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Abstract

Background: The Coronavirus Disease 2019 (COVID-19) pandemic has infected over 10 million people globally with
a relatively high mortality rate. There are many therapeutics undergoing clinical trials, but there is no effective vaccine
or therapy for treatment thus far. After affected by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2), molecular signaling pathways of host cells play critical roles during the life cycle of SARS-CoV-2. Thus, it is
significant to identify the involved molecular signaling pathways within the host cells. Drugs targeting these molecu-
lar signaling pathways could be potentially effective for COVID-19 treatment.

Methods: In this study, we developed a novel integrative analysis approach to identify the related molecular signal-
ing pathways within host cells, and repurposed drugs as potentially effective treatments for COVID-19, based on the
transcriptional response of host cells.

Results: We identified activated signaling pathways associated with the infection caused SARS-CoV-2 in human lung
epithelial cells through integrative analysis. Then, the activated gene ontologies (GOs) and super GOs were identified.
Signaling pathways and GOs such as MAPK, JNK, STAT, ERK, JAK-STAT, IRF7-NFkB signaling, and MYD88/CXCR6 immune
signaling were particularly activated. Based on the identified signaling pathways and GOs, a set of potentially effec-
tive drugs were repurposed by integrating the drug-target and reverse gene expression data resources. In addition to
many drugs being evaluated in clinical trials, the dexamethasone was top-ranked in the prediction, which was the first
reported drug to be able to significantly reduce the death rate of COVID-19 patients receiving respiratory support.

Conclusions: The integrative genomics data analysis and results can be helpful to understand the associated
molecular signaling pathways within host cells, and facilitate the discovery of effective drugs for COVID-19 treatment.

Background (https://coronavirus.jhu.edu/map.html). The primary

By June 29, 2020, there were over 2,500,000 confirmed
cases (with>120,000 deaths) of Coronavirus Disease
2019 (COVID-19) in the U.S. and over 10 million cases
(with > 500,000 deaths) globally, based on the COVID-19
Dashboard [1] operated by the Center for Systems Sci-
ence and Engineering at Johns Hopkins University (JHU)
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organ of infection is considered to be the lung, and the
infection leads to acute hypoxemic respiration and ulti-
mately to multi-organ failure and death [2]. The mor-
tality rate of COVID-19 is relatively high [3], compared
with the flu epidemic. So far, there is no newly FDA
approved drug for the treatment of COVID-19. Recently,
remdesivir, developed by Gilead Sciences, was recently
approved for COVID-19 treatment. However, remdesivir
can reduce the time of recovery and cannot significantly
reduce the mortality rate [4]. To improve the outcome
of COVID-19 patients, many existing drugs are being
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evaluated in clinical trials globally, like chloroquine and
hydroxychloroquine, azithromycin, and lopinavir-ritona-
vir, and dexamethasone. Thus, repurposing existing med-
ications is considered an important approach to speed up
the drug discovery for COVID-19. A few days ago, dexa-
methasone, an existing FDA approved drug, was reported
to be the first drug that can reduce the death rate, by one-
fifth to one-third, of COVID-19 patients receiving respir-
atory support [5], which was ranked No.1 in our analysis.

Although 1,570 clinical trials have been initiated glob-
ally for COVID-19 treatment by June 29, 2020, based on
the data from the dashboard [6] of real-time clinical tri-
als of COVID-19 (https://www.covid-trials.org/), only
one drug, dexamethasone, was reported to be able to
significantly reduce the death rate of COVID-19 patients
receiving respiratory support [5]. One possible reason
is that most of the current clinical trials are based on
limited knowledge of the disease and observed pheno-
types. The molecular mechanisms and signaling path-
ways within the host cells such as lung cells, which play
critical roles in the life cycle of Severe Acute Respira-
tory Syndrome Coronavirus 2 (SARS-CoV-2) infection,
remain unidentified. Thus, it is significant to uncover
the mysterious molecular signaling pathways within host
cells via computational data analysis. It is also important
and needed to facilitate drug repurposing and design of
new clinical trials. For example, in the recent studies [7,
8] the cogena model (co-expressed gene-set enrichment
analysis) was applied to identify the co-expressed differ-
entially expressed genes (DEGs) in the gene expression
data of Bronchoalveolar Lavage Fluid (BALF) [9] sam-
ples of COVID-19 patients, and the activated signaling
gene sets in KEGG [10-12] and Reactome [13]. Then two
potentially effective anti-viral drugs, saquinavir and riba-
virin, were identified using connectivity map (CMAP)
database.

In order to better understand the transcriptional
response of lung cells to the SARS-CoV-2 infection,
Albrecht and tenOever laboratories profiled the RNA-
seq gene expression from human NHBE (Normal Human
Bronchial Epithelial) cells, A549 lung cancer cells (no
ACE2 expression), A549_ACE2 (A549 lung cancer cells
transduced with a vector expressing human ACE2), and
CALU-3 lung cancer cells (with ACE2 expression), and 2
human lung samples infected by SARS-CoV-2 [14]. The
data are valuable sources for identifying genetic pathways
and biological processes that become dysregulated dur-
ing active infection. More importantly, the data allows
for the identification of activated signaling pathways that
can be targeted by existing pharmaceutical agents. In
this study, we aimed to identify activated signaling path-
ways within lung host cells affected by SARS-CoV-2 and
repurpose existing drugs for COVID-19 treatment using
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a novel integrative data analysis approach, integrating
transcriptional response [14], signaling pathway [10], 15,
gene ontology [16], drug-target interactions from drug-
bank [17] and reverse gene signature data from connec-
tivity map (CMAP) [18-20]. These results, including the
identified signaling pathways, activated GOs, and drugs,
can be helpful to facilitate the experimental screening
and clinical trial design to speed up the therapeutic dis-
covery for COVID-19.

Methods
RNA-seq data (gene expression) from NHBE (Nor-
mal Human Bronchial Epithelial) cells, A549 (no ACE2
expression) cells, A549_ACE2 cells (A549 lung cancer
cells transduced with a vector expressing human ACE?2),
and CALU-3 lung cancer cells (with ACE2 expression)
cells infected by SARS-CoV-2 were obtained from GEO
(GSE147507) [14]. This data was generated by Drs. Albre-
cht and tenOever’s at the Icahn School of Medicine at
Mount Sinai. Specifically, for each cell line, 3 control (no
SARS-CoV-2 infected) and 3 SARS-CoV-2 infected sam-
ples were used respectively. The DEseq2 [21] tool was
used to calculate the fold change and p-value of indi-
vidual genes in the NHBE (normal tissue), A549_ACE2,
and CALU-3 lung cancer cells respectively before- and
after- viral exposure. The data of A549 cell was not used
considering that the ACE2, with which SARS-CoV-2
interacts to enter host cells, is not expressed in A549 cell.
For the signaling network analysis, the 307 KEGG
(Kyoto Encyclopedia of Genes and Genomes) [10-12]
signaling pathways were extracted using the ‘graph-
ite’ R package [22, 23]. To identify the activated signal-
ing network for NHBE, A549_ACE2 and CALU-3 cells
respectively, the signaling paths, i.e., the shortest paths
link source signaling genes (starting genes on the sign-
aling pathways) and the sink signaling genes (ending
genes on the signaling pathways) within the 307 KEGG
signaling pathways were first identified. For each signal-
ing path, the average fold change of genes on the signal-
ing path was calculated. Then the signaling paths with
the average fold change score greater than the mean
score+1.25 standard deviation threshold were selected
to construct the activated signaling network. To remove
the potential tumor-specific signaling pathways, the
common and intersection signaling pathways between
NHBE and A549_ACE?2 cell lines, and the common sign-
aling between NHBE and CALU-3 cell lines were then
combined as the potential activated signaling pathways
associated with the viral infection. To identify potential
drugs that can inhibit the signaling genes on the acti-
vated signaling pathways, the drug-target interactions of
FDA-approved drugs were downloaded from the Drug-
Bank [17] database. Then drugs targeting the activated
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signaling pathways were identified as potential effective
drug candidates for COVID-19 treatment.

For the gene ontology (GO) [16] analysis, the Fisher’s
exact test, with a threshold p-value=0.05, was used to
identify the statistically activated GOs based on the up-
regulated genes. Since there are many activated GOs,
and some of them are semantically close and sharing the
common set of genes, it was difficult to identify the most
important GOs. To solve this challenge, we first manually
removed many of the activated GOs that were not related
to biological signaling processes or general diseases. In
addition, we defined the super-GOs, which are defined as
sub-groups of GOs that have similar or related biological
processes. Specifically, after the calculation of GO-GO
similarity using the semantic similarity [24] (GOSemSim
R package) between activated GOs, the affinity propa-
gation clustering [25] (APclustering) was used to divide
the activated GOs into sub-groups (named super-GOs).
Then, the genes that were up-regulated within each
super-GO were used as signatures to identify potential
drugs that can inhibit the activation of the super-GOs.
These gene signatures were fed into the updated connec-
tivity map (CMAP) [18, 19] database to identify potential
drugs, which included the gene expression profiles on a
set of cancer cell lines before and after perturbation of
2,513 drugs and compounds. Then the gene set enrich-
ment analysis (GSEA) [26] was applied on the z-profiles
(gene expression variation before and after treatment
with 2,513 drugs and investigational agents) of 9 cells [18,
19] in the updated CMAP to identify gene set signature-
specific inhibitory drugs. The top ranked FDA drugs,
based on the average GSEA scores, that can potentially
inhibit the up-regulated gene signatures associated with
the super-GOs were identified as potential candidates for
repurposing for COVID-19 treatment.

Results

Activated signaling pathways and associated inhibitory
medications

The KEGG signaling pathway analysis was conducted
to identify the potentially activated signaling pathways
within the lung host cells after SARS-CoV-2 infec-
tion (see Fig. 1-Upper). As seen, the IRF7/IFR9, NFkB1,
NFkB2, STAT1, TNF, MAPK3K8, MAPKS, and MAPK14
related signaling pathways that were identified as the
major activated transcription factors (TFs), which can
potentially activate the activation of other predicted sign-
aling pathways, including those mediated by CXCR6/
CXCL1/CXCL2/CXCL3/CXCL10, MYDS88, CREBBP,
JAK1/JAK2, STAT and MAPK signaling pathways.
Also, the WNT4/WNT7A and SMAD signaling path-
ways are also identified to be activated. Moreover, the
PDGFB-EGER and TUBB1C/2B/3 proliferation signaling
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pathways are also predicted as the COVID-19 related
signaling pathways.

Based on the drug-target interaction data derived from
DrugBank and the identified signaling network, 220
drugs were identified to inhibit 97 target genes on the
signaling network (with 71 drugs targeting the PTGS2
gene specifically) (see Additional file 1: Table S1). As
seen, Chloroquine and hydroxychloroquine were found
to be able to potentially inhibit MYD88 immune signal-
ing based on their targets, TLR7 and TLR9 that directly
interact with the MYD88 target on the signaling network.
Also, acetylsalicylic acid, thalidomide, pranlukast, trif-
lusal, glycyrrhizic acid and fish oil have targets in NFkB
signaling pathway. Some reported studies showed the
importance of predicted signaling pathways. For exam-
ple, the NFkB signaling pathway was previously reported
as a potential signaling pathway target for SARS [27]
treatment, and can also potentially inhibit IRF7 activity.
For example, the drug thalidomide, inhibiting NFkB and
TNE, was reported as potential treatment for COVID-19
[28]. Moreover, the tumor necrosis factor (TNF) identi-
fied in this study was reported in the Lancet [29] to be
an important therapeutic target for COVID-19. Also,
JAK1/2 pathways were also reported as important tar-
gets, and their inhibitors, ruxolitinib, tofacitinib, barici-
tinib and fostamatinib, could be effective for COVID-19
treatment. Particularly, baricitinib, an arthritis drug,
could help reduce the out-of-control immune response
(https://www.wired.com/story/ai-uncovers-potential-
treatment-covid-19-patients/, and https://www.clinicaltr
ialsarena.com/news/eli-lilly-to-study-baricitinib-for-
covid-19-treatment/), was reported in the Lancet [30] as
a COVID-19 suitable treatment. In addition, the MAPK1,
AKT and PRKCA inhibitors such as isoprenaline, arse-
nic trioxide, vitamin e, and midostaurin could be also
effective. Moreover, the IL6R inhibitor tocilizumab was
reported for COVID-19 treatment [31], and another IL6R
inhibitor, sarilumab, is being evaluated in clinical tri-
als (ClinicalTrials.gov Identifier: NCT04327388). Lastly,
STAT1 and IFANRI1 were identified as potential targets
for COVID-19 treatment and were reported by another
group as well [32]. These evidences support the predicted
signaling pathways. In summary, the identified activated
signaling pathways provided potential molecular mecha-
nisms that facilitate the viral replication life cycle, and
thus can be potential therapeutic targets to identify effec-
tive drugs for COVID-19.

Moreover, the identified drugs inhibiting the pre-
dicted signaling pathways were compared with drugs
used in the clinical trials for COVID-19 treatment.
Specifically, drugs that have been tested or are cur-
rently being tested in clinical trials globally were
identified from the covid-trials dashboard (Data:
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table_trials-2020-05-27 05_38_12.csv, and the updated
drugs: table_trials-2020-06-29 22_20_46.csv. Some
drugs cannot be found in the table_trials-2020-06-29
22_20_46.csv because drug names were replaced by
using category names, e.g., ruxolitinib was replaced by
JAK inhibitor), and compared with the drugs identified
from the signaling pathway analysis. Based on the dash-
board of clinical trials for COVID-19 treatment, 114
FDA approved drugs were reported from 1,132 clini-
cal trials globally (see Table 1). Among the 108 drugs,
31 of them are in the predicted drugs list. These drugs
are: hydroxychloroquine, chloroquine, tocilizumab,
sarilumab, canakinumab, ruxolitinib, oxygen, siroli-
mus, ibuprofen, anakinra, acalabrutinib, baricitinib,
ibrutinib, lenalidomide, tirofiban, acetylsalicylicacid,
simvastatin, siltuximab, bevacizumab, tinzaparin, nap-
roxen, celecoxib, tofacitinib, adalimumab, thalidomide,
dalteparin, nadroparin, minocycline, lithium, indo-
methacin, and nintedanib. In summary, the predicted
signaling network could be helpful to understand the
molecular mechanisms within lung host cells after
SARS-CoV-2 infection. Drugs targets on the signaling
targets might be effective (some might also have harm-
ful effects and cautions). Drug combinations (drug
cocktails) targeting on different targets can be poten-
tially synergistic for COVID-19 treatment.
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Activated gene ontologies (GOs)
Based on the fold change and p-value obtained from the
DEseq2 analysis of NHBE, A549_ACE2, and CALU-3
cells before and after the viral infection, the up-regulated
genes in each cell were identified respectively. Since only
a small number of up-regulated genes will be obtained
for NHBE cells using threshold of fold change 2.0. We
set the fold-change threshold as 1.25 for the NHBE cell
line empirically. Specifically, for the NHBE cells, 558
genes had a statistically significant increase with a fold-
change> =1.25 with a p value< =0.05. For the A549_
ACE2 cells, 916 up-regulated genes were identified with
a fold-change > =2.0 and with a p value < =0.05. For the
CALU-3 cells, 1335 up-regulated genes were identified
with a fold-change > =2.0 and with a p value < =0.05.
Based on the three up-regulated gene sets, the activated
GOs with enriched genes in the three gene sets were
identified respectively with a p-value< =0.05 (obtained
from the Fisher’s exact test) and the number of genes in
GOs between 10 and 1000. Then the common activated
GOs between NHBE and A549 ACE2 cells and between
NHBE and CALU-3 cells were unified. After empirically
removing the unrelated and general GOs, 73 GOs were
kept. The full list of enriched GOs was provided in the
supplementary file (Cell-line-GO.txt). Then, the cluster-
ing analysis was employed to divide the activated GOs

Table 1 FDA approved drugs in clinical trials for COVID-19 treatment

Zidovudine Linagliptin Chlorpromazine Bevacizumab Sofosbuvir
Hydroxychloroquine Telmisartan Lenalidomide Tinzaparin Vitamina
Lopinavir Anakinra Methotrexate Naproxen Metformin
Tocilizumab Vitaminc Tirofiban Ritonavir Berberine
Sarilumab Zinc Clopidogrel Tacrolimus Licorice
Atazanavir Almitrine Acetylsalicylicacid Celecoxib Bromhexine
Tranexamicacid Sitagliptin Fondaparinux Tofacitinib Minocycline
Alteplase Ciclesonide Ramipril Pirfenidone Lithium
Canakinumab Acalabrutinib Progesterone Hydrogenperoxide Formoterol
Ruxolitinib Etoposide Captopril Sildenafil Indomethacin
Colchicine Ketamine Eculizumab Ixekizumab Selenium
Leflunomide Losartan Sevoflurane Dexmedetomidine Nintedanib
Oxygen Valsartan Nitazoxanide Lipoicacid Spironolactone
Sirolimus Baricitinib Sargramostim Tranilast Imatinib
Povidone-iodine Fluoxetine Ribavirin Adalimumab Estradiol
Fluvoxamine Vitamind Nivolumab Thalidomide Chloroquine
Ibuprofen Bicalutamide Melatonin Fingolimod Azithromycin
Aviptadil Ivermectin Simvastatin Suramin Dexamethasone
Doxycycline Sodiumbicarbonate Dapagliflozin [traconazole Oseltamivir
Enoxaparin Ibrutinib Amiodarone Mefloquine Amoxicillin
Prazosin Levamisole Verapamil Dalteparin Clavulanate
Isotretinoin Deferoxamine Siltuximab Nadroparin Darunavir
Heparin Methyleneblue Defibrotide lloprost
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Fig. 1 (Upper) Activated signaling pathways (with 244 genes) within NHBE and also appeared in lung A549_ACE2 and CALU3 cells after
SARS-CoV-2 infection. Red nodes are transcription factors (TFs); green—receptors; purple—ligands; orange—activated target genes of TFs; and
cyan—the linking genes. (Lower) 220 drugs (cyan) (with 97 target genes) targeting on the activated signaling pathways
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Table 2 Twenty-seven common FDA approved drugs derived from signaling network analysis and super-GO analysis

Caffeine Lenalidomide Naproxen Sunitinib Talniflumate
Lovastatin Dextromethorphan Phenylbutazone Resveratrol Fostamatinib
Lidocaine Diclofenac Thalidomide Nimesulide Chloroquine
Gefitinib Chloroquine Naloxone Pazopanib

Sorafenib Simvastatin Dasatinib Tofacitinib

Nabumetone Imiquimod Lapatinib Afatinib

into 5 sub-groups (named super-GOs). Among the 73
GOs, 212 up-regulated genes were kept. Figure 2 shows
the network of the 212 up-regulated genes, 73 activated

GOs and 5 super-GOs. Genes associated with the GOs
in each super-GO are collected as gene set signatures for
drug discovery analysis. In addition to the viral process
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Fig. 2 Network of 212 up-regulated genes (cyan color) in lung NHBE, A549_ACE2 and CALU-3 cells after SARS-CoV-2. There are 73 activated gene
ontologies (GOs; red color), and 5 super-GOs (clusters of GOs; purple color). The node size of genes and GOs is proportional to the fold change and
negative log2 p-values respectively
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related signaling, the GO analysis identified many poten-
tial viral infections related signaling pathways, e.g.,
MAPK, JNK, STAT, ERK1/2, MYD88 and Toll like recep-
tor signaling pathways. These results are consistent and
complement the KEGG signaling pathway analysis.

Repurposing drugs inhibiting individual super-GOs

The gene signatures in each of 5 super-GO clusters were
used as the query input of the CMAP database to iden-
tify drugs capable of inhibiting the associated genetic
pathways. Specifically, 258 drugs appeared in the top
100 drugs in at least one of the 5 super-GOs. There
were 26 common drugs among the total drugs derived
from aforementioned signaling network analysis and the
super-GO analysis (see Table 2). Then 113 drugs were
selected based on their frequency (frequency> =2)
appeared in the top 100 drugs of each of the 5 super-GOs
(see Fig. 3 and Table 3). Surprisingly, the dexamethasone
(glucocorticoid receptor agonist, corticosteroid agonist,
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immunosuppressant) (frequency=>5, top ranked) in our
prediction, see Table 3), an existing FDA approved drug,
was recently reported to be the first drug that can sig-
nificantly reduce the death rate of COVID-19 patients
receiving respiratory support [5]. Specifically, the clini-
cal trials results indicated that dexamethasone reduced
death rate by one-third in patients receiving invasive
mechanical ventilation, and reduced the death rate by
one-fifth in COVID-19 patients receiving oxygen with-
out invasive mechanical ventilation [5]. Moreover, a
few top-ranked drugs were reported to be potentially
able to treat or reduce the mortality of COVID-19. The
fenofibrate, was used in clinical trials for COVID-19
as a metabolic intervention (ClinicalTrials.gov Identi-
fier: NCT04517396). The parthenolide was reported
as a potential inhibitor for the cytokine storm [33]. The
diabetes drug, sitagliptin, was reported to be associated
with reduced mortality in COVID-19 patients with type

Table 3 Top 113 drugs frequently appeared in the top-ranked drugs of 5 super-GOs

Name Freq Name Freq Name Freq Name Freq
Dexamethasone 5 Amcinonide 3 Quinidine 3 Minoxidil 2
Atorvastatin 5 Amoxapine 3 Rosuvastatin 3 Mupirocin 2
Fenofibrate 5 Amylocaine 3 Scopolamine 3 Naphazoline 2
Flupirtine 5 Budesonide 3 Temozolomide 3 Nilutamide 2
Palonosetron 5 Dicloxacillin 3 Thalidomide 3 Nitrazepam 2
Parthenolide 5 Diethylstilbestrol 3 Tocainide 3 Pazopanib 2
Pindolol 5 Diltiazem 3 Albendazole 2 Phenelzine 2
Sitagliptin 5 Doconexent 3 Alprenolol 2 Pinacidil 2
Trimethobenzamide 5 Efavirenz 3 Artesunate 2 Propafenone 2
Vemurafenib 5 Enalapril 3 Atomoxetine 2 Quinine 2
Azithromycin 4 Estrone 3 Atracurium 2 Ranolazine 2
Carbetocin 4 Fluticasone 3 Betahistine 2 Rimantadine 2
Deferiprone 4 Formoterol 3 Betamethasone 2 Rimexolone 2
Diazepam 4 Fostamatinib 3 Betaxolol 2 Rizatriptan 2
Doxycycline 4 Hydrocortisone 3 Cefixime 2 Rucaparib 2
Gefitinib 4 Lapatinib 3 Cefotiam 2 Safinamide 2
Halcinonide 4 Lenalidomide 3 Clomipramine 2 Sibutramine 2
lloperidone 4 Mepyramine 3 Desoximetasone 2 Sulfacetamide 2
Lovastatin 4 Naftifine 3 Diloxanide 2 Terbutaline 2
Melperone 4 Naloxone 3 Enalaprilat 2 Tolcapone 2
Memantine 4 Naltrexone 3 Fenoterol 2 Treprostinil 2
Mestranol 4 Nifedipine 3 Flunarizine 2 Triamcinolone 2
Norepinephrine 4 Nitrendipine 3 Fluorometholone 2 Triamterene 2
Promazine 4 Olanzapine 3 Guanabenz 2 Trimipramine 2
Rilmenidine 4 Phensuximide 3 Imiquimod 2 Vecuronium 2
Simvastatin 4 Piperacillin 3 Labetalol 2 Zolmitriptan 2
Testosterone 4 Pirfenidone 3 Lidocaine 2
Verapamil 4 Pirlindole 3 Linezolid 2

4 3 2

Ziprasidone Pravastatin

Methantheline
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2 diabetes. Also the stains drugs, like atorvastatin and
lovastatin, was associated with reduced hazard for fatal
or severe disease of COVID-19. Also, hydrocortisone
(corticosteroid agonist, glucocorticoid receptor agonist,
immunosuppressant, interleukin receptor antagonist)
(frequency = 3) were reported to be related to COVID-19
treatment [34]. To help understand the potential mecha-
nisms of the drugs, the 102 drugs (some drugs have no
target information) and 170 targets interaction network
was provided in Fig. 4. We further compared the GO
analysis derived drugs with the clinical trials drugs, and
10 overlapping drugs were in both the prediction list and
the clinical trial reports. The 10 drugs are: dexametha-
sone, sitagliptin, azithromycin, doxycycline, simvastatin,
verapamil, formoterol, lenalidomide, pirfenidone, tha-
lidomide. Moreover, 3 drugs appeared in the predictions
derived from signaling network analysis, GO analysis and

clinical trials: lenalidomide, simvastatin, thalidomide.
In summary, the evidence of reported studies and clini-
cal trials indicated that the prediction analysis could be
potentially helpful for repurposing existing drugs as
potentially effective treatments for COVID-19.

Activated GO terms and associated drugs using human
tissue samples of COVID-19

Human lung biopsies in the same GSE147507 dataset
and Bronchoalveolar Lavage Fluid (BALF) samples [9] of
COVID-19 patients were analyzed to identify activated
GO terms and associated drug for potential repurpos-
ing. There were 660 up-regulated genes in Human lung
biopsies with fold change>=2.0 and p-value< =0.05
obtained by using DESeq2 (2 normal control and 2
covid-19 human samples). In the BALF samples, 1014
up-regulated genes had been identified in the study [9].
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Fig. 4 The targets of the 102 (out of 113) drugs inhibiting the up-regulated genes in 5 super-GOs

By applying the GO enrichment analysis, 86 overlapping in the supplementary file (Human-sample-GO.txt). A
GOs were identified; and 51 GOs were manually selected  seen, many general viral response, cytokines and immune
(see Table 4). The full list of enriched GOs was provided



Li et al. BMC Med Inform Decis Mak (2021) 21:15 Page 10 of 13
Table 4 Manually selected 51 activated GO terms using human tissue samples
go_id go_term_name p.value
GO:0016032 Viral process 7.75E—=08  GO0:0002221 Pattern recognition receptor signaling 6.55E—15
pathway
GO:0034340 Response to type | interferon 1.78E—15  GO:0034341 Response to interferon-gamma 843E—-25
GO:0042742 Defense response to bacterium 474E —13  GO:0035455 Response to interferon-alpha 8.74E —07
GO:0045071 Negative regulation of viral genome replica- ~ 2.38E —14  GO:0035456 Response to interferon-beta 9.80E—06
tion
GO:0051607 Defense response to virus 1.54E—24  GO:0046597 Negative regulation of viral entry into host cell  0.00040034
GO:0060337 Type | interferon signaling pathway 645E—16  GO:0039530 MDA-5 signaling pathway 0.00446572
GO:0009615 Response to virus 1.60E—28  GO:0060326 Cell chemotaxis 4.46E—19
GO:0045088 Regulation of innate immune response 1.92E—18  GO:0048247 Lymphocyte chemotaxis 149E-11
GO0:0098586 Cellular response to virus 0.00074571 GO:0006959 Humoral immune response 295E—16
GO:0071347 Cellular response to interleukin-1 713E—=07  GO:0006935 Chemotaxis 1.01E—-10
GO:0071356  Cellular response to tumor necrosis factor 484E—07  GO:0019731 Antibacterial humoral response 0.00133157
G0O:1990869  Cellular response to chemokine 329E—-08  GO:0002237 Response to molecule of bacterial origin 4.05E—16
GO:0043123  Positive regulation of I-kappaB kinase/NF- 1.01E—=06  GO:0001817 Regulation of cytokine production 341E-25
kappaB signaling
GO:0009617 Response to bacterium 267E—25  GO:0051591 Response to cCAMP 0.00254496
GO:0071346 Cellular response to interferon-gamma 449E—22  GO:0019079 Viral genome replication 4.70E—10
GO:0045089 Positive regulation of innate immune response  1.27E—15  GO:0031663  Lipopolysaccharid E-mediated signaling 1.10E—-08
pathway
G0:0002224  Toll-like receptor signaling pathway 1.09E—07  GO:0048245 Eosinophil chemotaxis 4.79E—-05
GO:0050832 Defense response to fungus 0.00026658 GO:0070098 Chemokin E-mediated signaling pathway 4.75E—08
GO:0002548 Monocyte chemotaxis 6.18E—09  GO:0045055 Regulated exocytosis 1.68E—24
GO:0002218 Activation of innate immune response 9.08E—15  GO:0007249 I-kappaB kinase/NF-kappaB signaling 7.22E—08
GO:0034612 Response to tumor necrosis factor 265E—07  GO:0043122 Regulation of I-kappaB kinase/NF-kappaB 1.61E-07
signaling
GO:0070555 Response to interleukin-1 534E—07  G0:0039528 cytoplasmic pattern Recognition receptor 0.01386028
signaling pathway in response to virus
G0O:0002430 Complement receptor mediated signaling 211E=05  GO:0050920 Regulation of chemotaxis 1.71E—-08
pathway
GO:0050688 Regulation of defense response to virus 349E—-06  GO:0030595 Leukocyte chemotaxis 3.11E-20
GO:0071357  Cellular response to type | interferon 645E—16  GO:0019058 Viral life cycle 1.15E—09
GO:0001819  Positive regulation of cytokine production 5.35E—15

response GO terms, like type I interferon, interleukin-1
and toll-like receptor signaling, were strongly activated.
To identify drugs using updated CMAP database, the
51 GO terms were clustered into five super-GOs. Then
genes associated with individual super-GOs were used
as the signatures to identify the associated drugs that
can potentially inhibit the individual GOs. In total, 120
drugs were identified that appeared at least two times in
the top 100 drugs associated with the five super-GOs.
Importantly, there were 49 overlapping drugs between
the drug lists identified the super-GO gene signatures
of cell lines infected by SARS-CoV-2 and human tis-
sue samples of COVID-19 respectively (see Table 5).
These overlapping drugs can be potentially effective to

inhibit the cytokine and immune responses to inhibit
the cytokine storm of COVID-19.

Identify potentially effective drugs using the up-

and down-regulated genes

In addition, we also investigated drug prediction using
the up- and down-regulated genes directly, which can
provide additional evidence to identify potentially effec-
tive drugs. For the cell lines, the common up- and down-
regulated genes between NHBE and CALU-3 cell lines
were used because there were much fewer common
genes among all three cell lines (NHBE, A549_ACE2,
CALU-3). Also, the top 180 common up- and 183 com-
mon down-regulated genes between NHBE and CALU-3
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Table 5 49 common top-ranked drugs identified using the super-GO gene signatures of cell lines infected by SARS-CoV-2

and human tissue samples of COVID-19 respectively

Dexamethasone Promazine Lenalidomide Tocainide Propafenone
Atorvastatin Rilmenidine Mepyramine Albendazole Rizatriptan
Palonosetron Testosterone Naloxone Betahistine Rucaparib
Sitagliptin Verapamil Naltrexone Betamethasone Safinamide
Trimethobenzamide Amylocaine Nifedipine Betaxolol Sibutramine
Vemurafenib Enalapril Olanzapine Fenoterol Terbutaline
lloperidone Estrone Phensuximide Labetalol Treprostinil
Melperone Fluticasone Pirlindole Minoxidil Triamcinolone
Memantine Hydrocortisone Scopolamine Nitrazepam Vecuronium
Norepinephrine Lapatinib Temozolomide Pinacidil

cell lines were selected to identify potentially effective
drugs in the CMAP database. Specifically, 30 out of 180
up-regulated genes, and 39 out of 183 down-regulated
genes were not available in the CMAP database. Thus 150
up-regulated and 144 down-regulated genes were used.
Among the top 100 FDA drugs, there were 13 drugs also
appeared in the clinical trials, i.e., sildenafil, lenalidomide,
dexamethasone, sitagliptin, simvastatin, azithromycin,
formoterol, thalidomide, fluoxetine, lopinavir, valsartan,
verapamil, chloroquine. The best rank of dexamethasone
was 6. The prediction is similar to the prediction using
GO term analysis. Therefore, the prediction can be used
as additional evidence of how these drugs can potentially
reverse the differentially expressed genes.

For the human samples, there were 156 common up-
regulated genes and 162 common down-regulated genes
between the human lung tissues and BALF samples.
respectively. The common up- and down-regulated genes
were used to identify potentially effective drugs in the
CMAP database. Specifically, 31 out of 156 up-regulated
genes, and 15 out of 162 down-regulated genes were not
available in the CMAP database. Thus 125 up-regulated
and 147 down-regulated genes were used. Among the
top 100 FDA drugs, there were 5 drugs also appeared in
the clinical trials, i.e., valsartan, doxycycline, isotretinoin,
metformin, progesterone. The best rank of dexametha-
sone was 330 (not top-ranked). The results are not con-
sistent with the GO-term based analysis. One possible
reason is that much noisy genes were identified in the
human tissue and BALF samples as signatures to identify
the related drugs in the CMAP database. Therefore, GO
term analysis is helpful to identify biologically meaning-
ful gene sets as gene set signatures to identify drugs in
CMAP database.

Discussion and conclusions

Currently, there is no effective new drugs or vaccine
approved for the treatment of COVID-19, though rapid
developments are occurring and being translated into
clinical use. As the disease continues to spread, it is
becoming increasingly important to develop a treatment
modality in the most time-efficient manner. One such
approach is to use genetic information to inform the
repurposing of available medications. This preliminary
and exploratory analysis uses transcriptional response
(gene expression) profiles from human host cells before
and after the infection with the SARS-CoV-2. In the anal-
ysis results, some potentially important targets, signaling
pathways, and a set of GOs activated within host cells
after viral infection, were identified. Moreover, a set of
drugs registered for COVID-19 treatment globally were
also identified in the analysis. These discoveries can be
helpful to facilitate the design of future clinical trials for
the COVID-19 treatment.

This exploratory computational study still has some
limitations that can be further improved in the future
work. First, the genetic data are derived from an in vitro
analysis and will inevitably have a gene expression pro-
file different from an in vivo epithelial, which may be
further modified on a person-to-person basis. Second,
the signaling network analysis is a long-standing chal-
lenge, and the models could be improved by integrating
the KEGG signaling pathways with the GOs (to include
more genes) and also incorporating transcriptomic
response data of cells and human tissue samples of
COVID-19 patients to uncover the core signaling net-
works involved in the life cycle of SARS-CoV-2 within
host cells. Third, the unbiased list of medications
generated and presented was not filtered by route of
administration or clinical applicability. For instance, the
immune dampening chemotherapeutic agent docetaxel
was identified, but would likely not be administered to
an infected patient due to concern for augmenting viral
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replication. Therefore, further pipelines and additional
information are needed to analyze the potential effects
of these medications, and to continue developing this
computational approach to medication repurpos-
ing. In addition, we will investigate both up-regulated
and down-regulated genes, which could be helpful to
understand the potential mechanism of viral-host sign-
aling interactions. Network analysis and its applications
for drug and drug combination prediction are challeng-
ing problems [35-38]. It can be interesting to conduct
significance testing of activated signaling pathways,
e.g., possibly using a set of randomly generated signal-
ing paths, to identify most important signaling path-
ways for drug and drug combination prediction. In the
future work, we will investigate these challenges.

Supplementary information
is available for this paper at https://doi.org/10.1186/512911-020-01373-x.

Additional file 1. Table S1: Drugs inhibiting targets on the signaling
network.

Abbreviations

COVID-19: Coronavirus disease 2019; SARS-CoV-2: Severe acute respiratory
syndrome coronavirus 2; GSEA: Gene set enrichment analysis; CMAP: Con-
nectivity map; KEGG: Kyoto Encyclopedia of genes and genomes; GO: Gene
ontology.

Acknowledgements
We would like to thank Ms Kendall Cornick and Ms Kelley Foyil for proofread-
ing the manuscript.

Authors’ contributions

FL conceived the project. Project supervision and methodology design by
FL, AM, RF, PP. Data collection and analysis were conducted by FL. FL, AM,
MZ revised the manuscript. All authors have read and approved the final
manuscript.

Funding
NA.

Availability of data and materials

Gene expression data of cell lines, and human lung tissue was available at
Gene Expression Omnibus (GEO) (with the access number: GSE147507): https
//www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147507. Differentially
expressed genes of human BALF samples were available at (Table S3): https
//www.cell.com/cell-host-microbe/fulltext/S1931-3128(20)30244-47_retur
NURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS19
31312820302444%3Fshowall%3Dtrue#supplementaryMaterial. DrugBank:
https://go.drugbank.com/. Connectivity Map database: clue.io. KEGG signaling
pathway database: https://www.genome.jp/kegg/pathway.html. KEGG signal-
ing pathways are accessible using ‘graphite’R package: https://bioconduct
or.org/packages/release/bioc/html/graphite.html. Gene oncology (GO) terms
are accessible using 'GO.db'R package: https://bioconductor.org/packages/
release/data/annotation/html/GO.db.html

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Page 12 of 13

Competing interests
The authors declare that they have no competing interests.

Author details

! Institute for Informatics (12), Washington University in St. Louis School

of Medicine, St. Louis, MO, USA. 2 Department of Pediatrics, Washington
University in St. Louis School of Medicine, St. Louis, MO, USA. > Pulmonary
and Critical Care Medicine, Washington University in St. Louis School of Medi-
cine, St. Louis, MO, USA. * National Institute of Mental Health (NIMH), NIH,
Bethesda, MD, USA.

Received: 15 July 2020 Accepted: 16 December 2020
Published online: 07 January 2021

References

1. DongE, Du H, Gardner L. An interactive web-based dashboard to track
COVID-19 in real time. Lancet Infect Dis. 2020. https://doi.org/10.1016/
S1473-3099(20)30120-1.

2. Wolfel R, et al. Virological assessment of hospitalized patients with COVID-
2019. Nature. 2020. https://doi.org/10.1038/541586-020-2196-x.

3. Verity R, et al. Estimates of the severity of coronavirus disease 2019: a
model-based analysis. Lancet Infect Dis. 2020. https://doi.org/10.1016/
S1473-3099(20)30243-7.

4. GaoY, et al. Structure of the RNA-dependent RNA polymerase from
COVID-19 virus. Science. 2020;80:779. https://doi.org/10.1126/scien
ce.abb7498.

5. Horby, P et al. Effect of dexamethasone in hospitalized patients
with COVID-19: preliminary report. medRxiv (2020). https://doi.
0rg/10.1101/2020.06.22.20137273

6. Thorlund K, et al. A real-time dashboard of clinical trials for COVID-19.
Lancet Digit Heal. 2020. https://doi.org/10.1016/52589-7500(20)30086-8.

7. JiaZ Song X, Shi J, Wang W, He K. Transcriptome-based drug reposition-
ing for coronavirus disease 2019 (COVID-19). Pathog Dis. 2020;78:36.

8. JiaZ etal Cogena, a novel tool for co-expressed gene-set enrichment
analysis, applied to drug repositioning and drug mode of action discov-
ery. BMC Genomics. 2016;17:414.

9. Zhou Z, et al. Heightened Innate Immune Responses in the Respiratory
Tract of COVID-19 Patients. Cell Host Microbe. 2020;27:883-890.e2.

10. Ogata H, et al. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic
Acids Res. 1999;28:29. https://doi.org/10.1093/nar/27.1.29.

11. Kanehisa M. Toward understanding the origin and evolution of cellular
organisms. Protein Sci. 2019;28:1947-51.

12. Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG:
integrating viruses and cellular organisms. Nucleic Acids Res. 2020. https
.//doi.org/10.1093/nar/gkaad70.

13. Croft D, et al. Reactome: a database of reactions, pathways and biological
processes. Nucleic Acids Res. 2011;39:D691-7.

14. Blanco-Melo, D. et al. SARS-CoV-2 launches a unique transcriptional signa-
ture from in vitro, ex vivo, and in vivo systems. bioRxiv (2020). doi:https://
doi.org/10.1101/2020.03.24.004655

15. Xu, J. et al. Diffusion mapping of drug targets on disease signaling
network elements reveals drug combination strategies. in Proceed-
ings of tpacific symposium on biocomputing 92-103 (2018).https://doi.
org/10.1142/9789813235533_0009

16. Gene Ontology Consortium, T. et al. Gene ontology: tool for the unifica-
tion of biology NIH public access author manuscript. Nat Genet 25, 25-29
(2000).

17. Wishart, D. S. et al. DrugBank 5.0: a major update to the DrugBank data-
base for 2018. Nucleic Acids Res. 46, D1074-D1082 (2018).

18. Lamb, J. et al. The connectivity map: Using gene-expression signatures
to connect small molecules, genes, and disease. Science (80-.). 313,
1929-1935 (2006).

19. Subramanian A, et al. A next generation connectivity map: L1000 plat-
form and the first 1,000,000 profiles. Cell. 2017;171:1437-52.

20. Regan-Fendt KE, et al. Synergy from gene expression and network mining
(SynGeNet) method predicts synergistic drug combinations for diverse
melanoma genomic subtypes. Syst Biol Appl. 2019;5:6.


https://doi.org/10.1186/s12911-020-01373-x
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147507
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147507
https://www.cell.com/cell-host-microbe/fulltext/S1931-3128(20)30244-4?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1931312820302444%3Fshowall%3Dtrue#supplementaryMaterial
https://www.cell.com/cell-host-microbe/fulltext/S1931-3128(20)30244-4?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1931312820302444%3Fshowall%3Dtrue#supplementaryMaterial
https://www.cell.com/cell-host-microbe/fulltext/S1931-3128(20)30244-4?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1931312820302444%3Fshowall%3Dtrue#supplementaryMaterial
https://www.cell.com/cell-host-microbe/fulltext/S1931-3128(20)30244-4?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1931312820302444%3Fshowall%3Dtrue#supplementaryMaterial
https://go.drugbank.com/
https://www.genome.jp/kegg/pathway.html
https://bioconductor.org/packages/release/bioc/html/graphite.html
https://bioconductor.org/packages/release/bioc/html/graphite.html
https://bioconductor.org/packages/release/data/annotation/html/GO.db.html
https://bioconductor.org/packages/release/data/annotation/html/GO.db.html
https://doi.org/10.1016/S1473-3099(20)30120-1
https://doi.org/10.1016/S1473-3099(20)30120-1
https://doi.org/10.1038/s41586-020-2196-x
https://doi.org/10.1016/S1473-3099(20)30243-7
https://doi.org/10.1016/S1473-3099(20)30243-7
https://doi.org/10.1126/science.abb7498
https://doi.org/10.1126/science.abb7498
https://doi.org/10.1101/2020.06.22.20137273
https://doi.org/10.1101/2020.06.22.20137273
https://doi.org/10.1016/S2589-7500(20)30086-8
https://doi.org/10.1093/nar/27.1.29
https://doi.org/10.1093/nar/gkaa970
https://doi.org/10.1093/nar/gkaa970
https://doi.org/10.1101/2020.03.24.004655
https://doi.org/10.1101/2020.03.24.004655
https://doi.org/10.1142/9789813235533_0009
https://doi.org/10.1142/9789813235533_0009

Li et al. BMC Med Inform Decis Mak

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

(2021) 21:15

Love MI, Huber W, Anders S. Moderated estimation of fold change and

dispersion for RNA-seq data with DESeq2. Genome Biol. 2014. https://doi.

0rg/10.1186/513059-014-0550-8.

Sales G, Calura E, Cavalieri D, Romualdi C. graphite - a Bioconductor pack-
age to convert pathway topology to gene network. BMC Bioinformatics.
2012;13:20.

Sales G, Calura E, Romualdi C. metaGraphite-a new layer of pathway
annotation to get metabolite networks. Bioinformatics. 2019;35:1258-60.
Yu G, et al. GOSemSim: An R package for measuring semantic similarity
among GO terms and gene products. Bioinformatics. 2010. https://doi.
0rg/10.1093/bioinformatics/btq064.

Frey, B. J. & Dueck, D. Clustering by passing messages between data
points. Science (80-.). 315, 972-976 (2007).

Subramanian A, et al. Gene set enrichment analysis: A knowledge-based
approach for interpreting genome-wide expression profiles. Proc Natl
Acad Sci USA. 2005;102:15545-50.

Lim, Y. X, Ng, Y.L, Tam, J. P &Liu, D. X. Human Coronaviruses: A Review of
Virus-Host Interactions. Dis. (Basel, Switzerland) 4, 26 (2016).

Rismanbaf A. Potential Treatments for COVID-19; a Narrative Literature
Review. Arch Acad Emerg Med. 2020;8:29-e29.

Feldmann M, et al. Trials of anti-tumour necrosis factor therapy for
COVID-19 are urgently needed. Lancet (London, England). 2020;50140-
6736(20):30858-68. https://doi.org/10.1016/50140-6736(20)30858-8.
Richardson P, et al. Baricitinib as potential treatment for 2019-nCoV acute
respiratory disease. The Lancet. 2020. https://doi.org/10.1016/50140
-6736(20)30304-4.

Luo, P. et al. Tocilizumab treatment in COVID-19: A single center experi-
ence. J. Med. Virol. n/a, (2020).

32.

33

34.

35.

36.

37.

38.

Page 13 of 13

Sallard E, Lescure F-X, Yazdanpanah'Y, Mentre F, Peiffer-Smadja N. Type

1 interferons as a potential treatment against COVID-19. Antiviral Res.
2020;178:104791.

Bahrami M, Kamalinejad M, Latifi SA, Seif F, Dadmehr M. Cytokine storm

in COVID-19 and parthenolide: Preclinical evidence. Phytother Res.
2020;34:2429-30.

Russell B, Moss C, Rigg A, Van Hemelrijck M. COVID-19 and treatment with
NSAIDs and corticosteroids: Should we be limiting their use in the clinical
setting? Ecancermedicalscience. 2020. https://doi.org/10.3332/ecanc
er.2020.1023.

ZhangT, et al. Core signaling pathways in ovarian cancer stem cell
revealed by integrative analysis of multi-marker genomics data. PLoS
ONE. 2018;13:0196351.

Zhang, T, Zhang, L. & Li, F. Integrative network analysis identifies potential
targets and drugs for ovarian cancer. linternational Conf. Intell. Biol. Med.
recommended for publication at BMC Medical Genomic (2019).

Wu H, et al. MD-Miner: A network-based approach for personalized drug
repositioning. BMC Syst Biol. 2017;11:86.

Regan, K. E, Payne, P.R. O. &Li, F. Integrative network and transcriptomics-
based approach predicts genotype- specific drug combinations for mela-
noma. AMIA Jt. Summits Transl. Sci. proceedings. AMIA Jt. Summits Transl. Sci.
247-256 (2017).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

fast, convenient online submission

thorough peer review by experienced researchers in your field

rapid publication on acceptance

support for research data, including large and complex data types

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year

B BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions



https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1093/bioinformatics/btq064
https://doi.org/10.1093/bioinformatics/btq064
https://doi.org/10.1016/S0140-6736(20)30858-8
https://doi.org/10.1016/S0140-6736(20)30304-4
https://doi.org/10.1016/S0140-6736(20)30304-4
https://doi.org/10.3332/ecancer.2020.1023
https://doi.org/10.3332/ecancer.2020.1023

	Computational analysis to repurpose drugs for COVID-19 based on transcriptional response of host cells to SARS-CoV-2
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Results
	Activated signaling pathways and associated inhibitory medications
	Activated gene ontologies (GOs)
	Repurposing drugs inhibiting individual super-GOs
	Activated GO terms and associated drugs using human tissue samples of COVID-19
	Identify potentially effective drugs using the up- and down-regulated genes

	Discussion and conclusions
	Acknowledgements
	References


