10.75

histotypes (min 0; max 26). Cases of one histotype are

assigned to 2.9 different classes on average (min 1;

max 6).

The evaluation of protein profiles of the same histo-

type assigned to different classes yields an overall classi-

fication effectivity score of 16.8% which is almost as high

as the score of the Ciriello classification despite its sub-

stantially lower complexity. The highest CES is found

for adrenocortical carcinoma with 100%, although in this

case only discriminable classes 0 and 4 have sufficient

cases to be analyzed. Classes 0, 2, 4, and 6 are comprised

of breast cancer cases, and their protein profiles are

evaluated pairwise resulting in six comparisons. Of those

six comparisons, only protein profiles of class 4 and 6 do

not differ significantly. Therefore, the second highest

classification effectivity score is found for breast cancer

with 83.3% (five of six class to class comparisons). The

class with the highest classification effectivity score is

class 0 (no mutation in TP53, TTB, or BRAF) with

25.4%.

The highest class discriminability score for this classifi-

cation is found in discriminating thyroid carcinoma pro-

tein profiles for classes 0 and 1 (sdis = − 2.07; p = 0.0;

srand = − 1.3e−4; characteristic protein profiles: ER-alpha,

PR, GATA3, Bcl-2, and INPP4B increased for class 0—

increased for class 4: Cyclin_B1 and ASNS). For breast

cancer, differences in protein profiles are found between

classes 0 and 6 (sdis = − 1.85; p = 0.0; srand = 1.8e−5; char-

acteristic protein profiles increased in class 0: ER-alpha,

PR, GATA3, Bcl-2, Caveolin-1, AR, and INPP4B—for

class 6: ASNS, Caspase-7_cleavedD198, and Cyclin_B1)

and between class 0 and class 4 (sdis = − 1.64; p = 0.0;

srand = − 7.6e−5; characteristic proteins increased in class

0: ER-alpha, PR, GATA3, Bcl-2, and INPP4B—increased

in class 4: Cyclin_B1 and ASNS).

For this classification, a consistent cross-cancer effect

is found for classes 2 and 4 in both breast cancer and

endometrial carcinoma. Protein profiles of classes 2 and

4 in breast cancer differ significantly for proteins

ER-alpha, GATA3, AR, and ER-alpha_pS118 (increased

in class 2), and Cyclin_B1 and p53 (increased in class 4).

For endometrial carcinoma, protein profiles between class

2 and class 4 differ for ER-alpha, Akt_pS473, Akt_pT308,

E-Cadherin, ER-alpha_pS118, Claudin-7, and CD49b (in-

creased in class 2), and p53, Cyclin_B1, Cyclin_E1, and

Table 1 Genetic complexity reduction-based classification scheme.

The table is a complete illustration of the rules governing which

class a case is assigned by the genetic complexity reduction-based

classification

TP53 mutated TTN mutated BRAF mutated Class

No No No 0

No No Yes 1

No Yes No 2

No Yes Yes 3

Yes No No 4

Yes No Yes 5

Yes Yes No 6

Yes Yes Yes 7
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IGFBP2 (increased in class 4). With an overlap of four char-

acteristic proteins (ER-alpha, ER-alpha_pS118, Cyclin_B1,

and p53) this constitutes a significant (p = 0.0054) cross-

cancer effect.

Actionable genes are related to distinct protein profiles

across cancers

While there are attempts to re-classify cancer based on

comprehensive molecular profiles as outlined above, these

are still largely theoretical considerations. Many so-called

basket trials have already begun to evaluate the utility of

single actionable mutations for targeted treatment selec-

tion independent of the histological tumor type. However,

while some studies show that targeted therapies work in

different histological tumor types (Anti-Her2 treatment in

breast and gastric cancer, NTRK in various cancers [22]),

several recent basket trials have demonstrated that the ef-

ficacy of targeted treatments often depends on the histo-

logical tumor type [13, 14]. Using the same approach as

above, we are systematically evaluating all major action-

able somatic mutations and copy number alterations

against which drugs are approved for clinical use or which

are currently tested in clinical trials with respect to

their effects on proteins across cancers. Because we

evaluate all actionable genes across all histotypes with

sufficient numbers of mutated and wildtype cases, we

both validate our approach by showing that estab-

lished actionable genes show protein profile effects and

identify novel gene-cancer combinations for which

druggability is not yet established but for which we ob-

serve specific protein patterns. This integration of gen-

omic and proteomic data allows us to predict genetic

aberrations that are promising candidates for successful

basket trials particularly if protein profile effects show a

consistent directionality across cancers.

In our analysis, we study genes currently listed as ac-

tionable in the database OncoKB (http://oncokb.org/

#/actionableGenes) that contains information on 476

genes in 65 histological tumor types and 97 related

drugs [23] and that are sufficiently represented in The

Cancer Genome Atlas (TCGA/TCPA). OncoKB lists 12

genes with level 1 evidence (FDA-approved), 11 genes

with level 2 evidence (standard care), 26 genes in level 3

(clinical evidence), and 20 genes with biological evidence

(level 4). We used all actionable genes from evidence levels

1 to 3 with simple somatic mutations (SNPs, insertions, de-

letions) and copy number variations with a sufficient num-

ber of mutated cases (12 actionable genes). A detailed list

of evaluated actionable mutations can be found in Add-

itional file 4: Table S3. We also analyzed actionable fusions

using fusion data from [24], but due to the overall small

number of fusions, there were only four tumor type fusion

combinations that were analyzed. Results are given in Add-

itional file 1, section “Actionable Fusions.”

Overall, our analysis showed for all analyzed 12 action-

able genes (OncoKB evidence levels 1–3) that the muta-

tional status is associated with significant differences in

protein profiles in histotypes for which the respective

targeted drugs are approved or currently being clinically

tested and showed additional mutation-associated pro-

tein profiles in 9 histological tumor types. Moreover, our

analysis identifies consistent cross-cancer effects for 4

genes (FGFR1, ERRB2, IDH1, KRAS/NRAS) in 11 histo-

logical tumor types. Only KRAS/NRAS mutations in

Table 2 Comparison between the results of cell line sensitivity

of cell lines with actionable mutations and TCGA protein profile

discriminability. For each actionable gene-histotype combination,

Y = yes and N = no indicate whether cell lines with actionable

mutations show different drug response than cell lines without

actionable mutation and if protein profiles of actionable TCGA

cases of the specific histotypes have been discriminable from

non-actionable ones

Actionable gene Histotype Drug response Differences in TCGA
protein profiles

BRAF SKCM* Y Y

ERBB2 BRCA* Y Y

STAD* Y Y

LUAD Y Y

PAAD N N

EGFR LUAD* Y Y

FGFR1 LUSC* Y Y

COAD N N

UCEC N Y

SKCM* Y Y

KRAS LUAD Y Y

UCEC N Y

COAD* N N

STAD N N

LUAD Y Y

MET GBM N Y

SKCM N N

STAD Y N

BRCA N Y

KIRP Y Y

KIRC* N N

OV N Y

LUAD Y Y

PIK3CA BLCA Y N

HNSC N N

STAD N Y

*Histotypes where the gene is clinically established as actionable are marked.

Fisher’s exact test shows there is a significant relation between protein

discriminability and drug response (p = 0.0484)

bold: Response to targeted drugs and protein profile differences were

consistently both present (Y) or both absent (N)
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colorectal cancer do not result in discriminable protein

profiles comparing wild-type and mutated cases, whereas

an effect can be observed for thyroid cancer and melan-

oma. To provide further evidence for the significance

of this observation, we tested if protein profile dis-

criminability is more often seen in tumor types

where the gene is actionable than in non-actionable

tumor types. This showed that the actionability of

mutations is highly significantly associated with dis-

criminable protein profiles (Fisher’s exact test p <

0.0001).

To evaluate if the protein profile analysis approach

may contribute to predicting druggability of oncogenic

mutations across cancers, we validated our predictions

made for tumors from TCGA with drug response data

available for cell lines. Our results demonstrate that in

addition to confirming known druggable genes in the

available cell line data, protein profile discriminability

in between presence or absence of oncogenic mutations

is predictive of drug response in cell line data across

cancers (p = 0.048, Table 2). For more details, please

see Additional file 1 section “Cell line analysis” and

Additional file 5: Tables S4 and S5.

BRAF mutations are actionable in melanomas

(OncoKB level 1). Mutations of BRAF are frequent

enough in our data for melanoma (46% cases with

mutation) and thyroid carcinoma (not yet reported by

OncoKB, 56% cases with mutation) for further analysis.

The actionable mutations create discriminable groups of

cases for thyroid carcinoma (sdis = − 2.07; p = 0.0; srand = −

1.0e−4) and melanoma (sdis =− 0.10; p = 4.7e−3; srand = −

1.1e−4). For thyroid carcinoma, the protein expression of

Fibronectin is altered. For melanoma, the levels of

MAPK_pT202_Y204, PTEN, and Bcl-2 are decreased, and

IGFBP2, E-Cadherin, Akt_pT308, and Akt_pS473 are in-

creased. With no significant proteins intersecting between

the two tumor types, no cross-cancer effect can be identi-

fied for BRAF.

CDK4 amplification is actionable for differentiated sar-

comas (OncoKB level 2). CDK4 status testing reveals

discriminable protein profiles for sarcomas and also for

histotypes renal clear cell carcinoma, lung adenocarcinoma,

breast cancer, ovarian carcinoma, thyroid carcinoma,

low-grade glioma, adrenocortical carcinoma, and lung

squamous cell carcinoma (all not yet reported by OncoKB).

For sarcoma, 36% of the cases show CDK4 amplification

and protein profiles are discriminable (sdis = − 0.34; p = 0.0;

srand = − 6.0e−5) with E-Cadherin, Caveolin-1, Akt_pS473,

Cyclin_B1, ER-alpha, Akt_pT308, YAP_pS127, S6_pS240_

S244, and Cyclin_E1 decreased and HSP70, Syk, Lck,

Src_pY416, and Src_pY527 increased in CDK4 amplified

cases. There is no cross similarity for CDK4.

Fig. 5 Analysis of differential effects of actionable mutations on protein profiles across cancers. Protein profiles are compared for cases with and

without the respective actionable mutations. For certain cases, the presence of an actionable mutation has no visible effect on the level or

proteins (red), for other cases (green) protein profiles are distinguishable for mutated vs. wild-type cases. Among these, pairs of four actionable

genes and 11 cancer types exist, where the actionable mutations have a similar/same directional effect on protein profiles across cancers (blue)

suggesting a similar (patho)mechanistic effect of the actionable mutations in these histological tumor types (compare also Fig. 6)
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EGFR mutations are actionable in non-small cell lung

cancer (OncoKB level 1). Lung adenocarcinoma is the only

histological tumor type with enough cases having an action-

able mutation to perform our analysis. Lung adenocarcin-

oma (LUAD) cases with actionable mutation of EGFR are

discriminable from those without by protein profile

(sdis = − 0.44; p = 5.9e−4; srand = 3.1e−5). EGFR_pY1068

levels are increased for cases with the respective muta-

tions, and Claudin-7 levels are decreased among those

cases.

ERBB2/HER2 amplification is actionable in breast cancer

and gastric cancer (level 1 evidence, FDA-approved). We

find that ERBB2/HER amplification status significantly in-

fluences protein expression profiles not only in breast and

gastric cancer but also in lung squamous cell carcinoma

and lung adenocarcinoma (in conformity with OncoKB

level 4 data) and other 11 not yet reported histological types

(endometrial carcinoma, renal papillary cell carcinoma, tes-

ticular germ cell tumors, urothelial bladder carcinoma,

renal clear cell carcinoma, colon carcinoma, ovarian carcin-

oma, thymoma, thyroid carcinoma, cervical carcinoma,

head and neck squamous cell carcinoma)—see also Fig. 5

or for details Additional file 3. For ten histological tumor

types (melanoma, esophageal carcinoma, glioblastoma,

mesothelioma, cholangiocarcinoma, rectal adenocarcin-

oma, sarcoma, pancreatic adenocarcinoma, uterine carci-

nosarcoma, low-grade glioma), no influence on available

protein expression profiles is found. The discriminability

score sdis for Her2-amplified breast cancers is sdis = − 0.43

(p = 0.0). The mean random discriminability score (mean

discriminability score for one million random class assign-

ments) is srand = − 6.2e−5. We identify characteristic pro-

teins for ERBB2 amplification: HER2_pY1248, HER2,

ACC1, and EGFR_pY1068 (increased levels in amplified

cases) and Bcl-2 and PR (decreased levels—Fig. 6 illus-

trates in details characteristic proteins for ERBB2, FGFR1,

IDH1, and KRAS-NRAS). For gastric cancer, actionable

cases are discriminable from non-amplified cases (sdis
= − 0.18; p = 6.0e−6; srand = − 5.4e−5). The amplified

cases show a decrease of Caspase-7_cleavedD198 and

STAT5-alpha expression levels and an increase of

HER2, ACC1, ACC_pS79, HER2_pY1248, and

Cyclin_E1 expression levels. For ten pairs of histological

tumor types, a similar change in protein expression —a

cross-cancer effect— is found. Two histological tumor

types in which ERBB2 amplification has a similar impact

on proteins are breast (BRCA) and gastric (STAD) cancers

(p = 2.3e−3). HER2_pY1248, HER2, and ACC1 have sig-

nificantly higher mean levels in ERBB2-amplified cases in

both histotypes. Other pairs of similarly influenced histo-

logical tumor types are lung adenocarcinoma and lung

squamous cell carcinoma (p = 5.9e−6; proteins: Caveolin1,

p70S6K, ACC_pS79, ACC1, Rb_pS807_S811) and breast

cancer and ovarian carcinoma (p = 9.0e−6; proteins:

HER2_pY1248, HER2, ACC1, EGFR_pY1068). For lung

adenocarcinoma, cell line drug response data analysis

shows sensitivity for cell lines with actionable mutation.

This fact correlates to the cross-cancer effect of lung

adenocarcinoma to breast cancer and gastric cancer, for

which ERBB2 is actionable.

For FGFR1 amplification, clinical evidence (OncoKB

level 3) exists on its actionability in lung squamous cell

carcinomas. Our analysis shows that besides lung squa-

mous cell carcinoma, protein expression of amplified

cases is discriminable from non-amplified cases in renal

clear cell carcinoma, testicular germ cell tumors, lung

adenocarcinoma, endometrial carcinoma, breast cancer,

and thymoma (all currently not reported by OncoKB).

For lung squamous cell carcinoma, the protein profiles

of the amplified cases have significant differences from

those without amplification (sdis = − 0.08; p = 4.1e−4;

srand = 1.4e−5). Beta-Catenin, 53BP1, and HER2 are de-

creased in amplified cases whereas 4E-BP1 expression

values are increased. A cross-cancer effect is found be-

tween breast cancer and lung adenocarcinoma with

HER2, HER2_pY1248, and EGFR_pY1068 levels decrease

and 4E-BP1 levels increase associated with FGFR1 amplifi-

cation for both histological tumor types.

Certain FGFR3 mutations are actionable in bladder

cancer (OncoKB level 3). Targetable FGFR3 mutations

are only frequent enough in urothelial and bladder car-

cinoma for our analysis. The protein profiles of cases

with at least one of these mutations are discriminable

from the profiles of those without (sdis = − 0.76; p = 2.7e−3;

srand = − 1.3e−5). E-Cadherin, beta-Catenin, HER2, Ku80,

PTEN, IRS1, and 53BP1 are increased among cases having

one or more specific FGF3 mutation.

IDH1 mutations are actionable in acute myeloid

leukemia, cholangiocarcinoma, and glioma (OncoKB level

3). Specific IDH1 mutations lead to discriminable protein

profiles for low-grade glioma (sdis = − 0.47; p = 0.0;

srand = − 3.1e−6) and glioblastoma (sdis=− 1.59; p= 5.0e−4;

srand=− 1.0e−5). For low-grade glioma cases with an action-

able mutation, protein profiles of EGFR_pY1068, HER2_

pY1248, HER2, IGFBP2, EGFR_pY1173, and STAT5-alpha

are decreased. For glioblastoma IGFBP2, EGFR_pY1068,

HER2_pY1248, Caveolin-1, Akt_pT308, Fibronectin, Col-

lagen_VI, and EGFR_pY1173 are decreased in the group of

mutated cases. Therefore, IGFBP2, EGFR_pY1068, HER2_

pY1248, and EGFR_pY1173 are affected in the same way by

IDH1 mutations in low-grade glioma and glioblastoma, and

we report a cross-cancer effect for those groups.

KIT mutations are actionable in gastrointestinal stro-

mal tumors (OncoKB level 1). For the tested KIT muta-

tions, only testicular germ cell tumors (TGCT) had

enough mutated cases sufficient for our analysis. The

protein profiles of the mutated and wild-type cases are

discriminable (sdis = − 0.90; p = 4.5e−3; srand = − 2.6e−4)
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Fig. 6 Identification of proteins characteristic of cross-cancer effects. Four out of the 12 studied actionable genes were found to have cross-

cancer effects on the level of available protein profiles (compare Fig. 5). Proteins were evaluated for their role in discriminating between wild-type

and mutated actionable genes. Bold border outlines indicate statistically significantly characteristic proteins for the given histological tumor type

(rows). Brackets indicate the pairs of histological tumor types for which the actionable mutations show the same directional effects (indicated by

an overlap of characteristic proteins with same directional change). Histotype names with cross-cancer effect are colored blue. For a comprehensive

analysis of characteristic proteins for all actionable genes, see Additional file 1: Figure S5
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with decreased E-Cadherin and Fibronectin expression

in wildtype cases and increased c-Kit, STAT5-alpha, and

Syk expression levels. The results for KIT presented

above are those for mutations typically treated with Ima-

tinib; we also tested mutations treated with other

KIT-inhibitory drugs yielding similar results.

KRAS/NRAS mutations are therapeutically relevant for

melanomas, colorectal cancer, and thyroid cancer (OncoKB

level 3). Specific KRAS/NRAS mutations are correlated

with differences in protein profiles for melanomas and

thyroid cancer and also for testicular germ cell tumors,

endometrial carcinoma, and lung adenocarcinoma (in

conformity with OncoKB level 4 data). No discrimin-

ability of protein profiles can be found for colon carcin-

oma (sdis = − 5.3e−3; p = 0.43; srand = − 6.2e−3) and rectum

adenocarcinoma (sdis = + 0.16; p = 0.59; srand = 0.027).

KRAS/NRAS mutations in colorectal adenomas are the

only occurrence where we cannot find discriminable pro-

tein profiles between cases that would be treated and

those which would not. For melanoma (sdis = − 0.16;

p = 1.0e−3; and = 5.2e−6) E-Cadherin, Caveolin-1, and

c-Kit expression levels are decreased for mutated

cases, and MAPK_pT202_Y204 is increased. For thy-

roid carcinoma (sdis = − 1.53; p = 0.0; srand = − 3.0e−4),

the level of Fibronectin is decreased in mutated

cases. For lung adenocarcinoma and endometrial car-

cinoma, we observed a cross-cancer effect for KRAS/

NRAS-mutated cases as ATM levels are decreased,

and MAPK_pT202_Y204, Claudin-7, S6_pS235_S236,

and MEK1_pS217_S221 are increased in both histo-

logical tumor types consistently.

MDM2 amplification is actionable in liposarcoma

(OncoKB level 3). Besides sarcoma, the protein profiles of

cases with MDM2 amplification are discriminable from

those with normal copy numbers for renal clear cell car-

cinoma, lung adenocarcinoma, thyroid carcinoma, breast

cancer, ovarian carcinoma, and low-grade glioma (all cur-

rently not reported by OncoKB). Protein levels of sarcoma

cases with MDM2 amplifications are discriminable from

those without, with a dissimilarity score of sdis = − 0.41 (p

= 0.0; srand = − 8.9e−5). Amplified cases show decreased

levels of E-Cadherin, Akt_pS473, Akt_pT308, ER-alpha,

Caveolin-1, S6_pS240_S244, S6_pS235_S236, and

Cyclin_B1 and increased levels of HSP70, Syk, and Lck.

No consistent cross-cancer effect is found.

MET amplification is actionable in non-small cell lung

cancers and renal cell carcinoma (OncoKB level 2). In

addition to these histotypes, we found 11 other histo-

logical tumor types (renal clear cell carcinoma, low-grade

glioma, renal papillary cell carcinoma, colon carcinoma,

thyroid carcinoma, thymoma, sarcoma, lung adenocarcin-

oma, testicular germ cell tumors, prostate adenocarcin-

oma, glioblastoma, breast and ovarian carcinoma) where

MET amplification is associated with a significant change

in protein expression. For lung adenocarcinoma, the dis-

criminability score is sdis = − 0.067 (p = 1.5e−3; srand = 2.0e

−5). Proteins that are characteristic of MET amplification

status are cyclin_E1, ASNS, cyclin_B1, ACC1, Fibronectin,

and ACC_pS79 (increased levels), and c-Kit, Caveolin-1,

and Claudin-7 (decreased levels). MET amplification is

present in renal clear cell carcinoma cases, and protein

profiles of amplified and non-amplified cases can be dis-

criminated (sdis = − 0.18; p = 0.0; srand = − 2.0e−5;

Src_pY527, Bcl-2, beta-Catenin, PTEN, MAPK_pT202

_Y204 are decreased in amplified cases and ACC1,

Cyclin_B1, ASNS, ACC_pS79, and Transglutaminase are

increased). We did not observe any similar effect of MET

amplification on protein expression in other histological

tumor types.

PIK3CA activating mutations are actionable for breast

cancer (OncoKB evidence level 3). Besides breast cancer,

we find an impact on protein profiles for gastric cancer

and endometrial carcinoma. OncoKB level 4 data lists all

available histological tumor types as possibly actionable

for PIK3CA activating mutations. Yet no protein level

effect is found for cervical carcinoma, head and neck

squamous cell carcinoma, lung adenocarcinoma, urothe-

lial bladder carcinoma, esophageal carcinoma, low-grade

glioma, lung squamous cell carcinoma, and uterine carci-

nosarcoma. Breast cancer cases with PIK3CA-activating

mutations are discriminable from those without (sdis = −

0.52; p = 0.0; srand = 6.2e−6) with specific proteins (in-

creased levels) PR, ER-alpha, MAPK_pT202_Y204, Fibro-

nectin, AR, and GATA3 in mutated cases and Cyclin_B1,

Cyclin_E1, ASNS, and HER2 being decreased. As there is

no significant overlap of altered proteins between breast

cancer, gastric cancer, and endometrial carcinoma, no

cross-cancer effect was found.

Discussion

Although clinical parameters still outweigh the relevance

of molecular profiles for predicting patient survival [25],

genomic medicine predicting therapies driven by

next-generation sequencing techniques has started to

transform diagnostics and oncological therapy during

the last decade from a discipline that largely relied on

conventional chemotherapies to one that increasingly

exploits knowledge on therapeutically targetable onco-

genic mechanisms. The view on molecular properties

has questioned the relevance of organ- and tissue-typing

in tumors and led to proposals to focus on molecular ra-

ther than histological concepts of cancer classification.

However, many open questions remain because apart

from mutations with unknown functional effects, it is

often not possible even for oncogenic mutations with

established clinical relevance in one cancer type to trans-

fer knowledge of actionability to another cancer type.

Moreover, even for a given cancer, clinical response to
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therapy targeting a specific mutation strongly varies,

which is likely due to the modulatory influence of the

usually high mutational complexity in tumors.

Because proteins carry out most genetically defined

cellular functions, our computational analysis relates

genetic alterations and histology with protein profiles

to estimate their functional effects and offer a way of

evaluating molecular tumor classifications and action-

able genes across cancers. To this end, we measured

how classes from the four studied molecular classifi-

cations are discriminable on the level of protein ex-

pression and phosphorylation based on a panel of 120

cancer-associated proteins available through The Can-

cer Proteome Atlas. The results showed only a partial

histotype-independence, which is indicated by overall

low classification effectivity scores for those classifica-

tion that rely only on mutational profiles (Ciriello

CES = 17.5%, Heim CES = 2%, genetic complexity

reduction-based classification CES = 16.8%). In con-

trast to this, the classification by Hoadley et al. which

combines genomic and proteomic information shows

CES of 80% indicating that proteins have a substantial

influence. Our results also show that even though a

number of molecular classes of these four molecular

classifications are reflected by the protein profiles, the

characteristic proteins of the different classes are not

identical. This indicates that identical genetic alter-

ations are not translated into protein profiles in the

same way in different histotypes. The only exception

was one cross-cancer effect found in the classification

by Heim et al. where the protein profiles between

classes “toSTAD” and “toTHCA” showed same direc-

tional changes in breast cancer and gastric cancer (of

note, more cross-cancer effects were found for the ac-

tionable gene analysis, see below).

These observations are largely consistent with the re-

sults of the actionable gene analysis which showed spe-

cific protein signatures for 12 actionable genes in the

corresponding cancer types from the OncoKB database.

In addition to showing that our analysis identifies

protein-level effects for known actionable genes and cor-

responding cancer types, our approach also identified

protein-level alterations indicative of potential novel ac-

tionable gene—cancer combinations that are so far un-

known according to OncoKB including level 4 evidence

(biological information). This includes ERBB2/HER2

amplification in endometrial carcinoma, renal papillary

carcinoma, testicular germ cell tumors, urothelial carcin-

oma, renal clear cell carcinoma, colon carcinoma, ovar-

ian carcinoma, thymoma, thyroid carcinoma, cervical

carcinoma, and head and neck squamous cell carcinoma.

For MET amplification, our approach predicts effects for

renal clear cell carcinoma, low-grade glioma, renal pa-

pillary carcinoma, colon carcinoma, thyroid carcinoma,

thymoma, sarcoma, lung adenocarcinoma, testicular germ

cell tumors, prostate adenocarcinoma, glioblastoma, breast

cancer, and ovarian carcinoma; for FGFR1 amplification:

renal clear cell carcinoma, testicular germ cell tumors, lung

adenocarcinoma, endometrial carcinoma, breast cancer,

thymoma; MDM2 amplification renal clear cell carcinoma,

lung adenocarcinoma, thyroid carcinoma, breast cancer,

ovarian carcinoma, and low-grade glioma; BRAF V600:

thyroid carcinoma; CDK4 amplification: renal clear cell

carcinoma, lung adenocarcinoma, breast cancer, ovarian

carcinoma, thyroid carcinoma, low-grade glioma, adreno-

cortical carcinoma, and lung squamous cell carcinoma.

Among the predicted genes, the most promising can-

didates for cross-cancer therapies are ERBB2/Her2,

FGFR1, IDH1, and KRAS because our analysis finds

consistent protein profile changes across histotypes

(ERBB2/Her2 among others breast cancer – gastric

cancer, FGFR1: breast cancer – lung adenocarcinoma,

IDH1: low-grade glioma – glioblastoma and KRAS:

lung adenocarcinoma – endometrial carcinoma) for

these genes. The fact that our approach also identifies

the well-known trans-cancer efficacy of ERBB2/Her2

inhibition in breast and gastric cancer [7, 8] supports

the potential clinical value of our predictions.

Interestingly, actionable genes with copy number alter-

ations showed effects on protein expression for more

histotypes than those with simple somatic mutations

(10.2 affected tumor types on average for amplifications

vs. 2.14 for simple somatic mutations).

To validate our findings, we used drug response data

from cell line repositories. The results show that our

computational proteomic analysis using data from The

Cancer Genome Atlas correctly predicts drug response

in an independent data set of cell lines.

A study also linking proteomic and mutation data by

Akbani et al. [26] clusters cases based on proteomic data,

but clustering is evaluated by survival time. Akbani et al.

also report relations between differences in frequencies of

certain mutations between clusters and the differences in

survival statistics for these clusters. In contrast to this

study, our approach relies on mutational data as clustering

or classification input and evaluates classification based

on proteomic data and is therefore also capable of evaluat-

ing the effect of a single mutation directly.

A limitation of our study is that data on only 120 pro-

teins measured for all cases were available. It cannot be

excluded (and is perhaps even likely) that more compre-

hensive protein profiles would lead to the identification of

additional observable protein-level effects of genetic clas-

sifications because in the currently available profiles, cer-

tain aspects of cellular function are simply not covered.

However, the proteins included in the panel had been se-

lected to represent major cancer-related functional and

signaling pathways such as, for example, DNA damage,
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hormone signaling, and proliferation deduced from a

comprehensive mass spectrometry-based dataset [26].

While this may still lead to a slightly too pessimistic view

on the global molecular tumor classifications, it is there-

fore unclear to what extent the inclusion of more proteins

would add to functionally and clinically relevant informa-

tion. With respect to the actionable gene analysis, our ap-

proach may underestimate the number of potentially

druggable genes, but the fact that it readily identifies many

well-established actionable gene, cancer combinations,

such as, for instance, HER2 amplification in breast and

gastric cancer [7, 8], indicates its validity.

The approach we present facilitates analyses of the rela-

tionship between genomic and proteomic profiles in the

context of different histological tumor types. It is import-

ant to note that the ability of our study to reveal

cross-cancer effects is limited by the molecular classifica-

tions we evaluate here. With the advance of our under-

standing of cancer, improved molecular classifications and

more detailed definitions of the actionability of genes will

become available. The method presented in this study is

independent of those changes and therefore can be also

applied to evaluate future definitions. Future molecular

tumor typing concepts are likely to also include additional

aspects such as intratumoral heterogeneity which will be-

come increasingly important for the interpretation of mo-

lecular profiles [27, 28].

Conclusions

While the current tumor classification system is still largely

based on histology, it will be increasingly complemented by

molecular profiling to meet the requirements of precision

medicine. Our analysis shows that tumor typing solely

based on mutational profiling is incomplete. By evaluating

protein-level effects of genetic aberrations, our approach fa-

cilitates the identification of functionally relevant mutations

and may therefore contribute to predicting actionable mu-

tations across cancers and to guide basket trial design.
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