
Research Article

Computational Analysis Reveals the Association of Threonine
118 Methionine Mutation in PMP22 Resulting in CMT-1A

Chundi Vinay Kumar,1 Rayapadi G. Swetha,1 Anand Anbarasu,1 and Sudha Ramaiah2

1 School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu 632014, India
2Bioinformatics Division, School of Biosciences & Technology (SBST), VIT University, Vellore 632014, India

Correspondence should be addressed to Sudha Ramaiah; sudhaanand@vit.ac.in

Received 31 July 2014; Revised 26 September 2014; Accepted 26 September 2014; Published 20 October 2014

Academic Editor: Paul Harrison

Copyright © 2014 Chundi Vinay Kumar et al. �is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

�e T118M mutation in PMP22 gene is associated with Charcot Marie Tooth, type 1A (CMT1A). CMT1A is a form of Charcot-
Marie-Tooth disease, the most common inherited disorder of the peripheral nervous system. Mutations in CMT related disorder
are seen to increase the stability of the protein resulting in the diseased state. We performed SNP analysis for all the nsSNPs of
PMP22 protein and carried out molecular dynamics simulation for T118M mutation to compare the stability di
erence between
the wild type protein structure and themutant protein structure.�emutation T118M resulted in the overall increase in the stability
of themutant protein.�e superimposed structure showsmarked structural variation between the wild type and themutant protein
structures.

1. Introduction

Charcot-Marie-Tooth (CMT) neuropathies are traditionally
called hereditary motor and sensory neuropathies (HMSNs)
[1]. CMT has two main groups, namely, CMT disease type
1 (CMT1) and CMT disease type 2 (CMT2). Charcot-Marie-
Tooth disease is categorized into twomain groups on the basis
of electrophysiological properties and histopathology: pri-
mary peripheral demyelinating neuropathy or CMT1 and pri-
mary peripheral axonal neuropathy or CMT2. Neuropathies
of CMT1 group are characterized by strictly reduced nerve
conduction paces (less than 38m/sec), segmental demyeli-
nation, and remyelination with onion bulb formations on
nerve biopsy, slowly progressive distal muscle atrophy and
weakness, absent deep tendon re�exes, and hollow feet.
CMT1A inheritance is autosomal dominant [2] and in CMT
type 2 the NCVs tend to remain normal but there is a
reduction in the conduction amplitudes. One per 2,500
individuals has the clinical phenotype of CMT which is a
very common disorder in humans that is inherited [1]. �e
mutation in peripheral myelin protein 22 (PMP22) gene that
is mapped to 17p12-p11.2 is seen to be associated with Charcot
Marie Tooth, type 1A (CMT1A) [3–5]. CMT1A is a form of

Charcot-Marie-Tooth disease, the most common inherited
disorder of the peripheral nervous system [4]. �e average
onset age of CMT1A patients is seen to be +/− 7.3 of 12.2 years.
�e diagnostics of CMT1A patients show nerve conduction
velocity to be as slow as 38m/s [3, 6]. Pmp22 gene encodes
a speci�c integral membrane protein which is a major
component of myelin in peripheral nervous system [7]. �e
PMP22 gene has a causative role in CMT type 1. One or the
other point mutation in PMP22 or a duplication of the region
including PMP22 gene can result in the disease phenotype
[8]. Missense mutations in PMP22 cause variable syndromes
similar to that found with HNPP (heredity neuropathy with
liability to pressure plates), suggesting that they yield a loss of
PMP22 function [9].�e bulk of PMP22missensemutations,
on the other hand, act genetically as autosomal dominants,
proposing that they harvest a gain of PMP22 function. A few
alterations, such as R157W, R157G, and T118M, are autosomal
recessive in nature [10]. A missense mutation at codon 118
of PMP22 gene fabricating a threonine to methionine amino
acid substitution (T118M) has been testi�ed in the context
of familial neuropathy; however, both its clinical importance
and its in�uence on PMP22 function are divisive. �e muta-
tion was originally recognized in a female with severe CMT1
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who was hemizygous for T118M because of a HNPP deletion
at the other allele [11]. Her two sons who inbred the HNPP
deletion had a distinctive HNPP phenotype, while the third
son who inbred T118Mmutation was normal, suggesting that
T118 mutation is recessive. Successively, numerous investiga-
tors identi�ed the T118M mutation in una
ected parents of
neuropathy patients or in compound heterozygotes whose
phenotype was not di
erent from either HNPP of CMT1A.
�e T118M mutation has also been stated in a family in
which the parents had a slight phenotype and carried both a
CMT1A duplication and T118Mmutation, whereas a younger
family member had a more severe disease but carried only
the duplication, telling that T118M is a part loss-of-function
mutation which can mitigate the e
ects of the duplication
[11]. Later the mutation T118M of the PMP22 gene was seen
to be a causative mutation in many CMT1A cases [8, 11–13].

Nonsynonymous single nucleotide polymorphisms (nsS-
NPs) are generally identi�ed to have the potential to alter the
way the corresponding protein functions, either directly or
via disruption of the structures [14]. InNCBI dbSNPdatabase
[15], there are about 41,744,328 human SNPs that have been
validated and submitted.

Making use of computational platforms for the predic-
tion of disease-associated nsSNPs has become a very com-
mon methodology. �e identi�cation of the deleterious and
disease-related mutations was initiated by several research
articles, hence predicting the pathogenic nsSNPs in correla-
tionwith their functional and structural damaging properties
[16–18]. In this study our main focus is to prioritize the path-
ogenic alleles in the PMP22 gene and their structural con-
sequence at molecular level. Various tools such as SIFT [19],
PolyPhen2 [20], PMUT [21], SNP&GO [22], PhD-SNP [23],
and MutPred [24] are used for prioritizing the deleterious
disease-associated nsSNPs from the obtained SNP datasets
from the NCBI dbSNP database. �e alleles with very high
structural damaging probability can possibly lead to a major
loss of PMP22 functionality. SNPs which showed positive
implication of pathogenicity by all the used tools were
considered as strong candidates for structural analysis. SNPs
with intermediate pathogenicity implications were taken out
from the study.

Molecular dynamics simulation of the wild type PMP22
protein and the most deleterious mutant to examine the
molecular and structural basis of predicted disease-associ-
ated nsSNPs is performed. For the protein trajectories and
atomic interaction analysis, g rms, g rmsf, g hbond, g sas,
and g gyrate, GROMACS inbuilt tools were used successfully.
Weused g covar and g anaeigmodules ofGROMACSpackage
to conduct the principle component analysis (PCA) and
estimate the �exibility of the structure.

2. Materials and Methods

2.1. Dataset. Data on human PMP22 gene was collected from
OMIM [25] and Entrez gene on National Center for Biotech-
nology Information (NCBI) website.�e SNP information of
PMP22 was got from the BioMed Research International 3
dbSNP database [15].�e amino acid sequence of this protein
was taken from the UniProt database (UniProt ID: Q01453).

2.2. Disease-Associated SNP Prediction. �e presence of sin-
gle nucleotide polymorphism may lead to the deleterious
consequence in its 3D structures and hence may lead to dis-
ease-associated phenomena. We used SIFT [19], PolyPhen2
[20], PMUT [21], SNP&GO [22], PhD-SNP [23], and Mut-
Pred [24] to examine the disease-associated nsSNP in the
PMP22 protein coding region.

Homology-based approach was made use of by the SIFT
server to classify amino acid substitutions. In the SIFT server,
if the prediction score of the mutation was >0.05 then that
particular mutation was considered to be deleterious and if
the prediction score of themutationwas<0.05 themutation is
considered to be tolerated [19]. �e combination of sequence
and structure-based attributes is the base of PolyPhen 2.0
server and this server generally uses näıve Bayesian classi�er
for the identi�cation of an amino acid substitution and
the impact of mutation. �e PolyPhen 2.0 server classi�es
the output levels as probably damaging and possibly dam-
aging which are done as functionally signi�cant (≥0.05)
and benign level being classi�ed as tolerated (≤0.05) [20].
PMUT is a neural network-based program that is trained
on large database of neutral and pathological mutations.
�ree di
erent parameters are used in PMUT that include
mutation descriptors, solvent accessibility, and residue and
sequence properties. �ese properties are used to calculate
the pathogenicity indexes of the given mutations ranging
from 0 to 1. �e mutations with index score greater than 0.5
are predicted to be pathologically signi�cant [21].

�e nsSNPs of the PMP22 gene that were commonly
predicted to be deleterious and damaging from these three
servers were considered for further analysis.We furthermade
use of SNP&GO, PhD-SNP, and MutPred tools to exam-
ine the disease-associated nsSNPs. �e data retrieval sources
for SNP&GO include protein sequence, evolutionary infor-
mation, and functions as encoded in the gene ontology terms
[22]. PhD-SNP is a SVM based classi�er, trained over the
million amino acid polymorphism datasets making use of
the supervised training algorithm. It predicts whether the
given amino acid substitution is disease associated or neutral
along with the reliability index score [23]. MutPred was
commonly used as aweb based tool. It was usedwith themain
focus of predicting the molecular changes associated with
amino acid variants. MutPred uses SIFT, PSI-BLAST, and
Pfam pro�les along with some structural disorder prediction
algorithms, including TMHMM, MARCOIL, I-Mutant 2.0,
B-factor prediction, and DisProt. On combining the results
and prediction of all the six servers, the accuracy of predic-
tion rises to a greater extent and �nally the most disease-
associated mutations are �ltered.

2.3. Molecular Dynamics and Simulation. �e simulation of
the wild type and mutant PMP22 proteins was performed
using GROMACS 4.5.5 so�ware [26]. �e force �eld used
for simulation is Gromos96 53a6 [27, 28]. �e structures
were solvated using the simple-point-charge (SPC) water
box with dimension of 52.0 Å with molecules of water. At
physiological pH protein was charged positively; hence, to
make the simulation system electrically neutral, the system
was neutralized by adding counter ions (Cl− orNa+). Steepest
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descentmethodwas used to do energyminimization for 1000
steps. A�er minimization, three di
erent steps were used in
the MD simulation, namely, heating, equilibration, and pro-
duction. NVT ensemble (constant number of particles, vol-
ume, and temperature) was used (300K and 1.0 atm) [29]
followed by the NPT ensemble (constant number of particles,
pressure, and temperature) which was performed for 1000 ps
at 300K. �e production simulation was carried out at
300K for 50 ns wild type and mutant of PMP22 protein. All
the covalent bonds were constrained by using the LINCS
(Linear Constraint Solver) algorithm [30]. �e electrostatic
interactions were treated using Particle Mesh Ewald (PME)
method [31]. �e cuto
 radii for coulomb and van der Waals
interactions were set to 10.0 and 14.0 Å, respectively. �eMD
trajectories, which were saved every 2.0 ps, were analyzed
using GROMACS.

�e potential of each trajectory produced was thoroughly
analyzed a�er MD simulations. �e MD trajectories were
analyzed using g rms, g rmsf, g hbond, and g gyrate ofGRO-
MACS utilities [32] to get the root-mean-square deviation
(RMSD), root-mean-square �uctuation (RMSF), radius of
gyration (Rg), and the number of H bonds formed between
the ligand and proteins. �e di
erences in kinetic, potential,
and total energies, pressure, and temperature were computed
as a function of simulation time to see whether the systems
obey NVT or NPT ensemble throughout the simulation.
�e total number of hydrogen bonds was calculated to
understand the di
erence in ligand-protein stability. SASA
was performed to understand the solvent accessible surface
area. �e trajectories were analyzed by using the tools from
GROMACS distribution. All the graphs were generated using
the XMgrace tool [33]. Essential dynamics (ED) [34] was
performed for all the trajectories according to principal com-
ponent analysis (PCA). �e �rst two eigenvectors (principal
components PC1 and PC2) with largest eigenvalues were used
to make 2D projection for each of independent trajectories.
For the simulation of both wild type and mutant PMP22,
C� atoms were included in the de�nition of the covariance
matrices for the protein. Both the protein structures were
subjected to online tools to predict protein structures.

3. Results

3.1. Protein Modeling. �e PMP22 protein structure was
modeled using I-tasser [35, 36]. �e structure validation of
modeled protein was performed (Figure 1) and the results
suggest that the modeled PMP22 protein has the quality of
NMR structures.

3.2. Prediction of Deleterious nsSNPs Using SIFT, PolyPhen2,
and PMUT Programs. Out of 26 input polymorphic datasets,
20 nsSNPs are found to be “damaging” (0.5 to 1.000) to pro-
tein structure and function and the remaining 6 nsSNPs
are characterized as benign by PolyPhen 2.0. Among these
20 deleterious nsSNPs, 8 SNPs are reported to be highly
deleterious with PolyPhen2 score of 1.000 (Table 1). In SIFT,
13 mutations are predicted to be deleterious with tolerance
index ≥ 0.05 (Table 1). Among these, 6 mutations (R157W,
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Figure 1: Protein structure validation using ProSA server.

S72L,A67T, S22F,W28R, andY136S) are reported to be highly
deleterious with SIFT score of 0.00 (Table 1). Furthermore, 13
mutations are identi�ed as deleterious and damaging in SIFT
and PolyPhen 2.0 server (Table 1) which also showed a very
strong correlation between the prediction methodologies
implemented by these two servers. SIFT and PolyPhen2 are
seen to have better performance in identifying functional
nsSNPs among other in silico tools [37].�e accuracy of SIFT
and PolyPhen2 is further validated through our results, which
makes these tools more suitable for the prediction. All the
nsSNPs submitted to PolyPhen 2.0 and SIFT are also analyzed
using PMUT server. 15 mutations are predicted to cause
pathological e
ect by PMUT. �e remaining 11 mutations
show neutral e
ect. From the 26 input polymorphic datasets,
we �ltered 11 (R157W, L16P, S79C, T118M, M69K, H12Q,
G150C, S22F, W28R, D37V, and Y136S) mutations which are
predicted to be deleterious as well as damaging using SIFT,
PolyPhen2, and PMUT servers (Table 1).

3.3. Prediction of Disease-Associated nsSNPs. Total 11 nsSNPs
are commonly predicted in SIFT, PolyPhen 2.0, and PMUT.
To these 11mutations, we applied PhD-SNPwhich is based on
support vector machine tool to further classify the predicted
deleterious nsSNPs as disease associated. In the PhD-SNP
server, all 11 mutations (R157W, L16P, S79C, T118M, M69K,
H12Q,G150C, S22F,W28R,D37V, andY136S) are predicted to
be disease associated (Table 2). In SNP&GO, 10 (R157W, L16P,
T118M,M69K, H12Q, G150C, S22F,W28R, D37V, and Y136S)
nsSNPs are predicted to be disease associated (Table 2).
Overall, 10 mutations (R157W, L16P, T118M, M69K, H12Q,
G150C, S22F, W28R, D37V, and Y136S) are predicted as
most disease-associated mutations by both PhD-SNP and
SNP&GO (Table 2). �ese 10 mutations are further analyzed
by MutPred tool to predict the SNP disease-association
probability and probable change in themolecularmechanism
in the mutant. We found T118M to be highly deleterious with
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Table 1: nsSNPs of PMP22 gene analyzed by three computational methods: PolyPhen 2.0, SIFT, and PMUT.

SNP ID
SIFT PolyPhen2 PMUT

Mutation Score Prediction PSIC Prediction Score Prediction

rs28936682 R157W 0.00 Deleterious 1.000 Probably damaging 0.9963 Pathological

rs104894617 L16P 0.03 Deleterious 0.928 Possibly damaging 0.7069 Pathological

rs104894618 S79C 0.02 Deleterious 0.992 Probably damaging 0.5895 Pathological

rs104894619 T118M 0.00 Deleterious 1.000 Probably damaging 0.6326 Pathological

rs104894620 M69K 0.01 Deleterious 0.994 Probably damaging 0.8504 Pathological

rs104894621 S72L 0.00 Deleterious 0.999 Probably damaging 0.4180 Neutral

rs104894622 H12Q 0.01 Deleterious 0.546 Possibly damaging 0.5511 Pathological

rs104894623 A67T 0.00 Deleterious 1.000 Probably damaging 0.1614 Neutral

rs104894624 G150C 0.02 Deleterious 1.000 Probably damaging 0.9706 Pathological

rs104894625 S22F 0.00 Deleterious 0.960 Probably damaging 0.8126 Pathological

rs104894626 W28R 0.00 Deleterious 1.000 Probably damaging 0.9771 Pathological

rs104894627 D37V 0.01 Deleterious 1.000 Probably damaging 0.6415 Pathological

rs11545341 Q86K 0.12 Tolerated 0.997 Probably damaging 0.5282 Pathological

rs112232836 K92R 0.27 Tolerated 0.998 Probably damaging 0.0661 Neutral

rs112651887 T44A 0.51 Tolerated 0.001 Benign 0.0557 Neutral

rs138515303 I9V 0.35 Tolerated 0.041 Benign 0.0326 Neutral

rs140763467 G133S 0.06 Tolerated 1.000 Probably damaging 0.8228 Pathological

rs141094419 A135T 0.09 Tolerated 0.001 Benign 0.6424 Pathological

rs147114400 L90V 0.08 Tolerated 0.476 Possibly damaging 0.2900 Neutral

rs148822354 A115V 1.00 Tolerated 0.005 Benign 0.4346 Neutral

rs189205303 T89N 0.11 Tolerated 0.997 Probably damaging 0.4841 Neutral

rs201255121 P144T 0.31 Tolerated 1.000 Probably damaging 0.5560 Pathological

rs368223794 A106T 0.30 Tolerated 0.865 Possibly damaging 0.2658 Neutral

rs368908933 H51R 0.33 Tolerated 0.000 Benign 0.1470 Neutral

rs373322590 N32S 0.47 Tolerated 0.011 Benign 0.1235 Neutral

rs375449671 Y136S 0.00 Deleterious 0.636 Possibly damaging 0.7302 Pathological

Table 2: �e disease associated SNPs are predicted from PHDsnp
and SNP&GO.

SNP ID Mutations
PHDsnp SNP&GO

RI score E
ect Score E
ect

rs28936682 R157W 8 Disease 8 Disease

rs104894617 L16P 6 Disease 6 Disease

rs104894618 S79C 6 Disease 0 Neutral

rs104894619 T118M 7 Disease 6 Disease

rs104894620 M69K 9 Disease 8 Disease

rs104894622 H12Q 6 Disease 7 Disease

rs104894624 G150C 6 Disease 8 Disease

rs104894625 S22F 6 Disease 7 Disease

rs104894626 W28R 9 Disease 9 Disease

rs104894627 D37V 9 Disease 8 Disease

rs375449671 Y136S 7 Disease 8 Disease

general probability (�) scores of 0.948 and it is predicted to
induce the loss of sheet at T118 with (�) score of 0.0457, show-
ing high con�dence hypothesis. Finally, we screened T118M
as the most deleterious and disease-associated mutation in
PMP22 gene (Table 3). �is prediction could be endorsed

with the noticed experimental data [8, 11–13]. We explored
T118M mutation in detail.

3.4. RMSD. �eMD simulation resulted in the generation of
various plots. One among them is the RMSD plot.�e RMSD
backbone value for the wild type protein structure and the
mutant is calculated against the time simulation between 0
and 50000 ps.�eRMSD is a crucial parameter to analyze the
equilibration of MD trajectories. It is estimated for backbone
atoms by using the wild type andmutant structure of theMD
simulations.�e RMSD of the backbone atoms relative to the
corresponding starting structures are calculated.

3.4.1. RMSD for Wild Type Protein Structure. In the wild
type protein structure we can notice that the average RMSD
trajectory value ranges between 0.17 nm and 0.45 nm. �is
protein structure shows deviations throughout the simulation
time period. A�er 18500 ps increase in the RMSD trajectory
value of the wild type protein structure to 0.45 nm is clearly
observed. A�er 34200 ps the RMSD value of this structure is
seen to drop to 0.37 nm. A slight raise of RMSD value can be
noticed at 46000 ps a�er which it is constant till the end. �e
RMSD plot of the wild type protein structure can be viewed
in Figure 2.
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Table 3: �e � score, � score, molecular variations, and prediction reliability calculated fromMutPred server.

SNP ID Mutations � score � score MutPred Prediction reliability

rs28936682 R157W 0.887 0.0022 Loss of disorder Very con�dent hypotheses

rs104894617 L16P 0.939 0.0826 Loss of stability No reliable inference

rs104894618 S79C 0.936 0.0098 Gain of catalytic residue Very con�dent hypotheses

rs104894619 T118M 0.948 0.0045 Loss of sheet Very con�dent hypotheses

rs104894620 M69K 0.943 0.0325 Loss of stability Con�dent hypotheses

rs104894622 H12Q 0.894 0.0865 Gain of catalytic residue No reliable inference

rs104894625 S22F 0.873 0.0028 Gain of disorder No reliable inference

rs104894624 G150C 0.966 0.0510 Loss of glycosylation at S149 No reliable inference

rs104894626 W28R 0.951 0.0344 Loss of sheet Con�dent hypotheses

rs104894627 D37V 0.957 0.0521 Loss of disorder No reliable inference

rs375449671 Y136S 0.758 0.0130 Loss of stability Actionable hypotheses
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Figure 2: Backbone RMSD are shown as a function of time for
wild type (black) and mutant (red) PMP22 protein motor domain
structures at 300K.

3.4.2. RMSD for Mutant Protein Structure. In the mutant
structure the average RMSD trajectory value ranges between
0.14 nm and 0.42 nm. �e mutant protein structure is seen
to be almost constant till the end. Slight deviations in this
protein structure can be noticed at 15000 ps, 17000 ps, and
22000 ps. A slight rise in the RMSD value of this structure
is noticed at 48500 ps a�er which the RMSD trajectory value
of this protein structure is seen to be constant till the end of
the simulation time period.

�e RMSD trajectory is used to predict the stability
of the protein. Higher RMSD value implies low stability
of the protein structure. From the RMSD results of both
wild and mutant protein structures, the mutant protein
structure shows more stability when compared to the wild
type protein structure. Both the trajectories show almost the
same trajectory value till 12000 ps a�er which the mutant
structure has become stable making the wild type structure
comparatively unstable [11, 38, 39]. �e result of stability
obtained in this study is similar to the experimental evidence
of T118M causing CMT 1A [11].
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Figure 3: RMSF of the backbone CAs of C� atoms of wild type
(black) and mutant (red) PMP22 protein motor domain versus time
at 300K.

3.5. RMSF. With the aim of determining whether the muta-
tion a
ects the dynamic behavior of residues, the RMSF
values of wild type and mutant structures were compiled
(Figure 3). �e RMSF with respect to the average MD simu-
lation conformation is used as a mean describing �exibility
di
erences among residues. �e backbone RMSF of each
residue of wild type andmutant class PMP22 are calculated in
order to analyze the �exibility of backbone structure. Higher
RMSF value shows more �exible movements whereas low
RMSF value shows limited movements during simulation in
relation to its average position.

3.5.1. RMSF forWild Type Protein Structure. �eRMSF range
of the wild type protein structure is between 0.09 nm and
0.52 nm.High �uctuation in this protein structure can be seen
throughout the simulation time period. High �uctuation can
be noticed at residues positions 26, 33, 45, 60, 92, 114, 118, 131,
and 155. �e highest RMSF �uctuation is at residue number
92 with a �uctuation of 0.52 nm.
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3.5.2. RMSF of Mutant Protein Structure. �e RMSF range of
themutant protein structure is between 0.06 nmand 0.39 nm.
From the graph we can clearly notice that there is an overall
decrease in the �uctuation of the mutant protein residues
when compared to the wild type structure. High �uctuation
can be noticed in residues numbers 29, 32, 55, 91, 92, 118,
126, and 160. �e highest residual �uctuation in this protein
structure can be noticed at residue number 92 with the
�uctuation of 0.39 nm.

From the RMSF plot in Figure 3 we can notice that the
wild type protein structure shows very high �uctuations at
almost all residual positions when compared to the mutant
protein structure. �e terminal residues of both the protein
structures show high �uctuations. �e RMSF result shows
that the mutant protein structure is more stable than the
wild type structure. �us, the result of T118M mutation in
the PMP22 gene causes an overall increase in stability of
the mutant type protein structure when compared to the
wild type protein structure.�is can be correlated with CMT
related disorder [11].

3.6. Radius of Gyration. We performed Rg in order to under-
stand the levels of compaction of the native and mutant class
PMP22. �e Rg is generally de�ned as the mass weighted
root mean square distance of a collection of atoms from their
common center of mass. Hence, this analysis gives us the
overall dimensions of the protein.

3.6.1. Rg for Wild Type Protein Structure. �e Rg range of the
wild type protein structure is between 1.67 nm and 1.77 nm.
At 5500 ps, we can see an increase in the Rg value to 1.76 nm.
From 5500 ps till 14500 ps, there is a continuous decrease in
the Rg value of this protein structure. A decrease in the Rg
value can be noticed at 22200 ps and 24700 ps a�er which the
Rg value of this protein structure is almost constant till the
end.

3.6.2. Rg for Mutant Protein Structure. �e Rg range for
mutant protein structure is between 1.63 nm and 1.76 nm. A
decrease in the Rg value of this protein structure is clearly
noticed from 13000 to 16000 ps and 27000 to 32500 ps. A very
great increase in the Rg value for this protein structure can
be noticed from 44000 ps till the end of the simulation time
period.

From the Rg plot we can say that the wild type protein
structure has a greater Rg value when compared to the wild
type protein structure making the wild type protein structure
relatively unstable when compared to the mutant protein
structure. �is result can be supported from the PCA plot
obtained. �e Rg plot can be noticed in Figure 4.

3.7. Hydrogen Bonds. H bonds play a vital role in molecular
recognition and the overall stability of the protein structure.
Intermolecular H bond is analyzed for the wild type and
mutant structures of PMP22 protein during the simulation
period.

3.7.1. H Bond for Wild Type Protein Structure. From the
analysis, the di
erences in protein-solvent interactions are

0 10000 20000 30000 40000 50000

Time (ps)

1.6

1.65

1.7

1.75

1.8

T118

T118M

R
g

(n
m

)

Figure 4: Radius of gyration of C� atoms of wild type (black) and
mutant (red) PMP22 protein motor domain versus time at 300K.

observed in the wild type andmutant structures.�e number
of hydrogen bonds in the wild type protein structure is lesser
than the mutant protein structure throughout the simulation
time period. �e lesser number of hydrogen bonds in wild
protein structure makes it relatively unstable.

3.7.2. H Bond for Mutant Protein Structure. �e mutant pro-
tein structure has higher number of hydrogen bonds when
compared to the wild type protein structure throughout the
simulation time period. At 16000 ps, 24500 ps, and 36500 ps
we can see dense number of hydrogen bonds in this protein
structure.

We know that the number of hydrogen bonds in a protein
structure determines its stability. Here, the mutant protein
structure is relatively stable compared to thewild type protein
structure due to higher number of hydrogen bonds.�is plot
can be viewed in Figure 5.

3.8. Solvent Accessible Surface Area. SASA is to understand
the solvent accessibility of the wild type and mutant PMP22
structures. SASA plot accounts for bimolecular surface area
that is assessable to solvent molecules.�e rise in SASA value
denotes relative expansion.

3.8.1. SASA for Wild Type Protein Structure. �e SASA range

of this protein structure lies between 59 nm2 and 74 nm2.
At 11500 ps we can see a SASA value of 72 nm2. �ere is a
drop in the SASA value of this protein structure between
23000 ps and 30500 ps. From 31000 ps to 40000 ps we can
see noticeable de�ection in the SASA value. At 40800 ps, we
can see the lowest SASA value of 59 nm2. From 44000 ps
till the end of the simulation time period the SASA value of
this protein structure is constant. �e amount of the PMP22
protein is shown to decrease in a previously performed
experimental studywhich is exactly correlatedwith our SASA
results [11].

3.8.2. SASA for Mutant Protein Structure. �e SASA range

of this protein structure lies between 60 nm2 and 77 nm2. At
17500 ps, we can see an increase of the SASA value to 70 nm2
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Figure 5: Intermolecular hydrogen bonds in wild type (black) and
mutant (red) PMP22 protein versus time at 300K.
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Figure 6: Solvent accessible surface area (SASA) of wild type (black)
and mutant (red) PMP22 protein versus time at 300K.

a�er which it is almost constant till the end of the simulation
time period. �e resulting of the mutation showed decrease
in the amount of proteinwhich says that it shows a decrease in
the solvent accessible surface area that results in an increase
in stability of the protein. �e SASA plot can be viewed in
Figure 6. From the graph, we can see that the SASA value of
the mutant protein structure is overall greater than the wild
type protein structure making the mutant structure more
stable [11].

3.9. Principle Component Analysis. PCA is a technique that
can sort out all of the locally restricted �uctuations and
vibrational motions. An improved outlook of the dynamical
mechanical properties of the investigated method has been
obtained by using essential dynamics (ED) analysis.�e large
scale collectivemotions of the wild type structure andmutant
structure using EDanalysis are determined to further support
our MD simulation results. �e con�ned �uctuation and
structural motion of the wild type and mutant structures
are determined using ED analysis. �e dynamics of all the
structures are best achieved via characterization of their
phase space behavior. �e eigenvectors of the covariance
matrix are called its principle components.�e change of par-
ticular trajectory along each eigenvector is obtained by this
projection. �e spectrum of the corresponding eigenvalues
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Figure 7: Projection of the motion of the wild type (black) and
mutant (red) PMP22 proteins in phase space along the �rst two
principal eigenvectors at 300K.

represents that the structuralmotion of the system is basically
con�ned within the �rst two eigenvectors. �e projections
of trajectories obtained at 300K on the �rst two principal
components (PC1 and PC2) showed the structure motion
of the wild type and mutant proteins in phase space. More
distribution of dots indicates more conformational changes
in protein structure. �e internal motions of mutant PMP22
represented a subspace whose dimension ismuch bigger than
thewild type protein. It is revealed that the concertedmotions
increased in the mutant PMP22 and are in agreement with
MD analysis.

Firstly, the clusters are well de�ned in mutant than wild
type. Secondly, wild type covered a larger region of phase
space along both PC1 and PC2 plane than mutant and it
is depicted in Figure 7. Our observation thus corroborates
with the idea of higher �exibility of wild type than mutant at
300K.�e overall �exibility of two proteins is also calculated
by using the trace of the diagonalized covariance matrix
of the C� atomic positional �uctuations. We have obtained
the following values for wild type protein which is 5.46711

(nm2) and for themutant protein which is 3.1486 (nm2) again
con�rming the overall increased �exibility of wild type than
mutant at 300K. Our results reported that the substitution of
T118M in PMP22 has increased the structural stability [11].

A�er molecular dynamics simulation, we superimposed
the two protein structures obtained a�er MD simulation.
�ere is an observable di
erence between the two structures.
�e superimposed backbone protein structure can be viewed
in Figure 8. In the mutant protein structure, threonine which
is a polar, nonaromatic hydroxyl and is hydrophilic in nature
is replaced by methionine. Methionine is a sulfur containing,
nonpolar hydrophobic amino acid. �ese two amino acids
have di
erent biochemical properties. Hence the mutation
results in the changes in structure a�er MD simulation. �e
superimposed protein structures can be seen in Figure 9.

4. Discussion

�e correlation between the genotype and phenotype is gen-
erally explained by using genome sequencing and its analysis.
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Figure 8: Superimposed backbone protein structures of wild type
and mutant T118M a�er 50 ns.

Figure 9: Superimposed protein structures of wild type andmutant
T118M a�er 50 ns.

�e occurrence of disease is possible to be predicted by
observations on the e
ect of point mutations at the protein
level. �ese observations can be done by using advanced
methodology in computational biology and the consequence
of deleteriousmutations can be predicted.�e computational
study to determine the genotypic-phenotypic association
and possible pathogenic consequences at disease level is not
carried out to higher accuracy level. To examine the structural
consequence and the stability of the above predicted CMT1A
associated nsSNP we performed molecular dynamics simu-
lation of the prioritized mutant and the wild type PMP22
protein. �is study provided us a detailed idea about the
structural aspects of T118M PMP22 mutation and its e
ect
on CMT1A and it also gave clues to carry out computational
studies using the computational platforms to predict CMT1A
associated nsSNPs with a relatively higher accuracy level.
A total of 26 SNPs got from dbSNP were selected for this
study which were subjected to SIFT, PolyPhen2, PMUT,
PhD-SNP, SNP&GO, and MutPred to examine and predict
the CMT1A associated mutations with a relatively higher
accuracy. Initially, out of the 26 inputs, 11 were predicted to
be deleterious using SIFT, PolyPhen2, and PMUT (Table 1).

Further, 10 (R157W, L16P, T118M, M69K, H12Q, G150C,
S22F, W28R, D37V, and Y136S) were predicted to be disease
associated using PhD-SNP and SNP&GO (Table 2). T118M
with a (�) score of 0.948was screened to be highly deleterious
using theMutPred server (Table 3). Since T118M showed high
con�dent hypothesis, we carried out MD simulation for this
mutation. We highlighted the RMSF of backbone carbon
by trajectory analysis obtained through the performed MD
simulation. H bond analyses were performed to understand
the �exibility behavior of residues. We also calculated the
RMSD for all the C� atoms from the initial structure,
which were considered a central criterion to measure the
convergence of the protein system concerned. In Figure 2,
both the trajectories show almost the same value till 12000 ps
a�er which the mutant structure has become stable making
the wild type structure comparatively unstable. �e Rg is
known to be de�ned as the mass-weighted root mean square
distance of a collection of atoms from their common center of
mass. Hence, this analysis gives us an insight into the overall
dimensions of the protein.�eplot of radius of gyration of C�
atoms of the protein versus time at 300K is shown in Figure 4.
We observed a slight rise in radius of gyration in wild type
structure as compared to themutant which further supported
our hypothesis.�eRg results can be correlatedwith the PCA
results obtained. Mutant structure exhibited more �exibility
compared to wild type. To investigate the �exible behavior of
binding residues, we plotted the RMSF of C� atoms between
the residues. Mutant structure residues were found to exhibit
small �exibility as compared to wild type. Intermolecular
H bond was calculated for wild type and mutant structure
during the simulation time. Notable di
erences in protein-
solvent interactions were evident in wild type and mutant
structure in Figure 5. More intermolecular H bond in the
mutant structure might help to maintain its rigidity while a
slightly higher tendency of the wild type to be involved in
hydrogen bonding with solvent makes it more �exible. On
the basis of RMSF observation and H bond analysis, it is
con�rmed that the occurrence of the mutation led to a less
�exible conformation due to the formation of higher number
of hydrogen bonds. On the basis of the molecular dynamics
simulation results we got a reverse conclusion regarding
the �exibility and the stability of the wild type and mutant
structure [38].�eprojection of trajectories obtained at 300K
onto the �rst two principal components (PC1, PC2) showed
the motion of two proteins in phase space. On these projec-
tions, we saw clusters of stable states. Two features were very
apparent from these plots. We have obtained the following

values for wild type protein which was 5.46711 (nm2) and for
the mutant protein which was 3.1486 (nm2) again con�rming
the overall increased �exibility of wild type than mutant at
300K. �e T118M mutant protein was seen to be more stable
when compared to the wild type protein structure which was
correlated with published literature on PMP22 protein. �e
T118M mutant protein structure exhibited loss of sheet even
while beingmore stable than the wild type protein. From this,
we can say that the increase in stability of the mutant protein
structure leads to CMT1A which has been proved in previous
experimental study, which suggests that the T118M protein
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functions normally but results in the reduction of the protein
[11]. �is is proved in the Rg and PCA graphs in our study.

5. Conclusion

CMT neuropathies are traditionally called hereditary motor
and sensory neuropathies (HMSNs). CMT1A is associated
with the mutation in the PMP22 gene. One or the other point
mutation in PMP22 can result in the disease phenotype. �is
gene is seen to change its behavior at multiple point mutation
positions. Change in function is observed which has been
proved to cause CMT1A in several cases. Any disturbance in
these positions leads to CMT1A which is proved previously
through experimental studies. �e most common mutation
in this gene that causes CMT1A is T118M. �is mutation
is found to cause CMT1A in several cases. In this study
we proved the gain of stability in the PMP22 gene due to
T118M mutation. �is gain in stability leads to CMT1A. We
also showed the conformational changes between the two
structures as evidence of structural changes in the PMP22
protein due to the mutation T118M. A clear gain of stability
is seen in the RMSD and Rg plots of this study. �e gain in
the number of H bonds also adds evidence to the conclusion.
We assume this to be the �rst computational report on the
stability of PMP22 mutation in CMT1A; it can be useful for
further research.
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