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Computational and Experimental Investigations of the Flow

Around Cavitating Hydrofoils

Neal E. Fine

Department of Ocean Engineering

Abstract

The linearized boundary value problem of the two dimensional cavitating hydrofoil of gen-

eral shape has been solved semi-analytically by inversion of the singular integral equations

describing the unknown source and vortex distributions and the subsequent numerical inte-

gration over such known functions as the slope of the wetted foil surface. However, a more

desirable method of solution is one which permits a natural extension to the solution of three

dimensional wing and propeller cavitation. The method of discrete singularities, which has the

advantage of being the two dimensional analog of the vortex lattice method, has been studied

extensively for this reason. The current research included the extension of the method to

solve the the most general problems of partial and supercavitation with the correct points of

cavity detachment and the most physically acceptable closure model. The results of an exper-

iment in the MHL water tunnel show good agreement with numerical results. The correlation

between numerical and experimental cavitation numbers, along with the latest extensions to

the analysis, is presented.
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Chapter 1

Introduction

Cavitation is the formation of regions of vapor in a liquid near points of minimum pressure. For

almost a century it has been known as a cause of efficiency decrement and structural failure

in propulsors and turbomachinery. To Naval Architects and Marine Engineers, cavitation

is particularly notorious as a principal contributor to flow noise emanating from cavitating

propellers. Perhaps a more surprising effect, however, is the intense material corrosion due

to the high impulse forces which exist at points where the unsteady cavities collapse. In fact,

it is this unsteady nature of cavitation which induces vibrations, often causing expensive hull

and machinery fatigue and subsequent failure. These are the salient effects of cavitation and

they are overwhelmingly detrimental. Therefore, there is ample motivation for understanding

cavitation with the goal of controlling it or designing around it. For example, the lift and drag

characteristics of cavitating marine hydrofoils are often required for the purpose of efficiency

control. This gives rise to an analysis problem similar to the analysis problem of non-cavitating

hydrofoils.

This thesis describes developments in the linearized solution to the analysis problem of

the flow around cavitating hydrofoils, as well as pertinent experimental results.

1.1 Objectives

There were four main objectives in the current research:

(1) The first goal was to continue the investigation and development of a numerical method

for solving the linearized partially cavitating hydrofoil problem in two dimensions and to ap-

9



CHAPTER 1. INTRODUCTION

ply this numerical method to the case of a supercavitating hydrofoil. Ultimately, the purpose

of studying the numerical method in two dimensions is to apply new knowledge to the numer-

ical solution of three dimensional propeller cavitation. For example, a comprehensive study

of the effect of non-linear corrections to a numerical solution of the linearized two dimen-

sional partial cavitation problem was completed by Corrado (1986). His research led to the

implementation of the non-linear corrections to the propeller analysis program, PUF-3 (for

a complete description, see [8]). As a continuation of this, the current research includes an

investigation of the effect of an open cavity model on the same numerical solution with the

goal of implementing the model in PUF-3. The open cavity model allows for a small wake

thickness trailing the partial cavity.

(2) The second objective was to modify existing codes which solve the problems of partial

and supercavitation analytically. The original codes, written by Kinras in the course of his

PhD research, were modified to solve the problems of partial and supercavitation for genera]

hydrofoil geometry and were then linked to the numerical code to provide easy comparison.

This coupling of the numerical and analytical solutions was especially useful in evaluating the

accuracy of the numerical method.

(3) The third goal was to obtain experimental measurements of the cavitation number, oa,

for a partially cavitating hydrofoil with various cavity lengths. Comparison of the experimental

and numerical results, after including in the model the tunnel wall effect and the effect of the

boundary layer, as well as a measured value for the openness of the cavity at its trailing edge,

allows for a general appraisal of the accuracy of the numerical model. The thickness of the

cavity wake was measured by comparing the displacement thicknesses of the hydrofoil with

and without cavitation. This result is particularly important since the cavity wake thickness

is not obtained from analysis.

(4) The final goal was to modify the analytic and numerical solutions to handle detachment

of the supercavity aft of the leading edge on the suction side of the foil and forward of the

trailing edge on the pressure side of the foil. In this way, the existing analysis tools have been

generalized to handle the four observed forms of supercavitation.

10



CHAPTER 1. INTRODUCTION

1.2 Definitions

Cavitation is defined as the formation of a region of vapor in a flow field near a local pressure

minimum. Although the inception of cavitation is affected by many parameters (i. e., viscosity,

dissolved gas content, ambient pressure and turbulence intensity, etc. ) it is reasonable to

assume that a cavity forms at or near the saturation vapor pressure and that the resulting

cavity volume consists solely of fluid in the vapor phase. It should be noted, however, that

this neglects the results of a substantial amount of research (1950's to present) investigating

cavitation inception. In summary, experimental investigations have shown that:

1. cavity inception does not necessarily occur when the fluid pressure falls below the vapor

pressure, but is largely dependent on the existence of gas or vapor nuclei.

2. cavity inception is a dynamically complicated phenomenon which is not likely to be

included in an engineering analysis tool such as the one being developed here.

The cavitation number

0 0- P- 2 (1.1)

measures the likelihood of cavitation. That is, if Uoo and Po, are the steady velocity and

pressure far upstream from a body in uniform flow, and P, is the saturation vapor pressure

in an incompressible fluid of density p, then the lower the cavitation number the more likely

it is that the body will cavitate. There is a one-to-one correlation between cavitation number

and cavity length, with the zero cavitation number limit corresponding to an infinitely long

cavity.

It is assumed that cavity inception occurs when the fluid pressure is equal to or less

than the vapor pressure. Another form of this requirement comes from the steady Bernoulli

equation and the definition of the cavitation number. Namely, cavitation occurs when

a < -CPmn (1.2)

where Cp is the nondimensional pressure

P- Po (1.3)
C - 1 2(13

VpU.'
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CHAPTER 1. INTRODUCTION

For the specific case of the marine propeller, cavitation commonly occurs near the leading

edge of an individual blade where local high velocities (and therefore low pressures) result

from the large blade slopes. Clearly, in an incompressible, inviscid, irrotational fluid, in which

the velocity field is the gradient of a scalar potential, the minimum pressure exists on the

surface of the blade. Moreover, it can be shown that for a body with a laminar boundary

layer prior to cavitation, the normal pressure gradient is such that the pressure increases away

from the body. Thus, a cavity which grows at a point where the fluid pressure falls below the

vapor pressure does so on the surface of the blade and stays there.

The two dimensional propeller analog is a cambered hydrofoil with thickness and oriented

at an angle with respect to a uniform inflow. The goal is to determine the cavity shape, lift,

and drag for a specific hydrofoil shape and cavitation number. However, the two dimensional

problem is actually solved by assuming a cavity length and solving for the cavitation num-

ber. The problems of partial cavitation (cavity length less than the chord length), shown in

Figure 1.1, and supercavitation (cavity length greater than the chord length), shown in Fig-

ure 1.2, will be considered separately since the boundary conditions are different. Chapter 2

describes the set-up and solution of the two boundary value problems, with emphasis on the

numerical solution via the method of discrete singularities. Chapter 3 presents the results of

an experiment with partial cavitation, providing complete comparison of experimental and

numerical results. Finally, Chapter 4 presents the analytic solution to the problem of cavity

detachment aft of the leading edge on the suction side of a supercavitating hydrofoil.

12



I

CHAPTER 1. INTRODUCTION

Figure 1.1: Partially cavitating hydrofoil

Figure 1.2: Supercavitating hydrofoil
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Chapter 2

Analytical and Numerical Considerations

The analysis of flow around cavitating bluff bodies has been achieved by methods of conformal

mapping for simple georetries and for the zero cavitation number limit 2]. However, for

non-zero cavitation numbers a cavity termination model must be invented to account for

the stagnation point after and near the cavity's trailing edge while maintaining constant

total velocity on the cavity boundary (free streamline theory). Two of the most prominent

termination models are the Riabouchinsky model and the re-entrant jet model. No consensus

as to which is correct has yet been reached [19]. Aside from this dilemma, and despite the

obvious attraction to an exact non-linear solution, the method of conformal mapping is still

cumbersome for solving the problem with general hydrofoil geometry. For this reason, we turn

to the solution of the linearized boundary value problem, for which there is no need to choose

an arbitrary cavity termination model.

2.1 Linear Theory for Cavitating Hydrofoils

2.1.1 Partial Cavitation

Consider a stationary partially cavitating hydrofoil whose foil thickness r(x), cavity thickness

h(x), and foil camber 7(x) are all small in comparison to the chord length (see Figure 2.1).

The fluid is ideal and irrotational. The inflow is uniform and steady, the field is infinite, and

the velocity potential satisfies Laplace's equation

V2.I = 0 (2.1)

14



CHAPTER 2. ANALYTICAL AND NUMERICAL CONSIDERATIONS 15

.... )
U ---- )

.... )

y .

2 = dw .

ft1T tt'TTTTT=°dq xu'= --, U

Figure 2.1: Linearized boundary conditions for partial cavitation.

where

= + UOS,.

Here Uoo is the fluid velocity at infinity, oriented parallel to the x-axis, and 0 is the pertur-

bation velocity potential, which also satisfies Laplace's equation. Thus,

ad = u + U

__B =V(2.2)ay

Vw - (U.,0) at °° (2.3)
or: 4 -. 0 at oo

The linearized boundary value problem for partial cavitation with cavity detachment at the

leading edge of the hydrofoil is stated by Laplace's equation (2.1) and the following boundary

conditions:

vu(z) = Uo° (d ()1 ( )) = 'oo dI < x< 1 on y= O+ (2.4)
dx

vI(Z) = Uo: (() I-(2) = 7 d: < < 1 on y= 0- (2.5)

where v is the vertical velocity on the upper side of the foil, v is the vertical velocity on the

lower side of the foil, and I is the length of the cavity normalized on the chord length. The

x



CHAPTER 2. ANALYTICAL AND NUMERICAL CONSIDERATIONS

kinematic boundary conditions (2.4) and (2.5) are due to the linearization of the slope of the

total velocity at the foil surface which must match the sope of the foil surface.

A dynamic boundary condition results from an applicationof the steady Bernoulli equation

at the cavity boundary, where the cavity pressure is equal to the vapor pressure

Pc = P.

Thus, if q is the total velocity on the cavity surface, we have

1 PT2 1 2
POO + p = P. + !pq (2.6)

P-P 2P. P, q' = 2 _ 1(2.7)

Recalling the definition of the cavitation number (1.1) this simplifies to

q = U. VTO . (2.8)

The total velocity q is therefore constant along the cavity surface. This is a result of the

assumption that the cavity surface is a streamline in steady flow and that the cavity pressure

is constant along the streamline. Note that this is a fully non-linear result.

The linearized dynamic boundary condition, derived first by Tulin [18], is obtained by

expanding (2.8) in terms of u and v and retaining only the first order perturbation terms,

leaving
0r

= U. 0 < < on y = 0+. (2.9)
2

Equations (2.1), (2.4), (2.5), and (2.9) define the linearized boundary value problem for the

partially cavitating hydrofoil in two dimensions.

Solutions to (2.1) which satisfy the condition that -- 0 at co include sources and vortices

arrayed on the horizontal projected axis of the hydrofoil (see Figure 2.1). Since the source

and vortex potentials each satisfy the partial differential equation (2.1), distributions of the

singularities may be superposed to form a general solution.

The kinematic boundary conditions (2.4) and (2.5) along with the dynamic boundary

condition (2.9) specify the vertical and horizontal perturbation velocities on the surface of the

16



CHAPTER 2. ANALYTICAL AND NUMERICAL CONSIDERATIONS

foil and cavity. The velocities induced by the singularities on the foil and cavity boundaries

must match those prescribed by these boundary conditions. This requirement, as derived by

Kinnas [9], yields the following integral equations for the unknown source and vortex strengths:

1(x) q, (x) + 1 -Y e ~ dt,,VUz) = ) ) q =q U. -~ ont=+ I < O < 1 (2.10)1( 2 2r~ l -x °° dx 

V(X)-() q,. ) q,(x) 1 2'q( U)d ._ U_° on y =- 0 0 x < (2.12)0

UC~~ ~ /q() .. _ = UO.- on y = 0+ 0 < < 2.2
2 2~ e -x ~ - 2

0 0

where uc(x) is the horizontal perturbation velocity on the cavity surface.

The cavity source distribution is related to the local slope of the cavity surface h(x)

dh'qC(z) = V°°dh.

Similarly, the foil thickness source strength q(x) is related to the local slope of the fully

wetted foil

q7r(x) = d *- (2.13)

The partially cavitating hydrofoil problem may be decomposed into camber, thickness,

and angle of attack problems as shown in Figure 2.2. This decomposition, when applied to

equations (2.10) and (2.11), yields a single kinematic boundary condition. The boundary

value problem is completed by imposing the Kutta condition and the cavity closure condition.

The Kutta condition requires that there be no flow around the trailing edge which, in linear

theory, is equivalent to the requirement that there be no vorticity at the trailing edge. The

cavity closure condition requires that the cavity sources sum to zero, which is equivalent to

the requirement h(1) = 0.

17
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.

U ---- )

(x) = (2") + h() + r(x) + h(z)

,(X) = (z) +
h() T(x) h(z)

2 2 2

Camber v(7) + h2

vorticity distribution -y(x)

Thickness r(z)

source distribution

('()

----. )

U ---- )

_ __ )

0<2<1

q,(Z) = Uoo d-

Cavity thickness h(x)

i
cavity source distribution qc(z) = U ah

am'"-

Figure 2.2: Linear decomposition in partial cavitation.

hi:()

O<z<1

O<z< 
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ANALYTICAL AND NUMERICAL CONSIDERATIONS

Finally, the linearized boundary value problem for a two dimensional partially cavitating

hydrofoil includes:

1. Kinematic Boundary Condition

2 q (x) 
2 +27r

1

ood O<x<l1 (2.14)

(qc() = 0 for 1 < < 1)

2. Dynamic Boundary Condition

qc(~)dC
C - r

(x~) 1I

0

1

UOO 
2 +2~'r

0

O < x < I (2.15)

3. Kutta Condition

4. Cavity Closure Condition

fq,(x)dx = 
0

y(I) = 0 (2.16)

CHAPTER 2. 19

(2.17)



CHAPTER 2. ANALYTICAL AND NUMERICAL CONSIDERATIONS

2.1.2 Supercavitation

The decomposition for the supercavitating hydrofoil is shown in Figure 2.31. The thickness

problem combines the cavity thickness and the foil thickness and therefore the unknown source

strength, q(x), will represent both the foil and the cavity. This is in contrast to the formulation

of the partial cavitation problem in which the foil thickness and cavity thickness are considered

separately. The boundary conditions are:

t7
uc=UoOJ 0<z<l I on y = 0+ (2.18)

2

U = ° I x<1 < < on y = 0- (2.19)
2

dltv = U- ° < < 1 on y = 0-. (2.20)

Replacing the foil and cavity by a continuous distribution of sources and vortices (Figure 2.4)

and equating the induced velocities to these boundary conditions yields the following singular

integral equations [10]:

1. Kinematic Boundary Condition

q(2) I | (C) d = x d- 0 < < 1- - ) -~ d_--: ' -- (2.21)
2 2 7r] x dx

0

2. Dynamic Boundary Condition

2) I f ()r I s- = o o < < (2.22)
2 2 -J 2

0

The cavity camber in the wake of the hydrofoil, c(x), is obtained by equating the camber

slope to the vertical velocity induced by the vortices on the foil and numerically integrating:

1
dc ()d

Uo- = sVin(2 = |(t)d 1 < x < 1. (2.23)

0

'Courtesy of Dr. S.A. Kinnas, Dept. of Ocean Engineering, NET

20
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c(X)

x

- - :

Uc= a I

- b- -- -L

1 c ~~~~~~~~~~2 i

I Uc~~ UczI!~-lTVC = IdI, I

- . I c(X)

I -

+ I

I

Figure 2.3: Linear decomposition in supercavitation
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CHAPTER 2. ANALYTICAL AND NUMERICAL CONSIDERATIONS 22

y

i+ U Ut

P, , ~, ~- ~ = 0
+

u~~~~~~

/- ;= 0 · s
d,71

Figure 2.4: Linearized boundary conditions for supercavitation.

The boundary conditions (2.21) and (2.22), along with the Kutta condition (2.16) and the

cavity closure condition (2.17), define completely the boundary value problem for the super-

cavitating hydrofoil.

2.2 Analytic Solution

Analytic solution to the linearized partial and supercavitation boundary value problems has

been achieved by inverting the representative singular integral equations and reducing the final

solution for the cavitation number and for the source and vortex distributions to integrals of

known functions [11]. The known functions inciude the slope of the lower wetted foil surface

(for supercavitation) and the horizontal perturbation velocity on the suction side of the foil

under non-cavitating conditions (for partial cavitation). The payoff is that these integrals may

be reduced to quadrature and the complete linear solution then depends only on the hydrofoil

geometry and the length of the cavity. We call this a "semi-analytical" solution because of

the numerical integrations involved. Details of the derivations may be found in Kinnas' PhD

thesis.

Despite the extremely successful nature of the semi-analytical method, it is limited in

application to two dimensional flows due to the complex nature of three dimensional integral

equations 8]. A more desirable solution would lead naturally to the vortex lattice method

which is used to solve the propeller analysis problem in three dimensions. A method which

t
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satisfies this requirement relies on the numerical approximation of the boundary integral

equations described in sections 2.1.1 and 2.1.2 and is called the method of discrete singularities.

2.3 Numerical Solution

2.3.1 Method of Discrete Singularities

The method of discrete singularities was developed at MIT by Golden [6], Van Houten [21],

and others [13,20]. Most recently, Corrado applied the method to the problem of partially

cavitating hydrofoils of selected thickness and camber forms with the goal of implement-

ing the necessary modifications for the accurate prediction of singularity distributions and

cavity shape. Results of his research included the selection of the half-cosine discretization

(described below) and the implementation of the non-linear corrections described by Kinnas

[11]. In the present research, the work of Corrado has been extended to solve the problem of

supercavitating hydrofoils of general shape.

The discrete singularities approach consists of modeling the foil and cavity by a finite dis-

tribution of point sources and point vortices arrayed along the horizontal projected axis and

whose strengths are determined by applying the discretized kinematic and dynamic bound-

ary conditions at selected control points. The process, which is applicable to partial and

supercavitation, is as follows:

1. Discretize the linearized foil into N panels and the linearized cavity into M panels.

2. Approximate the continuous source and vorticity distributions with discrete vor-

tices and sources.

3. Express the singular integrals as finite sums of M unknown cavity sources Qi, N

unknown vortices ri, and the known thickness sources.

4. Apply the boundary conditions at appropriate control points and solve the resulting

system of N+M+1 equations for the unknown Qits, nis, and a.

Thus, the remaining question is: where should the discrete singularities be (a) with respect

to one another and (b) with respect to the control points? One possibility is the constant
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= vortex

= source

* =dynamnic control point

C) =kinematic control point

Figure 2.5: Constant spacing discretization for supercavitation.

spacing configuration (Figure 2.5), which is formed by dividing the linearized foil into N panels

of equal length and modeling the foil with N point vortices spaced at the fraction of each4

vortex panel. The cavity is then represented by M point sources spaced at the , fraction of

each source panel. The kinematic control points (the points at which the kinematic boundary

condition is satisfied) are superimposed on the point sources. The dynamic control points

(the points at which the dynamic boundary condition is satisfied) are superimposed on the

point vortices.

The strengths of the discrete point sources and point vortices are defined as

Qi= (X)(Xpi+l - Xp) (2.24)

r = (Xv)(Xp - P,) (2.25)

assuming for now that the source and vortex panels coincide, as they do for constant spacing.

The source strength is based on the average i rather than the local value q(X,). It has been

found that this is necessary to obtain the correct cavity thickness distribution [3].

The discretized boundary conditions for the cases of partial and supercavitation may be

written as follows:

24
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1. Partial Cavitation:

(a) Kinematic Boundary Condition

Xk - X- 1
dx 2(Xj+, - Xpi) 2=r i- Xk 3-X 

(b) Dynamic Boundary Condition

a KT dr1, Q
2 2rZE(- 2(Xp;+, - Xp.) 2r xd, -x,

2. Supercavitation:

(a) Kinematic Boundary Condition

d?t Qj
dx 2(Xp+, - X LP)

(b) Dynamic Boundary Condition

xv) 2 Mo=2(xv,, -xpv) 27,,

N
M
KT
ri
Qi
X,
XPVi

Xpi
Xvi
Xk
Xd,

1 N ri

2z' i=l Xk - X,'_.j=

= number of point vortices
= number of point sources
= number of thickness sources
= strength of the ith vortex
= strength of the ithsource
= position of the ith source panel boundary
= position of the i t h vortex panel boundary
= position of the ith source
= position of the se h vortex
= position of the ih kinematic control point
= position of the ith dynamic control point

The cavity closure condition may also be discretized:

M

Qj =0.
j=1

25

(2.26)

(2.27)

(2.28)

Qi a
Xd -X, 2 (2.29)

(2.30)

(2.31)
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fKinematic Boundary Condition (2.2S) -

1" source strength oc 1' vortex strength (2.32) -

Dynamic Boundary Condition (2.29) -

Cavity Closure Condition (2.31) -

X

Q.
012

Q-.a
as
ITa

1-

ID I
b,,

)10,

Figure 2.6: Matrix equation for supercavitation.

It has been shown 8] that the source and vortex distributions share the same fourth-

root singularities near the leading edge. The strengths of the first discrete singularities are

therefore proportional and related in the following way:

Q 4Xp,) X 1) (2.32)(XP,(X.,)

Since the dynamic boundary condition is not applied in the first panel, (2.32) is the final

equation needed to balance the number of unknowns.

Due to the spacing of discrete singularities, the Kutta condition (2.15) is automatically

satisfied [7]. Note that the upstream velocity has been normalized to unity.

Thus the problem is reduced to a system of N+M+1 algebraic equations including N

kinematic boundar cnitions (.26, 2.28), M-1 dynamic boundary conditions (.27, 2.29),

the cavi-ty closure condition (2.31), and the relation between rl and Q1 (2.32). The unknowns

include N discrete vortex strengths, M cavity source strengths, and the cavitation number. In

each case, the resulting matrix equation is solved by Gaussian elimination. The form of the

equation is shown in Figure 2.6 for supercavitation.
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A' A '

I .1

Figure 2.7: Half-cosine spacing for supercavitation.

2.3.2 Half-Cosine Spacing

Unfortunately, the results of the constant spacing technique show poor convergence to the

analytic results as the number of panels is increased. For this reason, much work has been

done to seek an appropriate spacing configuration with more accurate results and quick"

convergence (see Golden 6] and Corrado [3]). As a result of a comprehensive study of dis-

cretization techniques [3], it has been found that half-cosine spacing with singularities placed

at and fractions of the angular panel (see Figure 2.7) results in more accurate singularity

distributions. This is due to the appropriate representation of the leading edge singularity in

source and vortex distributions [12].

The transformed angular coordinate is related to the chordwise coordinate x in the

following way:

X = 1 -cos 0<<-2
2

(2.33)

The linearized foil is split into N panels of varying length - small at the leading edge and

growing towards the trailing edge - thus concentrating singularities at the leading edge and

- - __
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resulting in more accurate representation of the singularity in vortex and source distributions.

The N point vortices are located at the points

Xui1- Cos 2 i = 1.... (2.34)

and the M point sources are located at the points

X,1 = 1 - cos( ) i = 2, ...., M (2.35)

with the exception of the first source, which is placed at the same location as the first vortex.

The position of the kinematic and dynamic control points are determined by the zeroes of

the fiat plate error functions for partial cavitation

1 N ri q (x)V() =-2 E + ( ) Uc (2.36)
2Ar '-' X, ,-x 2

and

AU(x)=-- E - + 2 2 Uo. (2.37)2n- . X8 -X 2 2

Plots of these functions may be found in the paper by Kerwin and Kinnas [8]; they show

that the correct kinematic and dynamic control points lie halfway between the positions of

the sources and vortices, respectively (in the coordinate). That is, the kinematic control

points coincide with the sources and the dynamic control points coincide with the vortices. It

is assumed that this result will not change for supercavitation.

The source and vortex panels do not coincide as they do for constant spacing. For accurate

representation of the singularity in source and vortex distributions at the trailing edge of the

cavity, the cavity must end between a vortex and a source. Since the vortex panels begin

and end at the source locations, and since the cavity must consist of an integral number of

source panels, the source and vortex panels cannot coincide. Equations (2.24) and (2.25) must

therefore be modified accordingly.

The vortex panel boundaries are located at the points

Xp, (1-cos ; i 1,..,1N (2.38)
(52)
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and the source panel boundaries are located at the points

Xp = 1-cos( 4 2 ); i=2,...,M (2.39)

with the exception of the first source panel boundary which is located at

Xl - 8N) -

This source panel configuration was chosen following experimentation by Corrado 3].

Given the cavity length and the number of vortex panels, the number of sources can be

determined:

1. Partial Cavitation

M = Int (- cos-(1 - 1) + .25)

2. Supercavitation

= It + N
(sin (2 N))

where Int denotes integer part. The actual cavity length therefore is always less than or equal

to the input length 1.

For supercavitation, the discretization on the foil is identical to that of partial cavitation,

with the single aberration that the last cavity source prior to the trailing edge is placed at

a panel inset in the coordinate. The last kinematic control point is located at = 1 for

partial and supercavitation. The cavity sources in the wake of the foil are then spaced at 

increments of the wake source panels, which are of constant length equal to the length (in the

x coordinate) of the last source panel on the foil. This wake panel length, AXa,, was chosen

after numerical experimentation whereby AXak, was designated to be a constant, C, times

the length of the last source panel on the foil. The value of C was varied in the solution and

found to have a moderate effect on the convergence rate and more effect on the computation

time. For optimum convergence rate with the constraint of reasonable computation time,

C = 1 was chosen.

For a partially cavitating foil with thickness and camber and discretized with half-cosine

spacing, as few as twenty vortex panels are required to give values for cavitation number,
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cavity shape, and singularity distributions which are within 10% of the analytic results. For

supercavitation, ten vortex panels are sufficient for the same results. Comparison of the

computed cavitation number for a partially cavitating flat plate at an angle of attack with

constant spacing and with half-cosine spacing is shown in Figure 2.8. The error 2 in cavitation

number not only converged faster for half-cosine .pacing, but also converged to a much smaller

value.

A thorough investigation of the accuracy of the various spacing techniques may be found

in the thesis by Corrado in which he considers only partial cavitation. Similar comparisons of

numerical and analytical results for supercavitation are provided in figures 2.9 - 2.12. In these

figures, only half-cosine spacing is used in the numerical solution, since all other configurations

have been abandoned in its favor.

2 The error is given by abs(-Zv-i-4). Subscripts: N = Numerical, A = Analytic
-

A

30



CHAPTER 2. ANALYTICAL AND NUMERICAL CONSIDERATIONS

A

31

-w

-I

I

II

(a)

Ad. Of p;. I

(b)

Figure 2.8: Error in cavitation number for partially cavitating flat plate with (a)constant
spacing and (b)half-cosine spacing.
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Figure 2.13: Open cavity model

2.3.3 Open Cavity Model

The numerical model for partial cavitation has been modified to allow for a small cavity wake

thickness 6 (normalized on chord length) by replacing the cavity closure condition (2.31) with

the cavity non-closure' condition:
M
EQ=. (2.40)

The open cavity model i motivated almost exclusively by experimental observations in

which partial cavities develop a wake of nearly constant thickness, equal to the thickness of

the cavity at its trailing edge (see Figure 2.13). This linearized open cavity model is due to

Fabula [4], and was implemented in the analytical solution by Kinnas. However, open wake

models have also been considered in the non-linear solution 18], motivated by the desire to

simulate the ultimate wake defect and to obtain a better estimate of the drag.

The numerical solution is sensitive to the cavity wake thickness . Figure 2.14 is a para-

metric plot of a vs N (number of vortex panels) for a partially cavitating fat plate for various

cavity wake thicknesses. In this figure, numerical results are compared to analytical results

showing that:

1. Aur oc 6 and Aur < 0

2. the numerical results diverge for increasing 6.

... ) U ---s
--- . .______
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Figure 2.14: Numerical and Analytical results for a flat plate with varying 6.

The latter result is due to the misrepresented singularity in the cavity source distribution
at the trailing edge of the cavity. Recall that the discrete sources are placed at points, relative

to the panel boundaries, which best model the square-root singularity in q due to the large
slope at the cavity's trailing edge. For an open cavity, this slope is smaller at the trailing
edge; however, the strength of the square-root singularity in q is not adjusted. Figure 2.14
shows that the results are good for small 6 and increasingly inaccurate for larger 6.

Chapter 3 will discuss the results of an experiment in which the thickness of the wake is

measured for several cavity lengths. It is fortunate that is observed to be small ((10-3)) so
that the numerical and experimental results may be compared without further modifications

of the numerical method.

2.4 Application

The tools developed for the analysis of flow around cavitating two dimensional hydrofoils are
very useful for determining the lift and drag characteristics for a given hydrofoil and cavity

length. For example, the following are results for the NACA 16006 symmetric foil for angles

of attack varying from 1 to 5 degrees and a between .05 and .25, corresponding roughly to

Delta- 01

5---- ~ ' 
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cavity lengths between 1.5 and 3.0 chord lengths:

1. cavity length vs. (Figure 2.15)

2. cavity area vs. a (Figure 2.16)

3. lift coefficient vs. a (Figure 2.17)

4. drag coefficient vs. (Figure 2.18)

5. lift/drag ratio vs. a (Figure 2.19)

6. cavity plots for a chosen cavity length for each angle of attack. (Figure 2.20)

In the course of this research, cambered foils were analyzed for angles of attack varying

from -5° to +5 ° and a between .05 and .30 (or cavity lengths from 1.5 to 4.0). To obtain

results for the negative angles of attack, it was noticed that the flow around a cambered foil

at a negative angle of attack is identical to the flow around the foil at a positive angle of

attack with inverted camber. This can be seen in Figure 2.21, where the results are shown for

a NACA 66 foil at -3° . Since the cavity plot is the only result of the analysis which depends

on the orientation, all other results (lift, drag, etc.) are correct. The "true" cavity can be

seen by simply inverting the plot.

It was necessary to find the correct detachment point on the lower side of the foil (labeled

X. in Figure 2.21) to complete the analysis. This is also a necessity for thick symmetric foils

at small angles of attack, as can be seen in Figure 2.20. The case where cavity detachment

on the pressure side of the foil occurs forward of the trailing edge is called face" cavitation.

The analysis for including face cavitation in the results is described in Chapter 4.
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Figure 2.15: Cavity length vs. a for varying angle of attack for NACA 16006 symmetric foil.

+ Alpha=+1 deg
a Alpha=+2 deg

* Alpba=+3 deg

A Alpha=+4 deg

o Alpha-+5 deg

4.0

3.0

Cavity
Length

2.0

1.0
o.o

II ~11 I ill ....... w ' , . ..........

I, II , m l ...

37



CHAPTER 2. A: L ALYTICAL AND NUMERICAL CONSIDERATIONS 38

0.50

0.40

Area

0.20

0.00
0.00 0.20 n d4... . .v

silga

Figure 2.16: Cavity area vs. a for varying angle of attack for NACA 16006 symmetric foil.
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Figure 2.17: Lift coefficient vs. for varying angle of attack for NACA 16006 symmetric foil.
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Figure 2.18: Drag coefficient vs. a for varying angle of attack for NACA 16006 symmetric foil.
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Figure 2.19: Lift/Drag ratio vs. a for varying angle of attack for NACA 16006 symmetric foil.
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Figure 2.21: Cavity plot for cambered foil at -3° angle of attack. NACA 66 thickness profile
(rT 2 =.04), NACA a=.8 meanline (ma:=.03).
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Chapter 3

Experimental Considerations

3.1 Introduction and Motivation

The development of analytical and numerical methods for solving the partial and supercavi-

tating hydrofoil problem in two dimensions was described in the previous chapter. One goal

was to compare results from the discrete singularities method to the semi-analytical results

of Kinnas 11]. In this chapter, the goal is to compare numerical predictions of cavitation

number to experimental measurements and to determine the thickness of the cavity wake.

An experiment was performed in the Variable Pressure Water Tunnel of the MIT Marine

Hydrodynamics Lab with the following objectives:

1. To compare measured cavitation numbers for various cavity lengths to those predicted

by the analytical and numerical models.

2. To investigate the velocity profiles above and behind the cavities and to estimate the

displacement thickness behiind the cavity for comparison with the measured displacement

thickness of the non-cavitating foil.

This stage of the research was completed in two steps. First, velocity profiles were mea-

sured in vertical planes at various stations on and behind the cavities and integrated to obtain

displacement thicknesses. The pressure distribution was calculated on the suction side of the

noncavitating foil for use in finding an effective angle of attack accounting for the viscous

boundary layer. Second, the numerical code was modified to account for the tunnel wall effect

in order to facilitate appropriate comparisons.
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This chapter will describe these two steps and their results.

3.2 Setup

The Marine Hydrodynamics Lab test hydrofoil #31 was mounted in the test section of the

MIT variable pressure water tunnel (see Figure 3.1). This foil has the following characteristics:

* VLR (Variable Leading edge Radius) thickness form2 (rmaz = .04)

* NACA a=.8 meanline (maz = .02)

* Leading edge radius = .001613

* Trailing edge thickness = .004

It was mounted and secured by a single axis which protrudes through holes in the glass walls

of the tunnel test section. Hinges on the outer side of the walls allowed for variation in the

angle of attack of the foil with respect to the horizontal inflow.

Thin rubber gaskets were placed between the foil and the inner walls to prevent seepage

due to the pressure difference from top to bottom of the foil. Some time was spent trimming

the gaskets to prevent interference with the flow and, in particular, to ensure good two di-

mensionality. A thin layer of RTV was applied to the top of the gaskets to fill gapa and to

harden the surface.

Free stream velocity was kept approximately constant throughout the experiment at 22.5

ft/sec, corresponding to a Reynolds number based on chord length of 3.1 x 106. Change in

cavity length and a was accomplished by varying the water pressure.

The cavities were observed to be very two dimensional with length oscillating about some

mean. The period of the oscillations grew as the cavity length increased until, for cavity

lengths greater than 60% chord, the cavities became very unstable.

'Provided courtesy of Bird-Johnson Co.
2 Designed by Professor J.E. Kerwin of the Department of Ocean Engineering, MIT
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b

Figure 3.2: Graphic computation of cavity wake thickness 6.

Velocity profiles above and behind the cavities were measured with the Laser Doppler

Velocimeter (LDV), which calculates an "instantaneous" velocity by counting particles in the

water as they cross interference fringes. Only the horizontal velocity was measured since

one of the two laser beams used in the measurement of vertical velocity was blocked by the

hydrofoil.

3.3 Results

3.3.1 Cavity Wake Thickness

Horizontal velocity profiles were measured for cavity lengths of 10%, 20%, 30%, and 40% chord

at stations located at approximately 10%, 40%, 60%, 70%, and 80% chord. Measurements

beyond 80% chord were prohibited by the limitations of the apparatus. Also, measurement

between 15% and 35% chord was impossible due to the obstruction of the mounting hinges.

Figure 3.3 shows velocity profiles for a 10% cavity 3 . Each plot in this figure includes profiles

for cavitating and non-cavitating foils together so that the cavity wake may be compared to

the non-cavitating boundary layer. Similar results for cavity lengths of 20%, 30%, and 40%

are shown in Figures 3.4 - 3.6.

3
A 10% cavity is one with length equal to 10% of the chord length.
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From these velocity profiles, the displacement thicknesses are determined for cavitating

and non-cavitating foils by numerical integration of the raw data. The cavity wake thickness

is defined as

6=6- 6,c (3.1)

where, in general, the displacement thickness is defined as

00

= ( - u ) dy. (3.2)
0

The results shown in Table 3.1 indicate a nearly constant wake thickness for each cavity

length. Note, however, that the wake thickness shows greater variations for larger cavity

lengths. This behavior may be caused by the unsteady nature of the larger cavity.

Displacement thickness was calculated using a trapezoidal integration of the raw data and

adding a small correction for the thin viscous boundary layer where velocity measurements

were not possible. The correction was a simple application of the power law, as described

by Newman [14]. Figure 3.2 shows graphically how the displacement thickness was calculated

from the experimental data.
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% Chord + Wake Thickness + % Deviation From Mean

10% cavity

41.2 + 6.926e-04 + -.73

+ +
60.1 + 7.334e-04 + 5.22

+ +
70.2 + 7.168e-04 + 2.77

+ +
76.6 + 6.473e-04 + -7.19

20% cavity

41.2 + 9.988e-04 + 4.57

+ +
60.1 + 1.016e-03 + 6.36

+ +
70.2 + 8.538e-04 + -10.60

+ +
76.6 + 9.519e-04 + -.30

30% cavity

41.2 + 1.895e-03 + 23.60

+ +
60.1 + 1.347e-03 + 12.1

+ +
70.2 + 1.467e-03 + -4.3

+ +
76.6 + 1.420e-03 + -7.3

40% cavity

60.1 + 2.071e-03 + 19.76

+ +
70.2 + 1.739e-03 + .55

+ +
73.5 + 1.268e-03 + -26.70

+ +
76.6 + 1.839e-03 + 6.4

Table 3.1: Cavity wake thickness
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Figure 3.7: Cavitation number vs. cavity length; numerical and experimental results.

3.3.2 The Cavitation Number

Figure 3.7 is a plot of the cavitation number vs. cavity length for the four cavity lengths

measured. Superimposed on the experimental results are the numerical results from the

method of discrete singularities. Since the numerical results represent the solution to the

linearized boundary value problem of the two dimensional, partially cavitating hydrofoil in

inviscid, incompressible, irrotational, steady, unbounded flow with closed cavity, the difference

between the two curves must be a weighted combination of the following factors:

1. non-linear effects

2. three dimensional effects

3. real fluid effects

4. boundedness of the flow
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5. open cavity

6. unsteady effects

7. inaccuracy of the numerical method

Assuming that the flow was two-dimensional enough and steady enough to satisfy the condi-

tions of the numerical solution, the following four corrections are proposed:

1. implementation of the open cavity model, with 6 determined from experiment

2. Lighthill's leading edge correction to the cavitating solution

3. approximation of the effect of the boundary layer

4. method of images to account for the presence of the tunnel walls.

With these four corrections to the numerical solution, comparison with experimental re-

sults is then a gauge of the accuracy of the numerical method. Each of these corrections will

be considered in turn and the final correlation will be presented.

Open cavity model

The open cavity model was discussed in section 2.3.2. The cavitation number can be

shown to decrease by an amount proportional to S. Since the measured 6 was small, the effect

on the cavitation number is expected to be only a small perturbation.

Leading edge corrections

Linear theory incorrectly predicts that increasing the foil thickness, while maintaining

otherwise identical flow conditions, results in larger cavity volumes. This has been shown [20]

to be due to the failure of linear theory to account for a varying horizontal perturbation velocity

on the surface of the cavity near the leading edge. However, by incorporating Lighthill's

leading edge correction in the linear solution, the proper behavior of cavity shape with changes

in the foil thickness is observed. For details, see Kinnas [16].

Boundary layer correction

The effect of the boundary layer on a non-cavitating hydrofoil is to modify the free-

streamline flow around the foil, effectively changing its shape. That is, the potential flow
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Figure 3.8: Comparison of pressure distributions measured on the
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Pinkerton 's Results:

Current Results:

Table 3.2: Effective angle of attack for various geometric angles

can be considered to be confined to the region outside of the area defined by the foil plus

the displacement thickness. The effect of the boundary layer is thus seen as a small change

in the hydrofoil shape and angle of attack. To compute these changes exactly would require

the tedious measurement of the displacement thickness all around the hydrofoil. However,

Pinkerton [15] found that the calculated and measured pressure distributions for a NACA

4412 airfoil could be brought into agreement by use of an effective angle of attack to account

for the boundary layer. The effective angle of attack is smaller than the actual ("geometric')

angle of attack, since the displacement thickness on the upper foil surface is larger than that

on the lower surface.

To find the effective angle of attack, an existing panel code' was modified to include the

effect of the tunnel walls (via the method of images). The resulting pressure distribution

for the experimental geometry was compared to the measured pressure distribution on the

suction side of the non-cavitating foil (Figure 3.9). The angle of attack was then adjusted in

the panel code computation until the two curves matched. Note that the measured pressure

distribution is computed from the horizontal velocity rather than the total velocity; thus it is

accurate only where the foil slope is small. This accounts for the discrepancy at the leading

edge.

Table 3.2, borrowed from Babeau and Latorre [1], shows Pinkerton's results for the effective

angle of attack at various geometric angles for the NACA 4412 foil and Reynolds number of

3.0 x 106. Below this table is shown the current effective angle of attack at Re = 3.1 x 106 for

the foil geometry described in section 3.2. It is interesting to note that the current results fit

4The potential-based panel method is discussed in the thesis by J.T. Lee. The code was written by Lee in
the course of his research at MIT.
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Figure 3.9: Method of images for discrete singularities, accounting for the presence of the

tunnel walls.

in well with the previous results despite the difference in foil geometry.

Tunnel walls

The kinematic boundary condition on the tunnel floor and ceiling, the condition that

there be no velocity component normal to the surface, may be approximated by placing a

finite number of image singularities symmetrically about the tunnel walls (Figure 3.9). By

the method of images, the kinematic boundary condition is met exactly with an infinite

number of images. However, in this work it was found that as few as four or five images on

either side of the tunnel is sufficient for the vertical velocity at the tunnel walls to vanish to

o(10-4).
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The kinematic and dynamic boundary conditions (2.26, 2.27) are modified to include the

velocity induced by the images:

1. Kinematic boundary condition

LHS of 2.26

RHS of 2.26

+

-+

Nimatew

E
j=l

j=1

Nimanee

j=1l

I KT 1Xdr h 
Lir.E dz (x,, - Xk)2 + h2=i=1

(_1)j 1 ri (x, - Xk) 1
2r1 i=l (Xv; - Xk)2 + h2J

[I t Qi (Xk -X.) 1
= (X., - Xk)' + h2J

LHS of 2.27

RHS of 2.27

+

+

Njmgag..p

j=l

j=1

=1 KT d (x-Xd)_

1 ri (-h) 1
i=1 (XV - Xd)2 + h2

Nimgda

j=1

[1 ( Qi (Xd X,)) 1
2ri=1 (Xd - Xi) 2 +h2J (3.4)

The final correlation of the experimental and numerical cavitation numbers, Figure 3.10,

shows excellent agreement, in support of the accuracy of the numerical method.

p
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2. Dynamic boundary condition

(3.3)
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Figure 3.10: Final correlation between experimental and numerical cavitation numbers
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Chapter 4

Midchord Detachment and Face Cavitation

4.1 Introduction

It has been observed that some propellers cavitate at design conditions with the cavities

detaching aft of the leading edge on the suction side and/or forward of the trailing edge on

the pressure side of the foil. The former is referred to as midchord detachment" and the

latter as face cavitation". Thus, there are in general four independent ways in which a foil

may supercavitate (see Figure 4.1). For each case, the boundary conditions differ, and the

solutions must be considered separately. In Figure 4.1, case (a) has been solved previously

(section 2.1.2). Cases (b) through (d) contain face cavitation and/or midchord detachment,

and their solution is necessary to make the analysis tool complete. In this chapter, these

cases are developed analytically and a method for predicting the cavity detachment points is

described.

4.2 Face Cavitation

For thick symmetric foils at small angles of attack and for many foils at negative angles of

attack, it is found that the supercavity detaches forward of the trailing edge on the pressure

side of the foil (Figure 4.2). The point of separation, X,, may be found by considering the

following two conditions:

1. the pressure on the wetted foil surface must be greater than the cavity pressure

2. the cavity and foil surface must not intersect aft of the separation point.
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(a)

(b)

(c)

(d)

Figure 4.1: Four forms of supercavitation: (a)cavity detachment at leading and trailing edges;
(b)face cavitation; (c)face cavitation for foil at a negative angle of attack; (d)midchord de-
tachment and face cavitation.

j
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distribution -Cp (z).

In linear theory, condition 1 is equivalent to

'Y(X) > for O < z < X,

The behavior of the vorticity near the separation point may be written

(Z:) A(X., ) - x

where A depends only on the point of separation and the length of the cavity (for details, see

[17]).

t

2_r_ 1 + z [ + + f

- V/r 21T + Z2[,

1t; r2 =

-'

e (z) - e () d,
(z -7) ( + 72)

(4.1)z = ;

63
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and

= d'1l (4.2)
a dx

By observing the behavior of the vorticity distribution for perturbations about X,, we con-

clude that the correct vorticity distribution goes to zero at X, with zero slope. This can be

seen in Figures 4.3 and 4.4, where the leftmost detachment point is positive for 0 < x < X,,

thereby satisfying the first requirement; however, for this detachment point, the cavity cuts

the foil. For the rightmost detachment point, the cavity does not cut the foil, but the require-

ment of positive vorticity is not satisfied. Clearly, the correct detachment point is somewhere

between these two, and the one which satisfies both requirements is the one for which the

vorticity is tangent to zero at X,. At this point, the expression A(X,,I 1) vanishes. This con-

dition is sufficient for the determination of the separation point, utilizing a Newton-Raphson

(secant method) iterative solver. A typical case requires about five iterations, depending on

the accuracy of the initial guesses.

Figure 4.3 shows the vorticity distributions for three different values of X,, corresponding

to the three cavity plots in Figure 4.4. Only one of the cavity detachment points is the correct

one; Figure 4.3 shows it is the one for which the vorticity distribution is tangent to the x-axis

at X,.

Once the separation point is found, the new boundary value problem may be solved by re-

scaling the scaled quantities on X,. The Kutta condition must be met at X,, but the solution

is otherwise identical to that of the original boundary value problem. As a consequence,

the problem of determining X, is independent of numerical and analytical computations.

Therefore, face cavitation results are obtained both numerically and analytically.

The same analysis is applied to the case of a supercavitating foil at a negative angle of

attack (Figure 4.lb), as discussed in section 2.4.
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Figure 4.3: Vorticity distributions for three detachment points
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4.3 Midchord Detachment

4.3.1 Formulation of the Problem

For the case where the supercavity detaches aft of the leading edge on the suction side of the

foil (Figure 4.5), the boundary value problem must be modified (for a complete treatment,

see Kinnas and Fine [17]). The coupled singular integral equations describing the boundary

conditions may be written in the form of equations (2.21, 2.22) with a modified definition of

terms. The horizontal perturbation velocity on y = 0+ , u+(z), is constant along the cavity

but square-root singular on the wetted foil forward of the cavity detachment (Figure 4.6).

The dynamic boundary condition may therefore be written

. (x ) =1() 1 0x (4.3)
UC X 2 27r ~- x < <(43

0

where

7Y(x)() =,,(4.4)
and

V(x) = - (4.5)

The kinematic boundary condition becomes

1

e* = v+1 l %~de 0 < <1 (4.6)

0

with 8* as defined in (4.2). Equation 4.6 may be brought into the form of the original

kinematic boundary condition (2.21) with the definition

1

'Y7*~~~~~~ = 2(u-2 ~(4.7)

The new boundary value problem becomes:

1. Kinematic Boundary Condition

1

-r -_ = e;(=) < < (4.8)

0
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2. Dynamic Boundary Condition

2 1/ a=_2 0< < (4.9)
2 2w'~- 

0

3. Kutta condition

(1)= o (4.10)

4. Cavity Closure Condition

fq(z)dz= O (4.11)
0

where we define

3* f e*+ F (4.12)

and
lo 1

F(z) ad 1/ 2
+-~(xd f d_ . (4.13)

0

Since this is identical in form to the original boundary value problem described in section

2.1.2, the solution is also identical and is given analytically by Kinnas 11]. Note, however,

that the vorticity" solved for is now ' rather than Y and the solution for 7, V, and a depends

on the quantity u+ - , which is not known. However, this quantity may be written in terms

of integrals of known functions, which are derived by applying the condition that the source

distribution must match the thickness source distribution for 0 < z < lo.

With the transformation of coordinates

z - +/G; S = = to t= (4.14)i x ~~~~10 _ zl-; w=r=_; 0 -
equation (4.13) becomes

2 to+2 fuc )wdw
F(z) = 2. (1 + z2) ( 2 ) (4.15)Ir f(,,,: Z2) ( + W2)

0

Substituting e2 for e* in equation (16.1a) of Kinnas' PhD thesis, the new source distribution

may be obtained:

t

z=H -F f w ' (1+,)(Z+) < t (4.16)

0
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where

H(z) -'(z) + A(z) t X A' z e*(w)d (4.17)
z 0 Vt-W (1 +W 2 )(Z+W)

and

A(z) = t- 2+ 2 * (1/-I -_) (4.18)
2x/~r2 V FJ

The integral in (4.16) may be simplified by substituting (4.13), reversing the order of integra-

tion, and computing the analytic integrals:

V(z) = H(z) - F(z)

+-. 21 + z' t~z'o (u+ -) wl+r , + z (l+t)(z-) Z z] 2w
0

If we define Vo and ao to be the source distribution and cavitation number for the case

where the cavity detaches at the leading edge (lo = 0), we find that

H(z) - oo(z) = ( - ao)A(z) (4.19)

and therefore

H(z) = °Ž0(Z) + (1 - -o)A(z). (4.20)a a
Between the leading edge and the cavity detachment point on the upper surface, the cavity

source distribution must match the thickness source distribution, w,(z). From this require-

ment, we obtain an integral equation whose kernel is a function of u+ - :

2 tof (u+-I)w l +z 2 t+z
~(z) -H(z) =-(1+ (w2) _ -2)(1 +G2)d .' (z) (4.21)(W2 - 2)( +WI) &

7~~~ ~- ff ¥ g
0

where

G(z) d-f-2- JI 2 ; 'v---' 1 i' z- dq. (4.22)
0

By substituting (4.22) in (4.21) and simplifying, we arrive at the final form of the integral

equation for u+ - :

(z) z (-)d (4.23)
¢,,(z) - H(z) = (4 ~ )o~ (.2+:3'-"W V t ( + ,72)(, -Z.)'

0
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Letting

f (T) de, 1 g. 1

1+7)2 4+t
and writing the integral equation in terms of f,

1 tof(?))di? = V.(z) - H() 1
2r ]7 -z 2 1 + z 2

0

we can invert the equation and solve for f (q):

r- i-oO t -w __wVto - wV "j ± 
+ (w - H(w) dw1 + W2 W, 7 -

Finally, substituting equation (4.20) for H(w), we obtain

/( + t)(to -?) [M(z)
-7 orMZ

f to 7

0

(q1U - qo0)drl

(1 + 2)( - z)
(4.28)

(4.29)

Equation (4.27) is the solution of the integral equation (4.25) which satisfies the condition

that u+ - 1 = 0 at lo.

Substituting (4.27) in (4.15), we obtain a more tractable formula for F(z):

2(1 + MF(Z)F~z)=-j~i~z) j-Mp0z (4.30)

MF(Z) lef 
0

/(w + t)(to - W) M(w)dw
W2

- z 2

and

NF(Z) e f /(W + t(to-) .N(w)d
0

70

(4.24)

Vz+t

lf(1) = -)
7r 17

(4.25)

0t

+ 1 l+ 2
"+- =--7--'

where

(4.26)

and

(4.27)

to

to-'_ t+ ?7 (1 + 72)(7 - Z)

where

(4.31)

(4.32)

I

- (1- fo) pIz

-(I -00 ~)
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The cavitation number is obtained by applying equation (14.2) of Kinnas' PhD thesis

4 V2r 4 rl X/ + 1 + i/7+-1 dl
14.2 of 11]: a0o = r(r2 + 1) (I + 2)2 dx dr

and substituting do for '%, where
dz ~dz~ d

dn = (e' + F) = dt7 + aFdx ~~dz
which results in:

or =____ 17 (v0T± 1- W)F(vn)dt7. (4.33)
° = oo-~(r2 + 1) I 7 (1+12)2d.

0

Substituting 4.30 into 4.33, yields

a-a -a 0` M< - 1 f o (4.34)

where
4 t

3(r2
j i- 1 MPM l',(= + 1) | a 1+ 712 * MF (})dri (4.35)

and

def 8V'f r4 f/ 11 T 'I
N= 3(r2 + 1 J\71± 2 * NF(q)d,. (4.36)

f~~~ ~~ 4- r? t

Finally, from 4.34 we obtain the new cavitation number

M7a=o 1- N' (4.37)

The new source distribution may be found in a similar way, but it is easier to note that

the evaluation of the function q(z) is identical to the case where lo = 0 except that e* is

replaced by e;. 02 is defined in terms of the integrals MF (z) and NF(z), which are computed

numerically:

(z) * (z) + (+ z ) [MF(z)- (1- ) NF(z)j (4.38)

The vorticity is given by

q(z) = +' (z) + 2(u - ) (4.39)

I
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where

7(Z) =-
0

1 - dr) (4.40)

The cavity camber in the wake is still found by equating the slope of the camber to the

vorticity downwash, equation (2.23). However, the effect of the upper wetted surface forward

of the cavity detachment must be accounted for:

-In(z ) = _ .1 7() + 2(u+ - )d-V.(x) = 2d
a1 2ir - x

0

(4.41)
I / 1 ( 0)d_I f27t (-2I de _- 

which is the same for the case where o = 0 with (z) in place of e*(z) and the addition of

the second term of equation (4.41).

The solution for l0 $ 0 depends on the integrals (4.28, 4.29, 4.31, 4.32, 4.35, and 4.36).

The integral (4.29) is computed analytically:

to

(4.42)

where

a Vr2- 1; b; a0= 2-1; b0 = 2+ 1

and

and

to

_ d a7 (1 + 72)(,7 - z)

to

2 =o o-,7 (1 +)(7-z)-
0

Equations (A.20) and (A.26) of Kinnas' PhD thesis

and (4.44). Finally, we have

r (1+z2) (bo- zao)r~2(I + z2)

b ~'
br( -2 (ao + zbo).V2-r( + ~

(4.43)

(4.44)

have been applied in computing (4.43)

1N(z) = 1 + ' -' (ab0 - bao) - z(aao + bbo)].

72
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The remaining integrals are computed numerically by factoring out the singularity and

transforming to an angular coordinate. An example is the computation of (4.28):

toM(z) f /,o -17 _ _ (4.46)ar/ ,/-z
0

where

qwI- -+1 qo (4.47)f () = + 1.

Subtracting out the singularity

to to

M(Z) -/ / f0 f (n) - f (Z) (z) f t 0 dr (4.48)
0 0

The second integral of (4.48) is computed analytically via equation (A.4) of [11]:

d = r f(z) < z < toI t 0-,? 1-z { (Zr ;7.) f(Z) Z > to
0

With the transformation

z = tin2 2; v7 = tsin2 ; 0 < , < r (4.49)2 ~~2'

the first integral of (4.46) becomes

M(0) = f f(0)-f() .od(4.50)
otosin2 - tsin2 tosin2d0 2~~~~~~

and this integral is computed via Simpson's rule.

The remaining integrals are computed in a similar way. The result is a system of nested

singular integrals for which special care is taken when the integrals are computed a point

which coincides, or nearly coincides, with a step of the Simpson's integration (i. e., when z

is close to in (4.48)). For a system of nested singular integrals which are all computed with

roughly the same number of Simpson intervals, this can happen quite often. The solution

to this problem was to use a first order difference approximation of the integrand whenever

abs(z- ) < tsin 2~ as, for example, for (4.50):

M() tsin2s - tsin2_- tosin -dO. (4.51)
0 2 2

73



CHAPTER 4. MIDCHORD DETACHMENT AND FACE CAVITATION 74
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Figure 4.7: The functions M(z) and N(z) for lo = .1

Figure 4.8: The functions MF(Z) and NF(Z) for o = .1
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The functions M(z), N(z), MF(z), and NF(z) are shown in Figures 4.7 and 4.8, where

they have been plotted in the x coordinate for the case lo = .10. Note that M(z) and N(z) are

shown for the domain 0 < z < 10, corresponding to the z-domain 0 < z < to. Although they

are strictly defined only in this region, they are evaluated throughout the region 0 < z < 1

(or 0 < z < t) due to the factoring of singularities in the computation of M, and N,. It

can be shown, however, that M(z) and N(z) can be considered to be constant for lo < x < 1

(t0 < z < t) and equal to their values at the point z = lo (z = to).

4.3.2 Results

The analysis of the preceding section has been implemented in the analytic solution. Figure

4.9 shows typical results for an arbitrary foil which may cavitate under conditions of midchord

detachment. The plot of cavity source distribution superimposed on the foil thickness source

distribution is an indication that the theory and computations produce the desired results.

However, a condition has not yet been derived which, when satisfied, finds the correct point

of detachment. Franc and Michel [5] have suggested that the detachment point is determined

by the condition that the cavity starts just downstream of the point of laminar separation.

This condition has not yet been implemented, and the detachment point remains an input to

the analysis. However, this type of criterion concedes that the fluid forward of the detach-

ment point may be in tension, which is evident in the ideal flow calculations of the pressure

distribution (Figures 4.10 - 4.17). In the Figures, the foil is at such a small angle of attack

that the 0lo = 0 solution cuts the foil and is clearly wrong. However, as the cavity detach-

ment point is moved aft to the point where the cavity no longer cuts the foil, the pressure

on the wetted surface forward of the detachment remains less than the pressure on the cavity

(thereby violating the prime directive of cavity detachment points).
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For a supercavitating thick symmetric foil at zero angle of attack, the cavity must be

symmetric and, therefore, the chordwise coordinate of the cavity detachment points on the

upper and lower surfaces must match. Although we have a criterion for finding the detachment

point on the lower side of the foil, X,, it depends on the midchord detachment point, 10,

and this is unknown. However, by coupling the two problems, it is possible to input both

parameters with a starting guess influenced by our experience with finding the correct X,.

The results of this experiment are shown in Figure 4.18. The pressure distribution again

shows that the fluid is in tension forward of the detachment point. These results indicate that

the correct detachment point on the suction side depends on viscous effects; namely, the point

of detachment must be preceded by laminar separation in the boundary layer.
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Figure 4.10: Supercavitating foil and superimposed pressure distribution with lo = 0

Figure 4.11: Supercavitating foil and superimposed pressure distribution with lo = .01
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Figure 4.12: Supercavitating foil and superimposed pressure distribution with lo = .03

0.250

O. 15n

0. n50

-cp
-0.050

-0.150

- 0. O0

Figure 4.13: Supercavitating foil and superimposed pressure distribution with lo = .05
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Figure 4.14: Supercavitating foil and superimposed pressure distribution with lo = .07
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Figure 4.15: Supercavitating foil and superimposed pressure distribution with lo = .10
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Figure 4.16: Supercavitating foil and superimposed pressure distribution with lo = .15
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Figure 4.17: Supercavitating foil and superimposed pressure distribution with lo = .20

CHAPTER 4.

-Cx

81



CHAPTER 4. MIDCHORD DETACHMENT AND FACE CAVITATION 82

Figure 4.18: Supercavitating thick symmetric foil at zero angle of attack showing midchord
detachment and face cavitation
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Chapter 5

Conclusions and Recommendations

5.1 Conclusions

A robust and flexible code has been developed for computing the flow around partially and

supercavitating hydrofoils by a numerical method and by the semi-analytic method of Kinnas.

Convergence tests have shown that the method of discrete singularities is accurate, as well as

computationally efficient.

The open cavity model was implemented for partial cavitation. The results compare well

with analytic results, providing 6 is small.

An experiment was performed to measure the thickness of the cavity wake for a partially

cavitating VLR thickness form with NACA a=.8 meanline. The wake thickness was found to

be small ((10-3)) and constant along the foil after the cavity trailing edge. 6 increased in

proportion to the length of the cavity.

The measured cavitation number was compared to the numerically obtained cavitation

number for four cavity lengths, showing excellent agreement. To make this comparison, the

tunnel wall effect was included in the numerical model via the method of images; the effect

of the boundary layer was incorporated by use of an effective angle of attack, as suggested by

Pinkerton [151. In addition, the open cavity model was used, as well as the non-linear leading

edge corrections.

Finally, the problems of face cavitation and midchord detachment have been solved. For

face cavitation, a criterion has been developed for determining the correct point of detachment

which depends only on the foil geometry, the cavity length, and the point of midchord detach-
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ment on the suction side. A similar criterion for mnidchord detachment is under consideration;

it has been recognized, however, that the criterion may rely on knowing the behavior of the

viscous boundary layer.

5.2 Recommendations

The following tasks remain at the conclusion of this research:

1. The open cavity model should be implemented in PUF-3, the propeller analysis

code.

2. The analysis for face cavitation should immediately be included in PUF-3, since it

requires few changes to the code.

3. A reliable criterion should be developed to determine the midchord detachment

point.

4. The analysis for midchord detachment should be applied to the method of discrete

singularities in two dimensions, and later to the vortex lattice method in three

dimensions.

5. A valuable one-day project would be to measure the pressure distribution at many

more points on the foil used in the experiment (top and bottom) and superimpose

the results on Figure 3.8. This would be a further check of the effective angle of

attack and could confirm the results of Pinkerton.
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