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Aesthetics has been the subject of long-standing debates by philosophers and

psychologists alike. In psychology, it is generally agreed that aesthetic experience results

from an interaction between perception, cognition, and emotion. By experimental means,

this triad has been studied in the field of experimental aesthetics, which aims to gain a

better understanding of how aesthetic experience relates to fundamental principles of

human visual perception and brain processes. Recently, researchers in computer vision

have also gained interest in the topic, giving rise to the field of computational aesthetics.

With computing hardware and methodology developing at a high pace, the modeling of

perceptually relevant aspect of aesthetic stimuli has a huge potential. In this review, we

present an overview of recent developments in computational aesthetics and how they

relate to experimental studies. In the first part, we cover topics such as the prediction of

ratings, style and artist identification as well as computational methods in art history, such

as the detection of influences among artists or forgeries. We also describe currently used

computational algorithms, such as classifiers and deep neural networks. In the second

part, we summarize results from the field of experimental aesthetics and cover several

isolated image properties that are believed to have a effect on the aesthetic appeal of

visual stimuli. Their relation to each other and to findings from computational aesthetics

are discussed. Moreover, we compare the strategies in the two fields of research and

suggest that both fields would greatly profit from a joined research effort. We hope to

encourage researchers from both disciplines to work more closely together in order to

understand visual aesthetics from an integrated point of view.

Keywords: computational aesthetics, experimental aesthetics, visual preference, art history, artist identification,

style identification, image features, statistical image properties

1. INTRODUCTION

Dating back more than two thousand years ago, aesthetics has been the subject of debates by
philosophers and other scholars alike. Defined by the Oxford Dictionary as “the philosophy of the
beautiful or of art,” “a system of principles for the appreciation of the beautiful,” and “the distinctive
underlying principles of a work of art or a genre” (OED, 2017), aesthetics represents a field of
interest that has attracted researchers from diverse scientific disciplines, also outside of philosophy.
In 1876, the founder of experimental aesthetics, Gustav Fechner, published his seminal book
entitled “Vorschule der Ästhetik” (Fechner, 1876). He believed that the aesthetic appeal of physical
objects manifests itself in stimulus properties that can be measured in an objective (formalistic)
way. Specifically, he attempted to show that rectangles with an aspect ratio equal to the golden ratio
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are more appealing to human observers than rectangles having
other aspect ratios. Researcher have later raised concerns
about the normative role in rectangular preferences (Green,
1995; McManus et al., 2010). Nevertheless, Fechner’s scientific
(objective) view of aesthetics provided the basis for the newly
emerging field of empirical aesthetics. In this field, hypotheses
regarding the perceived beauty of images, paintings or even
every-day objects are proposed and tested experimentally for
their validity. This stimulus-driven approach, called by Fechner
aesthetics from below, was different from the aesthetics that was
prevalent in Fechner’s time and derived aesthetic principles from
superordinate philosophical concepts (aesthetics from above)
(Cupchik, 1986). Fechner is also credited for conceiving the
field of psychopysics, which relates human perception to well-
defined physical properties of stimuli. By applying this approach
to aesthetics, he attempted to relate physical image properties to
aesthetic perception in humans. The area of research that has
taken up this idea in modern times is experimental aesthetics, a
subfield of psychology.

Another discipline of natural science that studies aesthetics is
neuroaesthetics, a subfield of brain research. In this field, modern
imaging techniques, such as functional magnetic resonance
imaging (fMRI), enable researcher to study the activation of brain
regions when human observers view aesthetic stimuli (Cela-
Conde et al., 2011; Chatterjee and Vartanian, 2014). This type
of research has lead to a better understanding of what neural
networks are involved in the human brain when we have an
aesthetic experience. Research in neuroaesthetics is beyond the
scope of the present review.

In recent years, aesthetics has also been studied using
computational methods. In the field of computer science,
computational aesthetics, a subfield of computer vision, has
entered the field of aesthetics. In this area, there have been a
variety of different studies on the aesthetics in digital images, for
example, using digital reproductions of paintings. The birth of
computational aesthetics is often attributed to Birkhoff’s book
“Aesthetic Measure” (Birkhoff, 1933), although the book does
not mention the term itself (for an overview of the evolution
of the term, see Greenfield, 2005). In a very mathematical way,
Birkhoff proposed a formula for an aesthetic measure M, which
is a function of O, order or reward by a positive tone of feeling,
and C, complexity or a feeling of effort of attention. Stating that
reward should be proportional to effort, Birkhoff concludes that
M = O/C best describes their relation.

A definition of computational aesthetics is given by Hoenig
(2005), who describes it as “[...] the research of computational
methods that can make applicable aesthetic decision in a similar
fashion as humans can.” To Hoenig, this definition emphasizes
two major aspects: First, the use of computational methods,
and second, their applicability to aesthetic decision making.
More precisely, Galanter (2012) discusses how computational
aesthetics is concerned with both, “the creation and evaluation
of art using computers.” He argues that the creation of art
necessarily requires evaluation and gives the example of an artist,
who, while learning about aesthetics and gathering experience,
evaluates art created by others. When creating artworks himself,
micro-evaluations help the artist guide his own creative process.

Upon finishing his creation, the artist gains new insights about his
art in a final evaluation of the created piece. Given the importance
of the evaluation process, we will focus on it in the present review.
As pointed out by Stork (2009a), the computational analysis of
paintings has several advantages compared to an analysis carried
out by human experts. For example, a computational analysis can
pick up very subtle relationships that may escape the attention
by human observers; moreover, computational methods are
objective in nature and are potentially non-exhaustive in the
amount of detail analyzed (e.g., every single brushstroke in a
painting).

The aim of the present review is to provide an overview of
recent developments in the field of computational aesthetics and
to point out its potential relevance for research in experimental
aesthetics and vice versa. Our goal is to boost the awareness
of researchers in experimental aesthetics for the wealth of data
that computational aesthetics has generated in recent years. We
would also like to inform scientists in computational aesthetics
about some basic concepts and results from experimental
aesthetics. Our review thus outlines a possible link between
research on the objective (physical) properties of visual stimuli
and experimental studies that take into account the subjective
responses of humans to aesthetic stimuli, as originally proposed
by Fechner. Specifically, we focus on the evaluation of visual
images (photographs or digitally reproduced artworks) and
the analysis of image properties. Important areas of research
will be referenced and exemplary works will be presented,
without striving for completeness. Topics include the prediction
of ratings of photographs and paintings, the classification of
images regarding their artist or style, computational methods for
problems in art history, and, finally, the investigation of statistical
properties of aesthetically pleasing images and artworks.

2. COMPUTATIONAL AESTHETICS:

ALGORITHMS AND APPLICATIONS

Computational aesthetics is approached from different points of
view. All articles reviewed here somehow deal with aesthetics
in the form of photography and paintings and are motivated
predominantly by producing applications and testing or
improving algorithms. Accordingly, one of the tasks that is often
pursued in computational aesthetics is to develop algorithms
that allow to predict aesthetic ratings of photographs. Such
algorithms have direct applications. For example, in online photo
communities (for example Flickr, Photo.net, etc.), they can be
used to select photographs of high aesthetic quality and discard
snapshots that users would rate low. On a more commercial side,
such systems are used for retrieving and licensing high-quality
photographs from the internet for their use as stock photographs.
Another possible application is to install such algorithms in
industrial cameras and smartphones, which identify high-quality
images in the split of a second. As we will show in the present
article, there has been a tremendous success in building such
systems.

The prediction of ratings is just one possible application
among many, where computers can make decisions regarding
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aesthetics. Computational methods have also been successfully
applied to problems in art history, such as content analysis of
paintings, forgery detection, or detection of a painter’s influence.
These applications will also be reviewed in the following sections.

2.1. Prediction of Ratings
One major trend in computational aesthetics is to predict ratings
of image quality or aesthetic appeal. Possible applications of
this technology are improved cameras, which automatically
select the most appealing photos among many, optimization of
advertisements for their aesthetic value, or even talent scouting in
photo-sharing communities. In the early days of computational
aesthetics, researcher followed the then popular practice to design
features explicitly for a given task. In order to predict the aesthetic
appeal of a given image, researchers determined in how far
different photographic principles, like composition according to
the rule of thirds or depth of field, were followed in images.
They quantified these principles by expressing them numerically,
either as binary or continuous values, called features. Features
can be either local, describing only pixels or patches and their
immediate neighborhood, or they can be global and describe
properties of the image as a whole. Global features seem especially
suitable to describe artistic photographs or artworks because
concepts such as artistic composition refer to the relation
between pictorial elements across the image. Another difference
can be made concerning the level of abstraction: Low-level
features describe basic features, such as colors and edges, while
high-level features can describe more abstract image content.
The features can then be used to train a classifier on a dataset
of images so that it can learn to predict ratings given by
humans. This goal is achieved by mathematically describing the
relation between the subjective scores and the feature set. Popular
choices for classifiers are, for example, Bayes classifiers, Decision
Trees, or Support Vector Machines (SVMs). This approach will
be presented in more detail in section 2.1.1. In recent years,
computational aesthetics has gone from designing features by
hand to using generic features that have been developed for other
purposes in computer vision. This development has reached a
pinnacle with the development and widespread use of Deep
Neural Networks. Approaches using generic features will be
discussed in section 2.1.2.

2.1.1. Hand-Crafted Image Features
One of the first attempts to measure aesthetics in an image
was published by Tong et al. (2004), who proposed a method
to distinguish between photographs taken by professional
photographers and photographs taken by non-expert (home)
users. They used a set of low-level features that describe blur,
contrast, colorfulness and saliency, and combined it with general
purpose low-level features that capture texture, shape and energy
in the frequency spectrum, by using difference-edge histograms.
In total, they proposed 21 different features which added up to
846 dimensions. After reducing the dimensionality, they reported
classification results comparing Boosting, an SVM and a Bayesian
classifier, which performed best.

Using another set of low-level features, Datta et al. (2006) build
a classifier for distinguishing images of high aesthetic appeal from

other images, as rated by the community of the popular photo-
sharing website Photo.net. Overall, the authors collected 3,581
different images and split them into two classes according to their
aesthetic rating by the users of the site (low and high rating).
They explicitly stated that their goal was not to build the best-
performing classifier, but rather to be able to draw conclusions
from the best performing features. Their choice of features was
based on common intuition, rules of thumb in photography and
trends that they observed for the ratings of the collected images.
In total, they proposed a set of 56 different features, containing
basic ones, such as colorfulness, saturation, hue, size and aspect
ratio, as well as adherence to the rule of thirds. The features were
selected as follows: First, the authors used a one-dimensional
SVM to find the features with the most discriminative power and
selected the top 30. Starting with an empty features set, they then
iteratively added those features that improved the classification
the most. As a result, they found that average hue, average pixel
intensity as well as a saturation-based rule of thirds measure
contributed the most to the aesthetic value of an image, as rated
by human observers.

Ke et al. (2006) designed a system to distinguish between high-
quality professional photographs and low-quality snapshots.
They reference the work of Tong et al. (2004) but criticize their
black-box approach, which prevents them from gaining any
insight into why some photos are better than others, although
the system by Tong and colleagues performed well for the task.
Ke et al. (2006) therefore chose an approach similar to the
one by Datta et al. (2006) and designed a set of features that
capture image quality. They based their choice of the features
on interviews conducted with photographers. Their feature set
contained the spatial distribution of edges, color distribution,
hue count and blur as well as contrast and brightness. For
classification, they used a naive Bayes classifier and tested their
system on images that were downloaded from a photo contest
website. The blur feature turned out to be themost discriminative
metric.

Luo and Tang (2008) extracted very simple features that
captured lighting, simplicity, composition or color harmony,
based on the subject region and the background of an image.
They reported an improvement of classification upon Datta et al.
(2006) and Ke et al. (2006) and contributed this success to the
distinction of foreground and background, while the previous
methods computed their features on the image as a whole.

Besides focusing on low-level features as provided by Ke
et al. (2006) and Dhar et al. (2011) also integrate high-level
attributes in their system in order to predict aesthetic value and
interestingness. According to the authors, high-level attributes
define characteristics of images as humans would describe them,
and can be classified into compositional attributes (like the rule
of thirds), content attributes (like the presence of people) and
sky illumination attributes. Dhar et al. (2011) reported improved
performance compared to the approach by Ke et al. (2006).

Although the general focus of aesthetic quality assessment
in computational aesthetics is on the prediction of ratings of
photographs, a few researchers have also proposed methods for
quality assessment of paintings. Li and Chen (2009), for example,
propose a total of 40 features that capture color, brightness and
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compositional characteristics of a paintings. Using these features,
they use a Bayes classifier as well as AdaBoost on a binary task to
predict whether a painting received high or low rating scores. In
their work, they provide a detailed discussion of the importance
of the individual features.

What all these approaches have in common is that a
combination of multiple features is used to predict aesthetic
ratings. While this has proven successful for automated aesthetic
decision making, there are a number of problems that preclude
a deeper understanding of the role of individual features in
these decisions. First, because the features are not necessarily
independent of each other, it would require more sophisticated
statistical methods to extract the influence of each of them.
Second, the experimental conditions, under which ratings are
obtained in most of the above-mentioned studies, are unknown,
unspecified or variable (for example, with regard to the size of
the stimuli on the retina, the brightness of the stimuli, contrast
settings of the monitors, background illumination, sequence
of stimulus presentation etc.,). Third, the rating by users of
internet platforms often remain anonymous which precludes any
specification of their personal characteristics (sex, age, cultural
background etc.,). All these factors might influence the results or
introduce artifacts.

In experimental aesthetics, some of the features used in the
above combinatorial approaches have been isolated and studied
in psychological experiments under well-defined experimental
conditions (for a survey of such studies, see section 3).

2.1.2. Generic Image Features
Generic image features are features that are not explicitly
designed for the prediction of image aesthetics, but rather for
other popular research topics in computer vision, like object
detection and classification, scene understanding, or image
retrieval. An example of such features are the SIFT descriptors
(scale-invariant feature transform; Lowe, 2004), which were
originally designed for feature matching and image stitching.
SIFT encodes edge orientations in gray-scale images as a vector
(for more recent image descriptors, see Canclini et al., 2013).

The first study to model aesthetic ratings based on generic
image features was published by Marchesotti et al. (2011).
They used SIFT descriptors together with a color descriptor,
motivated by the assumption that aesthetic properties, such as
the presence of sharp edges or the saturation of colors, can be
described implicitly by these kind of features. The authors chose
a Bag-Of-Visual-Words and a Fisher-Vector representation in
order to represent prototypical patches for aesthetic and non-
aesthetic photographs. As a result, they reported an improvement
in classification rates for high-quality and low-quality images,
compared to the methods by Datta et al. (2006) and Ke et al.
(2006) who used hand-crafted features (see section 2.1.1). While
hand-crafted features allow to quantify which feature contributes
the most to an aesthetic rating, this interpretability is lost with
generic features. Here, conclusions can only be drawn by a
comparison of the images that are rated high or low by the
model because the features of the model are not deliberately
designed to capture known properties of aesthetics, but they
rather hide their relation to them. For example, Marchesotti et al.

report that all blurry and low-resolution images were rated low
in his model, whereas images that displayed foreground objects
with sharp edges on out-of-focus backgrounds were rated highly.
Moreover, highly-rated images had a dominant color or used
complementary colors in their palette; if too many colors were
present, images received low scores in general. On the same
dataset, Murray (2012) used a low-level contrast model that was
originally developed for saliency estimation and showed that it
can also be applied to predict aesthetic preferences.

In recent years, deep learning models, in particular
Convolutional Neural Networks (CNNs), have started to
conquer many subareas in the field of computer vision and
artificial intelligence. Although the basic idea of CNNs has
already been proposed more than three decades ago (Fukushima,
1980; Lecun and Bengio, 1995), only recently, progress in
computing technologies and the availability of huge datasets
for training have helped to restore the interest in using CNNs
for image processing (Krizhevsky et al., 2012; Simonyan and
Zisserman, 2014; He et al., 2015; Huang et al., 2016). CNNs
learn a hierarchy of filters, which are applied to an input image
in order to extract meaningful information from the input. The
training is done using backpropagation, a supervised training
algorithm, in which the current output of a network is compared
to a desired output. Filter parameters of the network are changed
according to their contribution to the current error. When used
on a large training set of images, CNNs tend to learn features
that resemble Gabor-like edge detectors and color-opponent
filters at lower layers of the CNNs. These features are akin to
neural responses in the early mammalian visual system. On
higher layers of the CNNs, features capture more abstract image
content by integrating the lower-layer features (Yosinski et al.,
2015). Different open-source implementations exist, which also
include a variety of models that were pretrained for object or
scene recognition. Their availability enables researchers to either
retrain networks that already work well for recognition tasks
(a process called fine-tuning), or to use features from pretrained
models without any further modification.

CNNs have been applied to the task of rating image aesthetics.
Lu et al. (2015) trained a two-column deep neural network
simultaneously on global and local views of photographs in order
to predict their aesthetic rating class (high or low). The authors
motivated their architecture by the observation that the aesthetics
of an image is influenced by local cues, such as sharpness, as
well as global cues, which capture compositional aspects. They
evaluated different cropping strategies for the local image view
and report a higher accuracy in the prediction of image aesthetics
than reported for previous approaches on the same dataset
(Murray et al., 2012).

Dong et al. (2015) applied the AlexNet architecture presented
by Krizhevsky et al. (2012), which was trained on 1.2 million
images to discriminate between 1,000 different object categories.
They used the features of the top convolutional layer, which are
computed on the entire image, as well as on five local crops, and
trained an SVM on the concatenated features. They improved
upon the results by Marchesotti et al. (2011) by a margin of about
10%. Interestingly, their approach did not explicitly use features
trained in the context of an aesthetic evaluation, but rather for
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object recognition, so that the decision whether an image was
rated as highly aesthetic or not seemed to rely more on image
content than on image form.

Denzler et al. (2016) proposed to use CNNs as model
of perception for research in aesthetics. They trained the
AlexNet model (Krizhevsky et al., 2012) on different datasets
to experimentally evaluate how well pre-learned features of
different layers are suited to distinguish art from non-art images
using an SVM classifier. They report the highest discriminatory
power with a Network trained on the ImageNet dataset, which
outperforms a network solely trained on natural scenes.

Kao et al. (2016) proposed a multi-task learning approach, in
which a CNN was trained to simultaneously assign semantic and
aesthetic labels. They explored different network architectures
and showed that a network trained to recognize semantic
labels in addition to the aesthetic class outperforms a network
trained solely to recognize the aesthetic class of an image. This
finding is compatible with the role of both content and form in
psychological models of aesthetic experience (see below).

Nowadays, deep neural networks have largely replaced the
conventional approach of designing features deliberately in order
to reflect aesthetic concepts that derive from human intuition.
They outperform the conventional approach easily and have
a number of additional advantages: (1) Deep neural networks
learn features that are important for aesthetic evaluations
automatically, provided that a dataset is big enough. (2) They
can combine local image properties, such as sharpness or blur,
with global properties, such as composition or color harmony.
(3) They can even take into account abstract features, such as
image content, without the explicit design of such features by
humans. (4) Last but not least, deep neural networks are able to
learn image properties that humans may not even be aware of.
Such properties include unspecified compositional rules that are
employed intuitively by photographers and painters (Bell, 1914;
Arnheim, 1954; Redies, 2007, 2015).

While deep learning models are state-of-the-art in aesthetic
image evaluation, their success comes at a cost. At present,
the understanding of deep features and how they work in
object or aesthetic recognition lacks behind. Although there have
been attempts to analyze what deep neural networks actually
encode at higher layers (Yosinski et al., 2015), we are far from
understanding the success of deep learning in any significant
detail. For applications in aesthetic image evaluation, it may
be sufficient to simply build systems that closely match human
perception in deciding whether an image is considered to be
beautiful. However, for researchers who want to learn more
about aesthetics per se, the limitations of deep learning models
are particularly obvious. With handcrafted features, it is easy
to draw conclusion about which features contribute to the
aesthetic value of an image. Deep neural networks and generic
features basically represent a black-box approach that lacks
this kind of interpretability. Nevertheless, if we can develop
tools to understand deep representations in the future, the
drawback of deep learning approaches may eventually turn out
into an asset for understanding aesthetics. Such a more profound
understanding would also require that deep learning be better
explainable in terms of actual neural mechanisms. Although

some recent studies lead in this direction (for example, see
Brachmann et al., 2017), an abundance of questions remains.

2.2. Other Classifications of Images
Besides the prediction of visual preference, there has been
another trend in computational aesthetics, which tends to be
more focused on artworks than on photography. In this trend,
images are not classified according to their aesthetic appeal, but
with respect to the correct identification of the painter or the
artistic style, an undertaking which is usually performed by art
experts. From a methodological point of view, the identification
of painter and style are related tasks that often go hand in
hand. However, in the early days of computational aesthetics,
the identification of the artist who created a given painting
(Cezanne, Vermeer, Rembrandt, etc.,) was more popular. More
recently, there seems to be a shift to the prediction of the style
(Realism, Impressionism, Cubism, etc.,), as works frommore and
more art collections become digitized and available on the web.
These open-source collections enable researchers to easily collect
the huge number of images that are needed in order to train
and test algorithms. Possible applications for such methods are
recommender systems for online art markets or the more precise
description of the stylistic singularities of particular artists.

2.2.1. Artist Identification
Using a Naive Bayes Classifier, Keren (2002) computed Discrete
Cosine Transform (DCT) coefficients on an image and identified
the painters of art images (Rembrandt, van Gogh, Picasso,
Magritte, Dali) by using a voting scheme, where each 9 × 9
block of an image is assigned the style of an artist. A majority
voting for an image yielded the final result and the authors
reported an accuracy of 86% for choosing the correct painter.
Widjaja et al. (2003) focused on nude paintings and used color
of skin in order to identify the artist. They trained an SVM
on color profiles of patches extracted from images of four
different painters (Rubens, Michelangelo, Ingres, and Botticelli)
and reported a rate of correct identifications of 85%. Li and
Wang (2004) proposed a system for artist identification based
on wavelets and a Multiresolution Hidden Markov Model and
tested their approach on a dataset of grayscale Chinese ink images
that contained works by five different Chinese artists. Besides
the classification of paintings regarding their artist, they found
that their modeling approach can also be used as a measure
of similarity. To recognize the artist of an image, Lombardi
(2005) proposed a system that used a set of low-level features
for intensity, edge information, spatial frequency information, as
well as a new feature that captured color. Shen (2009) combined a
set of global visual features (color, textures, shape) and local visual
features (Gabor wavelets) and reported an identification accuracy
of 69.7% when distinguishing 25 classical Western painters in
a dataset that included Caravaggio, Rubens, Vermeer, and van
Gogh. For classification, they used an RBF neural network. Khan
et al. (2010) automatically predicted painters (Ingres, Matisse,
Monet, Picasso, Rembrandt, Rubens, Titian and van Gogh) by
using a Bag-of-Visual-Words approach. They computed SIFT
descriptors, as well as color name descriptors and trained an
SVM on a dataset which consisted of 40 images each of the
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eight artist (320 images total). They report an accuracy of 62%
for the combination of color and shape features. Condorovici
et al. (2013) used a dataset of 1,896 paintings by 15 different
artist (including Pollock, Rembrandt, Cezanne, and Magritte),
from which they extracted low-level features like an RGB color
histogram and edge information by Gabor filters. The authors
experimented with eight different classifiers, among which multi-
class logistic regression yielded the best results. Cetinic and Grgic
(2013) extracted three types of features, namely image-intensity
statistics, color-based features, and texture-based features and
used a multi-layer perceptron with one hidden layer; they
reported a 75.3% accuracy of identifying the correct one among
20 painters.

Overall, it is difficult to compare the performance of the
different methods for artist identification because a common
database, on which results could be reported and compared to
others, is lacking to date. Condorovici et al. (2013) addressed
this problem by comparing different methods to their guessing
baseline. However, this approach may give an advantage to
researcher who select painters who are more diverging to
begin with. For example, it may be harder to distinguish an
impressionist painting by Claude Monet from one by Paul
Cezanne, than to distinguish an abstract drip painting by Jackson
Pollock from a surrealist painting by René Magritte.

In summary, the most popular choices for features that are
used for the classifiers include a measure to capture texture
or spatial frequency, edge histograms for shape detection and
histograms for color analysis; all these features are low-level and
do not describe image content.

More recently, classification studies in other areas of research
no longer rely on one classifier, but report results for a set of
different classifiers that are studied in parallel. A popular choice
for this type of analysis is the Weka data mining software (Hall
et al., 2009).

2.2.2. Style Prediction
To predict art styles in various sets of artworks, different
approaches have been used. Gunsel et al. (2005) trained an
SVM classifier in order to discriminate among five painting
styles (Classicism, Impressionism, Cubism, Expressionism, and
Surrealism) as well as between twelve different painters. They
proposed a system that computes a 6-dimensional vector of low-
level features including brightness and gradient information of
an image as well as statistics of the gray-level histogram. This
system allows a user to query the system for similar paintings of
unknown style. For painter and art movement classification, the
authors report a high accuracy with a low number false positive
results. A different approach was taken by Jiang et al. (2006)
who designed a way to retrieve traditional Chinese paintings and
then classify them into one of the two styles, Gongbi (traditional
Chinese realistic painting) or Xieyi (freehand style). For this task,
they used low-level features, which captured color, texture and
edges. With a classifier that combined a decision tree and SVMs,
they obtained accuracies that are suitable for practical purposes.

Wallraven et al. (2009) asked participants to group images
from 11 different art periods (e.g., Gothic, Renaissance,
Classicism, Surrealism and Postmodern Art) and different

artists into self-selected categories. The resulting categories of
artworks corresponded well with the canonical art periods.
The authors then computed several low-level features of the
images (e. g. raw pixel values, color histograms, frequency, or a
GIST descriptor; Oliva and Torralba, 2006) and tested how well
the features described the clustering into different art periods.
The authors found a low correlation between their set of low-
level features and the grouping into art periods and concluded
that humans rely more on higher-layer properties. Siddiquie
et al. (2009) used multiple kernel learning in their approach
and chose texture, histograms of gradient orientations (HOGs),
color, and saliency as their features to discriminate between
seven different styles (Abstract Expressionism, Baroque, Cubism,
Graffiti, Impressionism and Rennaissance). Zujovic et al. (2009)
chose five different genres (Abstract Expressionism, Cubism,
Impressionism, Pop Art, and Realism). As features, they used
steerable filters as well as edge information extracted by a canny
edge detector. For color, they calculated HSV histograms and
used their bins as features. The classification was done with
several different classifiers and the authors reported a best overall
accuracy of 69.1% for the AdaBoost classifier. Shamir et al.
(2010) classified paintings of nine artists of different genres
(Impressionism, Surrealism and Abstract Expressionism) and
reached an accuracy of 91.0% in style classification by using a set
of features that contained frequency statistics, edge information
and color information. Čuljak et al. (2011) focused on texture and
color features, stating that such features are closely related to the
way humans perceive artworks. As genres, they chose Realism,
Impressionism, Cubism, Fauvism, Pointillism and Naïve Art.
They tested a range of classifiers and reported best results for
an SVM, reaching 60.2% accuracy. Ivanova et al. (2012) used
various MPEG-7 descriptors in order to distinguish different art
styles. In their experiment, they noted that color features were
better suited than texture features for distinguishing between art
styles and artists. Condorovici et al. (2015) reported that key
to a better accuracy in style discrimination is to let features be
inspired by human perception. Accordingly, they used luminance
and features that detected shape, texture, edges and color. A total
of eight genres was selected for style classification in their study.
Like other authors, they tested a set of classifiers and reached best
results with an SVM, outperforming their predecessors.

While all articles mentioned above used low-level features,
which capture formal aspects of paintings, results from Arora
and Elgammal (2012) first indicated that semantic features are
also important for style classification. The author compared
different features and reported the best results for an SVM
trained on classeme feature vectors (Torresani et al., 2010), which
represent an image as combined classification scores for many
weak classifiers that were trained on low-level descriptors.

Beginning with the work of Krizhevsky et al. (2012) and due
to the renewed interest in deep neural networks, these models
have also been applied to style prediction. Karayev et al. (2013)
used a relatively large dataset of 100K images together with
color features, GIST descriptors, saliency, meta-class features
(Bergamo and Torresani, 2012) for image content, as well as
DeCAF features (Donahue et al., 2014), which are activations of
higher layers of CNNs that encode image content rather than
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image form. They additionally trained a classifier for content
features on the categories of animals, vehicles, indoor objects
and people. For 25 different painting styles, they reached a mean
accuracy of 47.3% with all features in combination. Other than
painting style, they also reported results for photographic styles
in their article. One of their main conclusions is that style is
highly dependent on content. Another approach that also relied
on DeCAF features can be found in Bar et al. (2014). These
authors reported that a combination of DeCAF features and
PiCoDes features (Bergamo et al., 2011), a binary descriptor,
which incorporates several low-level descriptors, shows the best
performance in style recognition.

Saleh and Elgammal (2015) used the object labels that were
produced by the networks proposed in (Krizhevsky et al., 2012)
as a feature to discriminate the artist, the style and the genre of
roughly 80K paintings. They concluded that classemes (Torresani
et al., 2010) are the best way to represent artist, genre, and style-
specific properties for discrimination. Tan et al. (2016) conducted
several experiments regarding painting style, genre, and artist
discrimination and used the architecture proposed by Krizhevsky
et al. (2012). They fine-tuned a model that was trained on the
ImageNet (Deng et al., 2009) dataset for object recognition,
trained a model from scratch, and also tested SVM classifiers on
deep features. Interestingly, the fine-tunedmodel yielded the best
results in all tasks and even outperformed the model that was
trained from scratch.

Painter and style prediction go hand in hand. In the early
days, hand-crafted features that captured the same type of image
properties were equally suitable for both tasks. With more and
more image data becoming available for training, style prediction
can now be trained and tested on exceedingly large sets of images
and collections of style categories can be expanded with ease. For
painter identification, this is not necessarily the case because, for
most artists, only a relatively limited number of paintings are
available for training deep networks. As another complicating
factor, many artists changed their style during their lifetime. For
example, several abstract artists started their career with realistic
paintings (for example, Wassily Kandinsky, Piet Mondrian, and
Jackson Pollock). As a result, training deep neural networks for
painter identification will likely remain more difficult than for
style prediction.

For style prediction, the availability of huge collections of
digitized artworks will open new possibilities for researchers
who will use machine learning methods in the future. For
example, popular and widely used datasets of paintings, such as
the databases of the Google Art Project and WikiArt (formerly
WikiPaintings), contains several thousands of annotated
artworks.

As outlined for rating prediction (section 2.1), deep features
are getting more and more popular for style prediction
and increasingly replace hand-crafted features because they
are capable of representing semantic information also. For
example, Chiaroscuro style paintings often depict indoor scenes
and people, while Impressionist paintings frequently display
landscapes. Therefore, deep features do well on style prediction
and prove to be more powerful than low-level features that focus
on image form only. On the other hand, as with the prediction

of ratings, interpretability is not as high as it has been with
purposely designed features.

Although the vast area of computer-generated artistic images
is beyond the scope of the present review, we would like to point
out that deep models have boosted recent developments in this
area that harbor a large potential for understanding aesthetics.
Gatys et al. (2016) proposed an algorithm that can transfer the
style of any image to another, by matching the statistics of the
grammatrix of lower-layer features, as well as image content that
is represented at higher layers. They demonstrated that arbitrary
images can be redrawn in the style of famous paintings from
Van Gogh or Picasso. More recent generative models (Generative
Adversarial Networks [GANs]; Goodfellow et al., 2014) are even
capable of matching the style of entire collections of artworks, as
shown by Zhu et al. (2017), who used collections of paintings by
Monet, Cezanne and Van Gogh to redraw landscape photographs
to match the respective painter’s style. While GANs are advanced
methods that originate in Machine Learning, other methods like
the approach by Malo and Simoncelli (2015) focus more on
using physiologically plausible architectures to generate images
with similar textures. This latter approach is likely to have more
explanatory power because it makes use of mathematical tools
that are more directly related to findings from vision science.

2.3. Other Applications
In the previous sections, we described computational methods
to predict ratings and to discriminate between paintings by
different artists and art styles. Most of these methods rely of the
perceptual distinctness of different types of artworks. However,
art has also been studied from other perspectives. In the present
section, we review computational methods that can provide
useful help in solving questions relevant to art history as well as
art forgery detection. Some of these methods aim to discriminate
rather subtle differences between artworks that may not even be
apparent to the human eye.

For a review on earlier methods, see Stork (2009a). A more
recent overview is given in Spratt and Elgammal (2014), who
list different applications and publications of computational
methods for art analysis, including semantic annotation of
artworks, ordering of paintings by creation date, or the detection
of similarities in paintings and artists in order to reveal mutual
influences between artists.

2.3.1. Art History
Among the methods that address art historical questions, we
can discern two areas of interest. First, some researchers have
developed computational methods to study artistic technique.
Second, the influence of a painter on the style of other artists has
been studied.

Criminisi et al. (2002) developed methods for investigating
the perspective and the reconstruction of the 3-dimensional
space from realistic paintings. This information can help art
historians to answer spatial questions like, for example, to
determine the height of people or objects that are depicted in
paintings. In another study, Criminisi and Stork (2004) analyzed
inaccuracies in the perspective cues in a painting by Jan van
Eyck and demonstrated that is it unlikely that the painter used
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optical aids like mirrors during the creation of the painting
“Portrait of Arnolfini and his wife.” Stork and Johnson (2006)
applied a technique that was originally designed for detection
of tampering in photographs, in order to localize light sources
in paintings. They presented such an analysis for Georges de
La Tour’s painting “Christ in the carpenter’s studio.” Based on
their findings, they rebutted the claim that the light source of
the depicted scene lays outside the painting, which could have
been an indication of the use of optical aids as well. Papaodysseus
et al. (2006) investigated the use of stencils in late Bronze Age wall
paintings by applying a Hough Transform (a method for finding
instances of mathematically defined shapes in images), and
identified a set of stencils that were likely used during creation of
the wall paintings. Kim et al. (2014) propose statistical measures
to quantify the usage of individual colors, their variety in a
painting, and the roughness of the brightness of a painting and
report significant differences for different art periods. Berezhnoy
et al. (2005) studied color and texture features in paintings by
van Gogh. They confirmed that the painter increasingly made use
of opponent colors later in his lifetime. Later, Berezhnoy et al.
(2009) proposed a method for aiding art experts in automatically
extracting the orientations of brushstrokes in a painting.

The study of a painter’s influence on other artists, which can
be investigated by detecting similarities between images, is a
popular topic of research in computational aesthetics. Bressan
et al. (2008) used SIFT features and local color statistics to
compute similarities between images based on a Fisher Kernel
representation of the images. Shamir and Tarakhovsky (2012)
used a set of 4,027 features that represented many different
aspects of visual appearance (e.g., shape, texture, color) and
computed a phylogeny, which shows distinct clusters for classic
artists like Vermeer or Rembrandt and for modern artists like
Jackson Pollock, Marc Rothko, or Wassily Kandinsky. Wang
and Takatsuka (2012) extracted color and composition features,
which allowed them to classify Renaissance, Impressionist
and Postimpressionist paintings. Furthermore, they applied
hierarchical clustering in order to identify relationships among
artists and demonstrated that they can detect influences of
preceding art periods on Picasso’s works. Abe et al. (2013)
proposed a framework for determining artistic influences based
on the semantics of images. By using classeme features to
compute distances between images (Torresani et al., 2010), they
succeeded in identifying novel cases where one artist influenced
another, which had not been considered by art historians
before. Elgammal and Saleh (2015) approached the problem of
assessing creativity in terms of the originality of an artwork and
represented influences and originality as a graph. Relying on
classemes for subject matter and GIST features for compositional
aspects, they computed a creativity score for each painting in
comparison to contemporary artworks.

2.3.2. Forgery Detection
Another example where computational methods can help art
historians is in the detection of forgeries, which is a problem
closely related to artist identification. In artist identification,
the works of an artist are identified among many others that
usually possess rather different characteristics, which are often

obvious even to laymen. However, when detecting forgeries, any
differences may no longer be as easy to spot so that the task
may be difficult even for art experts. Both approaches aim at
identifying unique features of an artist, but an algorithm, which
works well for artist identification, may not work as well for
authentication and vice versa.

For example, Lyu et al. (2004) performed a wavelet
decomposition of eight works attributed to the Renaissance
painter Pieter Bruegel the Elder and five imitations of his
work. From the wavelet statistics, they extracted a feature vector
for subimages of each image and performed authentication by
measuring distances between these high-dimensional points.
They found that imitations of Bruegel’s works differ significantly
from authentic paintings. In another application of their
technique, they solved the problem of “many hands.” Here,
art historians are interested in how many different painters
contributed to one particular painting. Using their method,
they were able to identify at least four different painters for
face depictions in an image attributed to Pietro Perugino, a
notion that is shared by art historians. Polatkan et al. (2009)
introduced a new dataset of images that included originals and
purposely copied paintings. Using the parameters of a Hidden
Markov Model trained on wavelet coefficients, they succeeded
in discriminating the copies from the originals. Li et al. (2012)
studied the brushstrokes of paintings by Vincent van Gogh and
used them for comparison with contemporaries and forgeries,
as well as for dating different periods of van Gogh’s work.
Johnson et al. (2008) summarize different approaches by three
research groups for discriminating between 82 original van Gogh
paintings, 6 non-original works, and 13 paintings of questionable
authorship. All approaches are based on a wavelet decomposition
of the images.

The work of American painter Jackson Pollock has received
particular interest from the scientific community. Taylor et al.
(1999) performed a fractal analysis of the artist’s drip paintings
and found that the fractal dimension, computed using a
box-counting approach, increased over the artist’s lifetime.
The authors suggested that this method could be used for
authenticating or dating individual works by the artist. Taylor’s
approach was criticized by Jones-Smith and Mathur (2006), who
showed that they could easily generate images that had the same
fractal properties albeit not being similar to Pollock’s paintings
in their aesthetic value. Stork (2009b) later defended Taylor and
colleagues and argued that, while one feature in isolationmay not
be sufficient for the analysis, a combination of multiple fractal
measures can provide useful information. Shamir (2015) used a
set of features from biological image analysis (Shamir et al., 2008)
and reported an accuracy of 93.0% in discriminating between
original and non-original drip paintings.

Hughes et al. (2010) applied a sparse coding scheme in
order to compare authentic Bruegel paintings with works by
imitators. They demonstrated that their technique can be used
to discriminate between authentic and non-authentic Bruegel
drawings. Olshausen and DeWeese (2010) suggested that the
methods of detecting forgeries brought forward by Hughes et al.
(2010) could be useful not only in learning styles of particular
artists but also for using these statistics to generate novel images.
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Montagner et al. (2016) proposed a system for forgery detection
of paintings by the Portuguese painter Amadeo Souza-Cardoso.
In their approach, they combined a brushstroke analysis using
SIFT features on RGB images and an analysis of the pigments
in the painting by hyperspectral imaging. Using a dataset of 12
images, among which one was not painted by the artist, they
successfully determined the authenticity of the original paintings.

In summary, computational methods can provide support
for art historians who study individual paintings or artists.
Computational methods have aided art historians in multiple
ways, for example by enabling them to detect the use of practical
aids like stencils or projectors in the creation of an artwork.
Furthermore, telling forgeries from originals as well as the dating
of an artist’s work can be improved with the help of algorithmic
approaches. Other applications are the exploration of hitherto
unknown influences between artists.

3. EXPERIMENTAL AESTHETICS:

INVESTIGATION OF SPECIFIC IMAGE

PROPERTIES

In experimental aesthetics, researchers are not primarily
interested in reaching automatic decisions that mimic human
aesthetic judgments. Rather, the goal is to find out on what
grounds aesthetic judgement are made by human observers and
what their biological basis and evolutionary purpose might be.
In other words, applications are not the focus of research, but
rather a better understanding of aesthetic experience (Berlyne,
1974; Cela-Conde et al., 2011; Chatterjee and Vartanian, 2014;
Shimamura, 2014). Before proceeding to concrete examples, we
will briefly review some key concepts in experimental aesthetic
research.

3.1. Basic Concepts in Experimental

Aesthetics
It is generally agreed that aesthetic experience is a highly
complex phenomenon and involves at least three key domains
(perception, cognition and emotion), which are realized at
multiple levels of human social organization (universal, cultural
and individual) (Jacobsen, 2006; Marković, 2012; Chatterjee and
Vartanian, 2014; Redies, 2015).

To a large extent, perception represents bottom-up processing
of visual information. Perceptual mechanisms are thought to be
universal among humans and are likely to have their origin in the
evolution of the human visual system. Whereas it is self-evident
that any information associated with a visual stimulus must be
processed by the visual system in order to be perceived, it is still
a matter of debate whether there are specific mechanisms that
mediate the perception of aesthetic (or beautiful) stimuli at lower
or mid-levels of visual processing.

On the one hand, it has been demonstrated that visually
pleasing images are associated with specific image features that
can be measured by objective means. Because artworks of
different styles, cultures and artists differ in their content, these
common image properties reflect formal characteristics of images
(significant form; Bell, 1914). Possibly, these stimulus properties

elicit a particular state of neural activity in the visual system
(resonance; Taylor et al., 2005; Redies et al., 2007b) or induce
the activation of a specific (beauty-responsive) neural mechanism
in receptive individuals (Redies, 2015). This specific activation
can be thought of as the correlate of visual preference or, more
specifically, of the perception of beauty in images.

On the other hand, it has been argued by some modern
philosophers, art critics, psychologists and neuroscientists that
any visual stimulus can elicit an aesthetic experience, as long
as it is presented in an appropriate cultural context. Followers
of this cognitive hypothesis often reject the notion that there
are objective and universal stimulus properties that characterize
aesthetic stimuli. Instead, they emphasize the role of the art-
historical context of artworks, the intentions of the artists,
conceptual issues, the expertise of the beholder, the status of the
artwork and other culturally determined factors (Danto, 1981;
Leder et al., 2004; Zeki, 2013; Gopnik, 2014). These factors are,
by definition, not universal and do not persist over time, because
cultural conditions change perpetually; they reflect cognitive
(predominantly top-down) mechanisms in the human brain and
relate more to the content and context of artworks than to their
form. However, perceptual (sensory) and cognitive factors are not
mutually exclusive in aesthetic appreciation; several researchers
have included combinations of both types of factors in their
models of aesthetic experience (for example, see Jacobsen, 2006;
Locher et al., 2007; Marković, 2012; Chatterjee and Vartanian,
2014; Kozbelt and Kaufman, 2014; Shimamura, 2014; Redies,
2015).

Individual experiences also play an important role in aesthetic
experience, both in terms of short-term adaptation to the
beauty of visual stimuli and in long-term processes, such as
familiarization and the acquisition of knowledge about art.
Interestingly, interindividual differences have been found even
in the preference for basic stimulus properties, such as stimulus
complexity (Bies et al., 2016a; Güçlütürk et al., 2016; Lyssenko
et al., 2016; Spehar et al., 2016), color (Mallon et al., 2014; Palmer
et al., 2016), or the preference for the aspect ratio of rectangles
(McManus et al., 2010). Last but not least, the emotions of the
beholder also play an important role in aesthetic appreciation
(Leder et al., 2004, 2014; Silvia, 2005, 2014).

Against this background of concepts in experimental
aesthetics, it is clear the identification of objective image
properties in computational aesthetics can provide an important
basis for the understanding of aesthetic perception. Indeed,
the notion that aesthetic stimuli are endowed by objectively
measurable properties that can be universally recognized and
are preferred by humans across cultures seems implicit in many
studies in computational aesthetics. However, the knowledge
about other factors that depend on the cultural context of
individual artworks, on the intentions of the artists and on the
cognitive and emotional state of the beholder should make us
cautious when confronted with claims that particular image
properties are universally preferred across individuals, groups of
people or cultures.

A major research topic of experimental aesthetics is the
investigation of the specific properties of artworks. This research
allows us to gain insight into how aesthetic perception is linked
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to human vision and contributes to our knowledge on how we
perceive the world (Graham and Redies, 2010). In the field of
experimental aesthetics, researchers have studied a wide variety
of aesthetic experiences, ranging from deeply moving emotions
elicited when viewing famous artworks in a prestigious museum,
to aesthetic ratings of artworks in a laboratory setting, and
to visual preferences for simple artificial patterns displayed on
a computer screen. This wide range of aesthetic experiences
brings up two issues. First, beyond statistical image properties,
cultural, social and psychological factors play an important
role in aesthetic experience. Undoubtedly, these factors interact
with image properties that characterize artworks. Second, the
role of specific image properties may depend on the type (or
the intensity) of the aesthetic experience studied. For example,
if an image property plays a role in aesthetic preference of
simple, computer-generated patterns in a laboratory experiment,
the same property may not necessarily influence the aesthetic
appreciation of high-quality artworks in a museum (or the
classification of photographs in a computational study). With
these caveats in mind, we will describe several image properties
that have been associated with aesthetic experience in the
following sections. Again, we do not strive for completeness,
but rather review selected examples that seem particularly
instructive, with a focus on artworks and photographs.

3.2. Luminance and Color Statistics
The distribution of luminance, color and contrast belong to
the low-level image properties that can affect the preference
ratings of photographs. For example, Graham and Field (2008)
showed that luminance statistics differ between artworks and
natural scenes, as do their optical properties. By manipulating
luminance statistics in a variety of natural images, including
artistic photographs of landscapes, Graham et al. (2016) found
that humans prefer images of low skewness (i.e., the third
statistical moment) of their luminance distribution, with roughly
equal proportions of light and dark in the images. Indeed,
artworks tend to have lower-skew luminance histograms than
photographs of real scenes across cultures and time periods
(Graham and Field, 2007). The authors argue that artists use a
non-linear compression to obtain low skewness in their paintings
because images with this property can be more efficiently
processed by the visual system.

Color is a feature that has been frequently used in classifiers
in the field of computational aesthetics (see section 2.1.1).
Although it is clear that color contributes much to aesthetics
of visual art, there have been relatively few studies on color
in experimental aesthetics. For example, by manipulating color
statistics of Renaissance paintings, Pinto et al. (2006) studied
lighting conditions that viewers consider optimal; they found that
human observers generally prefer illumination conditions that
yield increased chromatic diversity. Palmer and Schloss (2010)
studied human aesthetic preferences for color, using simple visual
stimuli. In their ecological valence theory, they suggest that color
preferences arise from the affective responses to color-associated
objects. In other words, people like colors that are associated
with objects they like. In how far these results generalize to
artworks remains unclear. Mallon et al. (2014) observed that

participants preferred specific combinations of color measures in
abstract artworks and that this aesthetic preference is subject to
short-term visual adaptation.

In the field of computational aesthetics, Leykin and Cutzu
(2003) compared the occurrence of color and luminance intensity
edges in paintings and photographs of real scenes. Their results
indicated that, in paintings, there are significantly more color-
only edges than in photographs of real scenes. Moreover, color
edges and intensity edges tend to coincide less frequently in
paintings than in photographs of real scenes. Cutzu et al. (2005)
build a classifier that combined color, edge and texture properties
and distinguished artworks and photographs with 90% accuracy.

Aragón et al. (2008) studied the distribution of luminance in
Vincent van Gogh’s “Starry Night” and other paintings by the
artist. Interestingly, the distribution of luminance fluctuations in
some of these images resembled the mathematical distribution
of fluid turbulence, as described by the Russian mathematician
Andrei Kolmogorov. The authors speculated that the painter
might have unwittingly introduced this property in order to
produce a special feeling of unease and motion.

3.3. Complexity
Complexity relates the subjective impression of how many
pictorial elements are contained in a visual stimulus. This
property has been studied extensively, both in computational
aesthetics and in psychological experiments. Complexity has
been captured by a multitude of statistical measures, such as
the number of visual elements in an image (Birkhoff, 1933),
the fractal dimension (Mureika, 2005; Taylor et al., 2011), GIF
compression (Forsythe et al., 2011), overall luminance gradient
strength (Braun et al., 2013), or edge density (Redies et al.,
2017).

In his seminal work on aesthetics, Berlyne (1974) suggested
that images with an intermediate degree of complexity are
preferred by humans over images of low or high complexity. His
interpretation of the inverted u-shaped relation between beauty
and complexity was that preference and interest increase steadily
with visual complexity until a maximal level of affective appraisal
is reached. With a further increase in complexity, appraisal
decreases again because of decreasing preference. Others have
argued that humans prefer an intermediate visual complexity
because our ancestors lived in a savanna-type landscape of
similar complexity (for a review, see Forsythe et al., 2011). The
relationship between liking and stimulus complexity is subject
to considerable interindividual variability, at least for artificial
images (Jacobsen and Höfel, 2002). By automatically clustering
the participants, Güçlütürk et al. (2016) described that, for one
group of participants, liking decreased as stimuli became more
complex, while another group exhibited the opposite pattern of
preference (i.e., higher liking for more complex stimuli). Bies
et al. (2016a) obtained similar results by investigating preference
ratings for exact (mathematical) fractal patterns. They also
described that their measure of complexity (fractal dimension)
interacted with symmetry and recursion of their stimuli.

Rigau et al. (2008) took Birkhoff’s aforementioned idea of
aesthetics being a trade off between order and complexity, and
proposed different global measures based on principles from
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information theory and Kolmogorov complexity. The authors
applied these measures to nine paintings by van Gogh, Seurat,
and Mondrian.

3.4. Symmetry, Balance and The Rule of

Thirds
Symmetry is a well-established property that plays a prominent
role in the perception of many natural and artificial patterns.
Symmetry can be perceived at a glance and can affect
visual detection, attention, eye movements and physiological
arousal (Locher and Nodine, 1989). Not surprisingly, several
studies have demonstrated that symmetry is involved also
in aesthetic perception. A particularly well-known example is
the perception of attractiveness of human faces (Grammer
and Thornhill, 1994). In simple geometrical (graphic) and
ornamental patterns, symmetry was shown to have a high
correlation with aesthetic judgements (Jacobsen and Höfel,
2002; Westphal-Fitch et al., 2013; Rampone et al., 2016;
al Rifaie et al., 2017). However, the role of symmetry in
photography and artworks seems less clear. The visitor to
any art museum will readily realize that simple types of
geometrical symmetry (reflectional, translational or rotational)
are not general principles of composition in traditional visual
art, although symmetry can attract attention if present in a
painting (Locher and Nodine, 1989). Accordingly, studies that
link symmetry to the aesthetic appreciation of artworks are
infrequent (Osborne, 1986). It has therefore been suggested that
the link between symmetry and attractiveness/beauty is domain-
specific (Little, 2014).

The century-old concept of pictorial balance is related to
symmetry, but on a more complex level. Unlike symmetry,
it is considered to be an important and universal factor that
contributes to the aesthetic appreciation of most types of images,
including abstract visual patterns, photographs and artworks
(McManus et al., 1985; Gershoni and Hochstein, 2011; Jahanian
et al., 2015). According to Arnheim’s Gestalt theory of visual
balance (Arnheim, 1954), an image is balanced if the center
of the displayed attractions is placed on any of the major
axes of the image (vertical, horizontal and diagonal). There are
different ways to measure balance. For example, in their study
on Arnheim’s theory, McManus et al. (2011a) used a physicalist
approach and measured the center-of-mass of the luminance
values in images. They considered an image more balanced if the
center-of-mass was closer to the geometrical center of an image.
Overall, the authors did not find evidence to support Arnheim’s
theory when they compared art photographs to photographs that
were randomly taken, or when they studied simple geometrical
figures. Jahanian et al. (2015) took another approach and
modeled pictorial balance in terms of the visual weight of several
low-level visual features that are used to calculate visual saliency.
In a large set of 120,000 images that were rated highly, the
saliency-based image hotspots aligned with Arnheim’s axes, thus
confirming his theory. A similar difference was obtained in a
study on photographic cropping. The details of photographs
that were preferred during cropping showed a more balanced
saliency distribution than the details that were avoided during

cropping (Abeln et al., 2016); no such difference was observed
for luminance-based balance McManus et al. (2011b). Some of
the computer algorithms that predict ratings of photographs and
artworks (see section 2.1.1) incorporate measures of pictorial
balance in their calculations (for example, see Ke et al., 2006; Li
and Chen, 2009).

The rule of thirds, which is a principle of composition avidly
followed in photography, seems to contradict the notion that
the major axis of an image play a significant role in balance; it
stipulates that salient compositional elements are to be placed
close to one of the third lines of the image in order for images
to be aesthetically pleasing. The rule of thirds has been used in
many computational methods to predict ratings of photographs
and artworks (for example, see Datta et al., 2006; Luo and Tang,
2008; Li and Chen, 2009). However, experimental studies did not
confirm the significance of this rule in high-quality photographs
(Amirshahi et al., 2014a) or “selfie” photographs (Bruno et al.,
2014).

3.5. Fourier Spectral Properties
Graham and Field (2007) and Redies et al. (2007b) compared
the Fourier spectral properties of natural scenes and images of
Western artworks. They found that both types of stimuli share
a scale-invariant amplitude (or power) frequency spectrum and
both have a similar slope in log-log plots. Similar results were
obtained for artworks of East Asian provenance (Graham and
Field, 2008) and for other visual stimuli that were created to
please the human eye, such as cartoons, comics and mangas
(Koch et al., 2010). In contrast, several types of non-art images,
such as photographs of simple objects and plants, do not possess
this property (Redies et al., 2007b). Notably, photographs of
faces portraits have steeper slopes of the log-log plots than
human portraits drawn by artists (Redies et al., 2007a). Mather
(2014) compared the spectral slopes of 31 artworks with those
of closely matching photographs. He found that artists compress
the spectral slopes of their works to a relatively narrow range
compared to the slopes of the photographs and proposed that
the artist’s visual system plays a central role in adjusting the
spectral slope of artworks. Humans observers tend to prefer
artificial, random-phase patterns with Fourier properties similar
to natural scenes (Menzel et al., 2015), but exhibit significant
interindividual differences in this preference (Spehar et al.,
2016). Moreover, the visual preference for these synthetic noise
images correlated well with the discrimination sensitivity of the
observers for different amplitude spectra of the images (Spehar
et al., 2016).

Interestingly, the amplitude spectrum of many uncomfortable
visual stimuli contains an excessive energy at medium spatial
frequencies and thereby deviates from the linear spectral
properties of natural scenes and images of artworks that are
perceived as pleasant (Fernandez and Wilkins, 2008; O’Hare and
Hibbard, 2011). The Fourier spectral slope of images correlates
with measures of image complexity (Table S1 in Redies et al.,
2017), in particular with the fractal dimension (Bies et al., 2016b).
A shallower slope indicates more power in the high-frequency
part of the spectrum; consequently, the images show more fine
detail and thus higher complexity.
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Schweinhart and Essock (2013) analyzed the Fourier spectral
properties in landscape paintings that were produced by a group
of local artists, and compared them to photographs of the
scenes, which the artists had painted. They asked whether the
well-known oblique effect can be observed in paintings. The
oblique effect refers to the fact that, in our natural environment,
cardinal (horizontal and vertical) edge orientations are more
prominent than oblique orientations. In the Fourier domain,
this difference translates into stronger amplitudes for cardinal
vs. oblique orientations. In the natural environment, this effect
is observed only for the lowest spatial frequencies but not for
high spatial frequencies. However, the artists implemented the
oblique effect also at high spatial frequencies, thus overregulating
this image property in their works.

3.6. Fractals and Self-similarity
The work of the abstract expressionist artist Jackson Pollock
(1912–1956) has received particular interest from the scientific
community. Taylor performed a fractal analysis of the artist’s drip
paintings using a box-counting approach and found that Pollock’s
paintings are not chaotic but possess a fractal structure (Taylor,
2002). This surprising finding prompted a series of investigations
of human responses to fractals, which are not only prevalent in
nature but can also be found in geometric and mathematical
patterns produced by humans. The studies included behavioral
investigations, studies of physiological responses, eye tracking
and brain imaging studies (Taylor et al., 2011; Taylor and Spehar,
2016). Converging evidence from these studies indicate that
both natural and artificial fractals of mid-range complexity (as
measured by the fractal dimension) elicit favorable physiological
responses and are thus preferred by human observers (see
also section 3.3). Fractals have even been shown to reduce
stress levels in the observers (Taylor, 2006) and it has been
suggested that the beneficial effect of fractal patterns can enhance
architecture and our urban environment (Joye, 2007). However,
as already observed by Aks and Sprott in their seminal study on
chaotic visual patterns (Aks and Sprott, 1996), there are large
interindividual differences in human responses to fractals and
their complexity (see section 3.3). Interestingly, Pollock created
fractal structure in his artworks long before fractal geometry was
described and studied in detail in the 1970ies (Mandelbrot and
Pignoni, 1983); he must have followed this principle intuitively
and without explicit cognitive control. As noted by Alvarez-
Ramirez et al. (2008), the finding that Pollock’s drip paintings
possess fractal structure is closely related to its scale-invariant
spectral properties (see section 3.5).

The fractal-like structure of artworks was studied also by
Amirshahi et al. (2012) who derived a measure for self-similarity
in images, based on a Pyramid Histogram of Oriented Gradients
(PHOG) representation of images (Bosch et al., 2007). In this
approach, images are self-similar if the Histograms of Oriented
Gradients (HOGs) of parts of an image resemble the HOG
of the entire image. Redies et al. (2012) applied this measure
to different image categories, ranging from natural scenes to
man-made stimuli and artworks, including a large and diverse
sets of traditional paintings of Western provenance (Amirshahi
et al., 2014b). For artworks and most natural patterns, Redies

and colleagues reported an intermediate to high self-similarity,
whereas other patterns, such as images of simple objects, faces of
buildings, were less self-similar.

Both lines of evidence suggest that traditional artworks share
specific stimulus properties with our natural environment. Our
visual system has adapted to these properties in evolution so
that it can process them with a sparse (efficient) code in order
to save computational and metabolic resources (Simoncelli and
Olshausen, 2001). It has therefore been suggested that artworks
are created so that they can be processed efficiently/sparsely by
the human visual system (Redies, 2007; Renoult et al., 2016).
The concept of sparse coding is familiar also to researchers in
computer vision (Mairal et al., 2014). Akin to the efficient coding
hypothesis is the idea that artworks can be processed fluently
and therefore evoke a pleasant feeling in human observers (Reber
et al., 2004). The fluency concept has its origin in the field of
psychology; the underlying neuronal mechanism and possible
coding strategies in the human brain remain unspecified to date.

3.7. Regularities in the Orientation of

Luminance Gradients, Edges, and Lines
In a study on large subsets of traditional Western artworks,
histograms of oriented gradients (HOGs; see section 3.6) were
found to possess a surprising regularity (Redies et al., 2012; Braun
et al., 2013): Artworks possess a relatively uniform spectrum
of luminance gradient (edge) orientations. This result implies
that all edge orientations in the artworks tend to be similarly
prominent. In other words, anisotropy of edge orientations is
low in artworks. Other types of images with low anisotropy
can be found in nature (for example, large vista scenes and
images of plants, lichen growth patterns, branches and clouds;
Redies et al., 2012). Anisotropy is larger in images of simple
objects, including faces, and other man-made patterns, such as
advertisements, building facades and urban scenes, due to the
relative prominence of single or a few orientations. For example,
horizontal and vertical orientations predominate in images of
building facades.

The finding of low anisotropy of edge orientations in artworks
was recently confirmed and extended by Redies et al. (2017),
who studied edge orientations in different categories of images,
including traditional artworks of different cultural provenance
(Western, Islamic and East Asian). They showed that the art
images possess a more uniform histogram of edge orientations
across cultures than many non-art types of images, in particular,
photographs of man-made objects and scenes. This result
mirrors the low anisotropy found in artworks (see above). In
addition, by pairwise comparison of edge orientations across each
image, Redies and colleagues found that edge orientations are
independent of each other across art images, except for edge
pairs at short distances, which tend to be collinear. In other
words, the edge orientation at one position of an image does
not allow predicting the orientations of distant edges at other
positions in the same image. Similar statistical regularities of
edge orientations are observed in some natural images, such as
lichen growth patterns. This property is independent of cultural
provenance, artistic genre or technique, or image content of
the artworks studied. The authors speculated that this regularity
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might relate to the notion of “good composition” (Arnheim,
1954) or “visual rightness” (Locher et al., 1999), which has been
advanced for traditional artworks.

Another regularity with respect to the perception of contours
is that smoothly curved lines and objects are generally
preferred over sharply angular ones (Gómez-Puerto et al., 2015).
Interestingly, humans share this preferences not only across
cultures but also with great apes (Munar et al., 2015). As a
possible explanation, Bar and Neta (2006) proposed that sharp
transitions in contour convey a sense of threat in the observer
and are therefore disliked. However, Bertamini et al. (2016)
questioned this notion and provided experimental evidence that
humans prefer curvature due to its intrinsic characteristics and
not because they reject the threat potential of angular contours.

4. CONCLUSION AND OUTLOOK

In recent years, computer vision has successfully contributed
computational methods to the evaluation of photographs and
digitally reproduced artworks. In the present work, we discussed
recent progress in this field, which has become known as
computational aesthetics. Specifically, we reviewed methods that
were developed to predict the aesthetic rating of photographs
and artworks by computational approaches. For artworks,
we provided an overview on applications of computational
algorithms to artist identification, style prediction, art historical
questions, and forgery detection.

In general, researchers in the computer vision community
tend to measure success by comparing different methods
regarding their accuracy of classification or prediction. When
using the same database, systems can easily be compared and
finding the best working approach is straightforward. However,
with recent advances in technology, algorithmic and larger
datasets, the best-performing classifiers have become black boxes
and their discrimination boundaries are no longer obvious.
From an application standpoint of view, this is not necessarily
a limitation. For example, such systems can be readily deployed
in image processing pipelines to identify images of high vs. low
aesthetic value. While early methods where restricted to the
formal aspects of a scene, more advanced methods, like Deep
Neural Networks, can take into account the content of images
as well. It was shown that the inclusion of content results in
major improvements, because different stylistic elements come
along with different content matter. For example, bright colors
are usually more pronounced in pleasant images that depict fresh
fruits than in gloomy images of street scenes at night. Such
combinatorial information can improve classification results.

Lately, computational methods have gained increasing
popularity also in the field of experimental aesthetics, an area
of research that has a long tradition as a branch of psychology
and, more recently, of neuroscience. In experimental aesthetics,
the focus is not on improving algorithms for rating prediction
systems or identifying artists or artistic styles, but rather
on gaining a better understanding of what specific stimulus
properties induce human observers to reach judgements on
beauty and to have an aesthetic experience. For example, as

discussed in section 3, converging evidence suggests that some
global image properties that also characterize natural scenes can
be found in large subsets of traditional artworks.

With recent developments in Deep Learning, it has become
harder to share knowledge between computational aesthetics and
experimental aesthetics. In the early days, insights from the active
field of experimental aesthetics provided a wealth of knowledge,
also for computational aesthetics. This knowledge resulted in the
development of computational algorithms based on handcrafted
features, which were known (or suspected) to contribute to
the aesthetic appeal of an image. During this time, empirical
aesthetics also profited greatly from the computational methods
because, for the first time, very large datasets of images could be
analyzed, rather than the small number of images that are usually
tested in psychological experiments with human observers.
However, with Deep Learning, it has became harder for empirical
aesthetics to catch up with the computational approaches.
Deep Learning models basically represent black boxes, which
prevent insight into what features they learn and how they
use them to evaluate the aesthetic quality of images, which is
the main motivation for empirical aesthetics. In future work, it
will therefore be essential to gain a better understanding and
interpretability of the decision boundaries that the computational
models draw, in order to identify concrete properties of human
aesthetic preference. Moreover, recent generative models from
computer vision (Gatys et al., 2016) are capable of producing
synthetic images that match the style of famous painters, and
are no longer discriminative only. This generative approach
may provide researchers with well-controlled stimuli for testing
human observers in experimental aesthetics.

In conclusion, much can be learned if the two areas of
aesthetic research can be recombined, taking advantage of
the methodological advances in computational aesthetics and
the identification of perceptual mechanisms in experimental
aesthetics. As an example, we recently investigated the variability
of CNN feature responses to traditional artworks and non-art
images and found that the two categories of images can be
separated by a classifier that is based on only two variance
values (Brachmann et al., 2017). However, results for some
styles of (post-)modern and contemporary art clearly deviated
from traditional art. The investigation of differences between
art styles may therefore be of particular interest in the future,
not only in computational aesthetics but also in experimental
aesthetics. Moreover, in view of the interindividual differences in
aesthetic preferences (see section 3.1), cultural diversity will be an
important issue in future research.

AUTHOR CONTRIBUTIONS

AB andCR conceived this review, carried out the literature search
and wrote the manuscript.

FUNDING

This work was supported by funds from the Institute of Anatomy,
Jena University Hospital.

Frontiers in Computational Neuroscience | www.frontiersin.org 13 November 2017 | Volume 11 | Article 102

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Brachmann and Redies Computational and Experimental Approaches to Visual Aesthetics

REFERENCES

Abe, K., Saleh, B., and Elgammal, A. (2013). “An early framework for determining
artistic influence,” in International Conference on Image Analysis and Processing

(Berlin: Springer), 198–207.
Abeln, J., Fresz, L., Amirshahi, S. A., McManus, I. C., Koch, M., Kreysa, H.,

et al. (2016). Preference for well-balanced saliency in details cropped from
photographs. Front. Hum. Neurosci. 9:704. doi: 10.3389/fnhum.2015.00704

Aks, D. J., and Sprott, J. C. (1996). Quantifying aesthetic preference for chaotic
patterns. Emp. Stud. Arts 14, 1–16.

al Rifaie, M. M., Ursyn, A., Zimmer, R., and Javid, M. A. J. (2017). “On
symmetry, aesthetics and quantifying symmetrical complexity,” in International
Conference on Evolutionary and Biologically Inspired Music and Art (Cham:
Springer), 17–32.

Alvarez-Ramirez, J., Ibarra-Valdez, C., Rodriguez, E., and Dagdug, L. (2008). 1/f-
Noise structures in Pollocks’s drip paintings. Phys. A Stat. Mechan. Applic. 387,
281–295. doi: 10.1016/j.physa.2007.08.047

Amirshahi, S. A., Hayn-Leichsenring, G. U., Denzler, J., and Redies, C. (2014a).
Evaluating the rule of thirds in photographs and paintings. Art Percept. 2,
163–182. doi: 10.1163/22134913-00002024

Amirshahi, S. A., Hayn-Leichsenring, G. U., Denzler, J., and Redies, C. (2014b).
“Jenaesthetics subjective dataset: analyzing paintings by subjective scores,” in
Workshop at the European Conference on Computer Vision (Cham: Springer),
3–19.

Amirshahi, S. A., Koch, M., Denzler, J., and Redies, C. (2012). “PHOG analysis of
self-similarity in esthetic images,” in Proceedings of SPIE (Human Vision and

Electronic Imaging XVII) (San Francisco, CA), 8291:82911J.
Aragón, J. L., Naumis, G. G., Bai, M., Torres,M., andMaini, P. K. (2008). Turbulent

luminance in impassioned van Gogh paintings. J. Math. Imag. Vis. 30, 275–283.
doi: 10.1007/s10851-007-0055-0

Arnheim, R. (1954). Art and Visual Perception: A Psychology of the Creative Eye.
Berkeley, CA: University of California Press.

Arora, R. S., and Elgammal, A. (2012). “Towards automated classification of fine-
art painting style: a comparative study,” in 2012 21st International Conference

on the Pattern Recognition (ICPR) (Tsukuba: IEEE), 3541–3544.
Bar, M., and Neta, M. (2006). Humans prefer curved visual objects. Psychol. Sci. 17,

645–648. doi: 10.1111/j.1467-9280.2006.01759.x
Bar, Y., Levy, N., and Wolf, L. (2014). “Classification of artistic styles using

binarized features derived from a deep neural network,” in Workshop at the

European Conference on Computer Vision (Cham: Springer), 71–84.
Bell, C. (1914). Art. London: Chatto &Windus.
Berezhnoy, I. E., Postma, E. O., and van den Herik, H. J. (2009). Automatic

extraction of brushstroke orientation from paintings.Mach. Vis. Applic. 20, 1–9.
doi: 10.1007/s00138-007-0098-7

Berezhnoy, I. E., Postma, E. O., and van den Herik, J. (2005). “Computerized visual
analysis of paintings,” in International Conference on Association for History and
Computing (Amsterdam), 28–32.

Bergamo, A., and Torresani, L. (2012). “Meta-class features for large-scale object
categorization on a budget,” in 2012 IEEE Conference on the Computer Vision

and Pattern Recognition (CVPR) (Providence, RI: IEEE), 3085–3092.
Bergamo, A., Torresani, L., and Fitzgibbon, A. W. (2011). “Picodes: learning

a compact code for novel-category recognition,” in Advances in Neural

Information Processing Systems (Granada), 2088–2096.
Berlyne, D. E. (1974). Studies in the New Experimental Aesthetics: Steps Toward an

Objective Psychology of Aesthetic Appreciation. Oxford: Hemisphere.
Bertamini, M., Palumbo, L., Gheorghes, T. N., and Galatsidas, M. (2016). Do

observers like curvature or do they dislike angularity? Br. J. Psychol. 107,
154–178. doi: 10.1111/bjop.12132

Bies, A. J., Blanc-Goldhammer, D. R., Boydston, C. R., Taylor, R. P., and
Sereno, M. E. (2016a). Aesthetic responses to exact fractals driven by physical
complexity. Front. Hum. Neurosci. 10:210. doi: 10.3389/fnhum.2016.00210

Bies, A. J., Boydston, C. R., Taylor, R. P., and Sereno, M. E. (2016b). Relationship
between fractal dimension and spectral scaling decay rate in computer-
generated fractals. Symmetry 8:66. doi: 10.3390/sym8070066

Birkhoff, G. D. (1933). Aesthetic Measure. Cambridge: Harvard University Press.
Bosch, A., Zisserman, A., andMunoz, X. (2007). “Representing shape with a spatial

pyramid kernel,” in Proceedings of the 6th ACM International Conference on

Image and Video Retrieval (New York, NY: ACM), 401–408.

Brachmann, A., Barth, E., and Redies, C. (2017). Using CNN features to
better understand what makes visual artworks special. Front. Psychol. 8:830.
doi: 10.3389/fpsyg.2017.00830

Braun, J., Amirshahi, S. A., Denzler, J., and Redies, C. (2013). Statistical image
properties of print advertisements, visual artworks and images of architecture.
Front. Psychol. 4:808. doi: 10.3389/fpsyg.2013.00808

Bressan, M., Cifarelli, C., and Perronnin, F. (2008). “An analysis of the relationship
between painters based on their work,” in 2008 15th IEEE International

Conference on Image Processing (San Diego, CA: IEEE), 113–116.
Bruno, N., Gabriele, V., Tasso, T., and Bertamini, M. (2014). “Selfies” reveal

systematic deviations from known principles of photographic composition. Art
Percept. 2, 45–58. doi: 10.1163/22134913-00002027

Canclini, A., Cesana, M., Redondi, A., Tagliasacchi, M., Ascenso, J., and Cilla, R.
(2013). “Evaluation of low-complexity visual feature detectors and descriptors,”
in 2013 18th International Conference on Digital Signal Processing (DSP) (Fira:
IEEE), 1–7.

Cela-Conde, C. J., Agnati, L., Huston, J. P., Mora, F., and Nadal, M. (2011).
The neural foundations of aesthetic appreciation. Progr. Neurobiol. 94, 39–48.
doi: 10.1016/j.pneurobio.2011.03.003

Cetinic, E., and Grgic, S. (2013). “Automated painter recognition based on image
feature extraction,” in ELMAR, 2013 55th International Symposium (Zadar:
IEEE), 19–22.

Chatterjee, A., and Vartanian, O. (2014). Neuroaesthetics. Trends Cogn. Sci. 18,
370–375. doi: 10.1016/j.tics.2014.03.003

Condorovici, R., Florea, C., and Vertan, C. (2013). “Author identification for
digitized paintings collections,” in 2013 International Symposium on Signals,

Circuits and Systems (ISSCS) (Iasi: IEEE), 1–4.
Condorovici, R. G., Florea, C., and Vertan, C. (2015). Automatically classifying

paintings with perceptual inspired descriptors. J. Vis. Commun. Image

Represent. 26, 222–230. doi: 10.1016/j.jvcir.2014.11.016
Criminisi, A., Kemp, M., and Zisserman, A. (2002). Bringing Pictorial Space to Life:

Computer Techniques for the Analysis of Paintings. Technical report, Microsoft
Cooperation.

Criminisi, A., and Stork, D. G. (2004). “Did the great masters use optical
projections while painting? Perspective comparison of paintings and
photographs of Renaissance chandeliers,” in Proceedings of the 17th

International Conference on Pattern Recognition, 2004. ICPR 2004, Vol. 4

(Cambridge, UK: IEEE), 645–648.
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