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A computational and experimental study has been performed for the investigation of fully developed
rarefied gas flows through channels of circular, orthogonal, triangular, and trapezoidal cross
sections. The theoretical-computational approach is based on the solution of the
Bhatnagar-Gross-Krook kinetic equation subject to Maxwell diffuse-specular boundary conditions
by the discrete velocity method. The experimental work has been performed at the vacuum facility
“TRANSFLOW,” at Forschungszentrum Karlsruhe and it is based on measuring, for assigned flow
rates, the corresponding pressure differences. The computed and measured mass flow rates and
conductance are in all cases in very good agreement. In addition, in order to obtain some insight in
the flow characteristics, the reference Knudsen, Reynolds, and Mach numbers characterizing the
flow at each experimental run have been estimated. Also, the pressure distribution along the channel
for several typical cases is presented. Both computational and experimental results cover the whole

range of the Knudsen number. © 2009 American Vacuum Society. �DOI: 10.1116/1.3043463�
I. INTRODUCTION

The investigation of rarefied gas flows in channels of vari-
ous cross sections is of major theoretical and practical im-
portance. The degree of rarefaction is specified by the esti-
mation of the Knudsen number, which is defined as the ratio
of the mean free path to a characteristic length scale. In
general, there are four regimes: the continuum or viscous
regime, the slip regime, the transition or Knudsen regime,
and the free molecular regime.1,2 The computational and ex-
perimental results presented here refer to flows through chan-
nels of circular, orthogonal, triangular, and trapezoidal cross
sections and cover all four regimes.

Applications of such flows may be found in several engi-
neering fields including nano- and microfluidics, high alti-
tude gas dynamics, aerosol industry, porous media, and
vacuum technology. The latter one is one of the most signifi-
cant applications of rarefied gas flows and the motivation for
the present study. In several vacuum applications, such as the
vacuum systems of fusion reactors, the flow may be under
rough, medium, and high �or ultrahigh� vacuum conditions.
Therefore, the flow may be in the whole range of the Knud-
sen number from the free molecular through the transition
and slip regimes up to the hydrodynamic limit.

Rarefied gas flows may be treated theoretically with sev-
eral methodologies.3–6 For fully developed flows, as the ones
considered in the present work, the most powerful approach
is, by far, the kinetic theory approach.3,7 In this case, kinetic-
type formulations, based on the Boltzmann equation or on
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simplified kinetic model equations, may take advantage of all
flow characteristics and properties and yield a set of simple
linearized kinetic model equations, which are solved in a
very accurate and computationally efficient manner. Rarefied
gas flows in long circular channels have been investigated
via kinetic theory from the 1960s, implementing semianalyti-
cal and numerical schemes. An extended and profound re-
view for linearized flows in circular channels is given in
Ref. 8.

The extension of all these schemes to flows through chan-
nels of noncircular cross sections is not trivial or straightfor-
ward since now the flow is not axisymmetric. Results for
flows through channels of various cross sections, based on
the integromoment method, have been presented in Refs. 9
and 10 and also in the review article.11 More recently, the
discrete velocity method has been applied to solve flows
through channels of rectangular,12,13 ellipsoidal,14 circular
annulus,15 and triangular16 cross sections in a very accurate
and computationally efficient manner. It is noted that no re-
sults have been reported so far for flows through channels of
trapezoidal cross sections, which are common in the vacuum
pumping systems of fusion reactors as well as in microchan-
nels fabricated by silicon wet etching.

Rarefied gas flows through long channels have been also
investigated experimentally. Early work has been performed
in vacuum systems measuring the conductance in circular
channels17–19 and more recently in capillaries.20,21 During the
last decade, this effort has been extended to microsystems,
where extensive experimental measurements have been per-
formed mainly with orthogonal microchannels.22–27 How-

ever, most experimental results are for small up to moderate
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Knudsen numbers. Also, the authors are not aware of any
experimental work in triangular and trapezoidal cross sec-
tions.

In the present work we study fully developed flows
through channels of various cross sections, including trian-
gular and trapezoidal ones. The investigation is both compu-
tational and experimental, and the main objective is the com-
parison between computed and measured quantities of the
mass flow rate and the conductance. In addition, several flow
characteristics and properties are presented and discussed in
detail. The results cover the whole range of the Knudsen
number.

In Sec. II, the flow configuration is described and the
basic dimensionless quantities are defined. In Sec. III, the
formulation of the problem is presented in a unified manner
for all cross sections to allow a direct comparison with the
experimental results. The experimental test rigs including the
calibration and measurement procedures are described in
Sec. IV. Computational and experimental results are pre-
sented and discussed in Sec. V, while some closing remarks
are given in Sec. VI.

II. FLOW CONFIGURATION

The flow configuration presented in this section is general
and applies to channels of any cross section including the
four cross sections under consideration. Consider the isother-
mal flow of a gas at a reference temperature T0 through a
long channel of length L and hydraulic diameter Dh, connect-
ing two reservoirs maintained at pressures P1 and P2, respec-
tively, with P1� P2. The area and the perimeter of the cross

section are denoted by Ã and �̃, respectively, while the ref-
erence pressure is defined as P0= �P1+ P2� /2. By taking Dh

�L the flow is considered as fully developed, and then, end
effects at the inlet and the outlet of the channel are ignored.
Even more, at each cross section the pressure is constant and
varies only along the flow direction z̃, i.e., P= P�z̃�
� �P1 , P2�. The flow is driven by the imposed dimensionless
pressure gradient

XP =
Dh

P

dP

dz̃
, �1�

where

Dh =
4Ã

�̃
. �2�

The only nonzero component of the macroscopic �bulk� ve-
locity is the one in the z̃ direction and it is denoted by ũ�x̃ , ỹ�,
where x̃ and ỹ are the lateral coordinates.

The basic parameter of the flow is the Knudsen number
defined by8

Kn =
��

2

�0�0

DhP
, �3�

where �0 is the gas viscosity at temperature T0 and �0

=�2RT0, with R=k /m denoting the gas constant �k is the

Boltzmann constant and m the molecular mass�, is the most
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probable molecular velocity. It is noted that in Ref. 8 the
Knudsen number is defined in terms of the radius of the tube,
while here, since channels of various cross sections are con-
sidered, it is defined in terms of the hydraulic diameter of the
cross section. In addition to the Knudsen number the other
two characteristic and commonly used numbers of the flow
are the Reynolds and Mach numbers defined as

Re =
�ŨDh

�0
�4�

and

Ma =
Ũ

c0
, �5�

respectively. Here, � is the mass density �P=�RT0�, c0

=�0
�� /2 is the adiabatic sound velocity at temperature T0,

and � is the specific heat ��=5 /3 for a monoatomic gas�,
while

Ū =
1

Ã
�

Ã

ū�x̄, ȳ�dÃ �6�

is the mean macroscopic velocity. Based on Eqs. �3�–�5� it is
readily seen that25

Kn =��

2
��

Ma

Re
. �7�

The hydraulic diameter Dh and the molecular velocity �0

are taken as the characteristic length and velocity, respec-
tively. Then, it is convenient to introduce the dimensionless
spatial variables x= x̃ /Dh, y= ỹ /Dh, and z= z̃ /Dh, the dimen-

sionless cross section A= Ã /Dh
2, and perimeter �= �̃ /Dh, as

well as the dimensionless velocity u= ũ / ��0XP�.
At this point it is important to note that under the assump-

tion of Dh�L the dimensionless pressure gradient is always
much less than 1, i.e.

XP =
Dh

P

dP

dz̃
�

Dh

L

	P

P
� 1, �8�

independent of the magnitude of the pressure difference
	P= P1− P2 between the two reservoirs.8,28 This remark is
easily explained by noting that even at large pressure differ-
ences, the ratio 	P / P is at most of order of 1, while Dh /L
�1. Therefore, the quantity XP will be used in the next sec-
tion as a very small parameter to linearize the flow equations
even at large pressure drops.

Closing this section, we focus on the specific four cross
sections considered in the present work. Expressions for the

quantities Dh , Ã ,A , �̃ are specified in Table I, where D de-
notes the diameter of the circular cross section, H and W
denote the height and the width of the orthogonal cross sec-
tion, d denotes the side of the equilateral triangular cross
section. Also, for the isosceles trapezoidal cross section B, b,
and � denote the large base, the small base, and the height,
respectively, while 
 is the acute angle �tan 
=2�� /B� / �1

−b /B��. It is seen that the circular and equilateral triangular
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cross sections are completely defined by specifying only the
hydraulic diameter Dh, while for the orthogonal and isosceles
trapezoidal cross sections additional parameters must be pro-
vided. In particular, for the orthogonal the ratio H /W and for
the trapezoidal the ratios b /B and � /B must be given. The
geometric data for the specific four cross sections studied in
the present work are provided in Table II of Sec. IV B.

III. THEORETICAL-COMPUTATIONAL APPROACH

The theoretical-computational approach is based on the
Bhatnagar-Gross-Krook �BGK� kinetic equation subject to
Maxwell boundary conditions with diffuse and specular
boundary conditions. The problem is solved in a dimension-
less form by the discrete velocity method yielding the un-
known distribution function and the macroscopic velocity,
which is integrated to deduce the flow rate. The analysis is
general, and it may be applied to channels of any cross sec-
tion. However, when a more detailed and comprehensive de-
scription for one of the specific cross sections under investi-
gation is needed, it is accordingly provided. The computed
quantities are dimensionalized by following a specific proce-
dure in order to perform, later on �in Sec. V�, a direct com-
parison with the experimental results using the experimental
geometric and flow parameters.

A. Governing equations and boundary conditions

Since the problem is solved based on kinetic theory the
main unknown is the distribution function which obeys a
kinetic equation. It has been shown that fully developed iso-

TABLE I. Expressions of Dh, Ã, A, �̃, and � for vario

Cross
section

Hydraulic
diameter

Dh

Area

Ã

Di

Circular D �D2 /4
Orthogonal

2
W�H

W+H
W�H 1

4

Equilateral
triangular

d /�3 �3d2 /4

Isosceles
trapezoidal

2�B+b��

B+b+
2�

sin 


B+b

2
�

1

8

�1+

TABLE II. Geometric data for the four cross sections studied in the present
work.

Cross section Geometric data

Circular Dh=15.96 mm
Orthogonal Dh=15.89 mm, H /W=1
Equilateral triangular Dh=17.06 mm
Isosceles trapezoidal Dh=16.48 mm, b /B=� /B=0.5
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thermal pressure driven flows, as the ones described in Sec.
II, can be simulated efficiently by the BGK model
equation29,30 given by

�x
�f

�x̃
+ �y

�f

�ȳ
=

P

�0
�fM − f� , �9�

where r̃= �x̃ , ỹ� is the position vector on a cross section, �
= ��x ,�y ,�z� is the molecular velocity vector, and f = f�r̃ ,�� is
the distribution function. Also the local Maxwellian fM is
given by

fM = n� m

2�kT0
	3/2

exp
−
m�� − ũ�2

2kT0
� , �10�

with n denoting the local number density �n=� /m�. By using
the dimensionless quantities r= r̃ /Dh, c=� /�0= �cx ,cy ,cz�,
and g= f /�0

3, we have the dimensionless BGK equation

cx
�g

�x
+ cy

�g

�y
= ���

2

1

Kn
	�gM − g� , �11�

where

gM =
n

�3/2�0
3 exp�− �c − u�2� . �12�

The validity of the BGK model to handle pressure driven
flows has been, over the years, well verified. In particular, it
has been shown that for flows between plates and through
circular channels the discrepancy of the BGK model com-
pared to other kinetic equations including the Boltzmann
equation is less than 2%.8 It is reasonable to expect that the
validity of the BGK may be extended to other cross sections
as well.

Even more, in the case of linear fully developed flows the
distribution may be linearized according to

g = g0�1 + XP�h�x,y,c� + z�� , �13�

where h=h�x ,y ,c� is the linearized distribution and

g0 = n0 exp�− c2� �14�

represents the absolute �or global� equilibrium at reference

oss sections.

ionless
a

/Dh
2

Perimeter

�̃

Dimensionless
perimeter

�= �̃ /Dh

4 �D �

+
W

H �2 2�W+H� H

W �1+
W

H �2

/4 3d 3�3

�

B

2

sin 
 �2

b

B � �

B

B+b+
2�

sin 
 1

2

�1+
b

B
+

�

B

2

sin 
 �2

�1+
b

B � �

B

us cr

mens
are

A= Ã

� /
H

W �1
3�3

b

B
+

�1+
density n0 and temperature T0 �P0=n0kT0=�0RT0�. Substitut-
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ing expression �13� into Eq. �11� and expanding accordingly
the Maxwellian �12� yield the linearized BGK equation,12

cx
�h

�x
+ cy

�h

�y
+ 
h = 2
czu − cz, �15�

where

u�x,y� =
ũ

�0XP
=

1

�3/2�
−�

� �
−�

� �
−�

�

czhe−c2
dcxdcydcz �16�

is the macroscopic velocity in the z direction, deduced as it is
seen by the first moment of h. Also,


 =
��

2

1

Kn
=

DhP

�0�0
�17�

is the so-called rarefaction parameter and it is proportional to
the inverse Knudsen number �
=0 and 
→� correspond to
the free molecular and hydrodynamic limits, respectively�.

At this point taking advantage of the two dimensionality
of the flow is convenient to eliminate the cz component of
the molecular velocity vector by following the well known
projection procedure.12 First, the reduced distribution func-
tion

��x,y,cx,cy� =
1

��
�

−�

�

czh�x,y,cx,cy,cz�e−cz
3
dcz �18�

is defined. Then, Eq. �15� is multiplied by �1 /���cz exp�−cz
2�

and the resulting equation is integrated over all −��cz��
to yield the reduced linearized BGK equation

cx
��

�x
+ cy

��

�y
+ 
� = 
u −

1

2
. �19�

The macroscopic velocity in terms of � is given as

u�x,y� =
1

�
�

−�

� �
−�

�

� exp�− cx
2 − cy

2�dcxdcy . �20�

It is seen that the deduced Eq. �19� for the unknown distri-
bution �=��x ,y ,cx ,cy� does not contain the independent
variable cz. The reduction in the number of independent vari-
ables by 1 reduces significantly the computational effort as-
sociated with the implemented discrete velocity scheme dis-
cussed in the next section.

The gas-wall interaction is modeled by the Maxwell
diffuse-specular reflection condition.7 At the boundaries we
have

f+ = �fw
M + �1 − ��f−, �21�

where f+ and f− are the distributions representing particles
departing and arriving at the wall, respectively, while fw

M is
the Maxwellian defined by the wall temperature. The param-
eter �� �0,1� is the so-called tangential momentum accom-
modation coefficient and denotes the portion of the particles
reflecting diffusively from the wall. Applying the above de-
scribed procedure �nondimensionalization, linearization, pro-
jection� the boundary condition for the reduced distribution

15,16
becomes
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�+ = �1 − ���−, �22�

where again the superscripts ��� and ��� denote particles
departing and arriving at the wall, respectively.

The linear integrodifferential equation �19�, supplemented
by the corresponding integral expression �20� and subject to
the boundary condition �22�, is solved numerically. The
implemented numerical scheme has been described, in detail,
for channels with circular, rectangular, and triangular cross
sections in a series of previous works.12,15,16,31 For the trap-
ezoidal cross section we follow the procedure introduced in
Ref. 16, by implementing a corresponding boundary fitted
lattice. In all cases, the kinetic equation is discretized in the
molecular velocity space by the discrete velocity method and
in the physical space by typical finite difference schemes.
Then, the discretized equations are solved in an iterative
manner.

B. Computed quantities

The kinetic solution depends on three dimensionless pa-
rameters, namely, the reference rarefaction parameter 
, the
area of the cross section A, and the accommodation coeffi-
cient �. Based on the kinetic solution, which is valid in the
whole range of the Knudsen number, from the free molecu-
lar, through the transition and slip regimes up to the hydro-
dynamic limit, several overall macroscopic quantities of
practical interest may be deduced.

Here, we are interested in the mass flow rate, which may
be obtained by integrating the velocity distribution across the
cross section of the channel as

Qm = �
Ã

��z̃�ũ�x̃, ỹ�dÃ . �23�

The double integral at the right hand side of Eq. �23� is
nondimensionalized, and by using the equation of state ��
=2P /�0

2� as well as the fact that the mass density depends
only on z̃, it is deduced that

Qm = G
ÃPXP

�0
= G

ÃDh

�0

dP

dz̃
, �24�

where

G =
2

A/A
udA . �25�

Traditionally, the quantity G is referred to the literature as
the reduced �or dimensionless� flow rate7,8 and it is obtained
by the kinetic solution. Once the kinetic problem is solved, G
is readily deduced from the double integral in Eq. �25�.

In the case of a specific application the hydraulic diameter

Dh, the area Ã and the perimeter �̃ of the cross section along
with the length L of the channel are defined. Based on these
geometric data the dimensionless quantities A and � are eas-
ily estimated. In addition, the upstream and downstream
pressures P1 and P2, respectively, as well as the reference
temperature T0 are provided. Also, the type of the gas and its

characteristic molecular velocity �0 are known. Then, the rar-
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efaction parameter 
 can be estimated, by Eq. �17�, for any
pressure P� �P1 , P2�. When the pressure difference is small
it is adequate to define an average rarefaction parameter 
0

= �
1+
2� /2, where 
1 and 
2 correspond to pressures P1 and
P2, respectively, and based on the kinetic solver to compute
the corresponding dimensionless flow rate G�
0�. In this case
the mass flow rate can be estimated by the expression8,15,16

Qm = G�
0�
ÃDh

�0

P1 − P2

L
. �26�

When the pressure difference is large then the above expres-
sion is slightly modified. In particular, it is supplemented by
a well known procedure, which is based on the mass conser-
vation principle. In the case of large pressure drops the mass
flow rate is estimated by8,15,16

Qm = G*
ÃDh

�0

P1 − P2

L
, �27�

where now G* is obtained by integrating over all 

� �
1 ,
2�, i.e.,

G* =
1


1 − 
2
�


2


1

G�
�d
 . �28�

It is easily seen that in the case of small pressure drops,
G*=G�
0�.

Another quantity of practical interest is the conductance
C, expressed as1

C =
Qm

M

RT0

	P
, �29�

with M denoting the molar mass of the gas.
At this point, it is useful to define the reference Knudsen,

Reynolds, and Mach numbers of the flow in terms of the
reference pressure P0= �P1+ P2� /2 and the corresponding
reference rarefaction parameter 
0. Based on Eqs. �3�–�5� it
is easily reduced that

Kn0 =
��

2

1


0
=

��

2

�0�0

DhP0
, �30�

Re0 =
�0Ũ0Dh

�0
= 2
0U0

Dh

L

P1 − P2

P0
, �31�

and

Ma0 =
Ũ0

c0
=�2

�
U0

Dh

L

P1 − P2

P0
. �32�

In Eqs. �38� and �39� the quantity

U0 =
Ũ0

�0XP
=

1

A/A
udA �33�

is the dimensionless mean velocity and it is obtained from
the kinetic solution, while all other quantities have been ear-
lier defined. Results of these reference numbers are reported

in Sec. V for the specific geometric and flow parameters,
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which are used in the experimental work and provide a more
complete understanding and a better insight in the flow char-
acteristics.

Finally, it is noted that following the estimation of the
mass flow rate Qm, it is possible to compute the pressure
distribution along the channel. Equation �24� is written in the
form

dP

dz
=

Qm�0L

G�
�ÃDh

, �34�

and then the above first order ordinary differential equation,
with initial condition P�0�= P1, may be solved numerically
applying any typical integration scheme. For example, divid-
ing the distance 0�z�1 into N intervals of length 	z and
applying to Eq. �34� a first order Euler scheme yields the
finite difference expression

P�zi� = P�zi−1� +
Qm�0L

ÃDh

	z

G�
i−1�
, i = 1,2, . . . ,N , �35�

which produces the pressure distribution along the channel.
Then, provided that the discretization is dense enough and
that the mass flow rate Qm has been estimated correctly, the
downstream pressure P�1�= P2 at z=1 is recovered. It is ob-
vious that this analysis can be also used in cases where the
downstream pressure is unknown provided that the mass
flow rate is given.

IV. EXPERIMENTAL APPROACH

A. Basic design of the TRANSFLOW test rig

The basic principle of the �see Fig. 1� transitional flow
range experiments �TRANSFLOW� test rig is the measure-
ment of the conductance of different channels in the transi-
tional and near transitional flow regime at isothermal condi-
tions. TRANSFLOW is based on the direct dynamic
approach, where a constant flow Qm is adjusted and the pres-
sure difference 	P is measured. Then, the conductance is
estimated using Eq. �29�. The constant flow into the test rig

FIG. 1. Overview of the TRANSFLOW test rig.
is provided by a dosing unit. The temperature and pressure of
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the injected gas can be measured in the dosing dome, which
is directly connected to the dosing unit. The effective cross
section of the dome is very big compared to the cross section
of the duct so as to make the pressure differences between
these two elements as small as possible. The test channel is
following the dosing dome in flow direction, and on the
downstream end it is connected with the pump dome. The
pump dome serves to measure temperatures and pressures at
the outlet side of the test channel, and is also equipped with
the turbomolecular pumps which are further connected to the
forepumps, to maintain the vacuum conditions inside the sys-
tem. The whole facility is designed for fundamental labora-
tory research, but sufficiently large to investigate 1:1 scale
big vacuum components �valves, bellows, etc.� with a con-
nection diameter up to 600 mm diameter. To be most versa-
tile, the pump dome is installed in two separate frames and
can be moved relative to the dosing dome so that the con-
nection element must not necessarily be straight.

The dosing unit consists of five thermal mass flow con-
trollers in parallel. The flow ranges of the different mass flow
controllers are chosen depending on the estimated flows for
the tests. Mass flow controller with the maximum ranges of
1, 10, 100, 1000, and 10 000 SCCM �SCCM denotes cubic
centimeter per minute at STP� �always nitrogen equivalent�
are installed. The summarized flow range is therefore be-
tween 0.02 and 11 111 SCCM. All used mass flow control-
lers were individually calibrated for nitrogen and helium.
During commissioning of the facility, mass flow measure-
ments based on orifices under choked flow conditions were
used for comparison.

The dosing dome provides an isothermal and isotropic
flow at a constant pressure difference through the test chan-
nel. It consists of two sections: The upper section is identical
with a PNEUROP dome.32 The inlet pipe is bent to the inner
top of the dosing dome to reduce streaming effects in the gas
flow. The lower part is a cylinder with the same inner diam-
eter as the upper part. On the gas outlet side the dosing dome
features a square shaped flange with an inner length of
600 mm. The flange holds the test channel directly or via an
adapter flange, if the cross section of the test channel is
smaller.

The pump dome connects the different test channels and
the vacuum pumps. It consists of a horizontally orientated
cylinder with a square shaped flange in the middle. The
square shaped flange has the same dimensions as the flange
on the dosing dome �600 mm inner length�. The flange holds
a large compensator, which has been designed for length and
small angular compensation. Between the compensator and
the test channel different adapter flanges can be installed.

There are three gauges and one Bayard–Alpert gauge
mounted on the dosing and the pump dome, respectively.
The capacitance gauges are cascaded with a full scale of
1000, 10, and 1 Torr in the case of the dosing dome and
1000, 10, and 0.1 Torr in the case of the pump dome. By
cascading with overlapping ranges, the resulting experimen-
tal error in pressure measurement, which is constant for the

full range, can be significantly reduced. The gauges have
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been calibrated for nitrogen. The two Bayard–Alpert gauges
have a typical measurement range between 10−2 and
10−10 mbar. One is installed in the upper part of the dosing
dome, the other in the middle of the pumping dome. Both
gauges are calibrated for nitrogen and helium.

The two platinum resistances based temperature sensors
of the domes are positioned so that they measure the tem-
perature in the middle of the gas stream. One is installed in
the lower part of the dosing dome in horizontal direction and
the second one on the top of the square shaped part of the
pump dome in vertical direction.

B. Channel geometry and characteristics

Four stainless steel test channels with different cross sec-
tions were used for the experiments in TRANSFLOW,
namely, a circular, square shaped, equilateral triangular, and
an isosceles trapezoidal cross section �see Fig. 2�. All four
channels had a length equal to L=1277 mm and a hydraulic
diameter of approximately 16 mm so that a length to diam-
eter ratio of 80 is reached. Due to the manufacturing uncer-
tainties, the hydraulic diameters differ from the theoretical
one and were determined by measurements. The resulting
values are shown in Table II. The inner surface of the chan-
nels was of standard clean technical quality without special
treatment. On both ends flanges DN 63 CF are welded,
which are used for the installation of the test channels be-
tween the adapter flanges of the dosing and the pump dome.

C. Measurement procedure and data evaluation

The experiments with all channels have been performed at
constant gas flows in the full range of different flow regimes.
The flow rate of 0.02 SCCM is the lowest achievable at good
reproducibility. For the given channels, the highest flow rate
chosen is 110 SCCM, which is sufficient to have several
measurement points in the viscous flow regime. The test gas
in all experiments is nitrogen at ambient temperature condi-

FIG. 2. Circular, square, equilateral triangular, and isosceles trapezoidal
cross sections.
tions.
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During a measurement, the flow rate, the temperature, and
the pressure in the dosing dome and in the pumping dome
are recorded, stored by the data acquisition system �at a fre-
quency of 2 values /min� and finally corrected by use of cali-
bration tables. The final data are taken after an equilibration
period of several hours; typically, an ensemble of 50–100
measurement values is evaluated. For the pressure measure-
ment, the effect of thermal transpiration between the tem-
perature of the gauge head �maintained at the constant tem-
perature of 313 K� and the gas is being considered.33 In a
final evaluation step, the thus obtained pressures in the
domes are further corrected for the pressure difference be-
tween the channel inlet or outlet and the corresponding dome
volume. This is done by use of a semiempirical code to as-
sess conductance in networks.34 These corrections are in the
order of well below 0.5% of the measured 	P.

The uncertainties of the measured values are given by a
combination of the individual uncertainties of the sensors
and data acquisition uncertainties. Table III summarizes the
different contributions to the overall experimental uncer-
tainty. It becomes obvious that the uncertainties associated
with the calibration of the instruments �done against a sec-
ondary standard� in terms of absolute measurement values
are clearly dominating the overall experimental error.

In the following section, the experimental values are com-
pared with the calculation results. On top of the uncertainties
�about 5%�, associated with the measurements described
above, the comparison results are strongly influenced by the
absolute value for the hydraulic diameter Dh. The conduc-
tance, for example, depends on Dh by the power of 3 �mo-
lecular flow� up to 4 �viscous flow�. The hydraulic diameters,
given in Table II, have been derived from an integral volu-
metric measurement, which delivers the cross section at a
very high accuracy �in the order of 0.01%� and from the
perimeter, as it is estimated from the shop drawings under
the assumption of a mathematically perfect shape �cycle, or-
thogonal, etc.�. However, this latter assumption, due to the
rounded edges of the channels, introduces an error to the
estimation of the hydraulic diameters. It is noted that it was
possible to measure the exact perimeter. In any case accord-
ing to our calculations the introduced maximum uncertainty
is about 4%. In future work, a more accurate determination
of the hydraulic diameter will be attempted by using nonde-
structive examination techniques to estimate local cross sec-
tions and their corresponding profiles across the channel

TABLE III. Typical contributions to the overall measurement uncertainty.

Uncertainty For flo

Quantitative instrumentcalibration 1.5%–2.5%

Relative standard deviation of the measurement values
in the evaluated time interval �95% confidence interval�
Offset drift within one week �zeroed out each week� Last of the
Maximum error of multimeter �voltage measurement�
length.
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V. RESULTS AND DISCUSSION

Computational and experimental results are presented for
all four cross sections under consideration. The accuracy of
the numerical results has been tested in several ways. For
small values of 
 we need a large number of discrete veloci-
ties, while the physical grid may be coarse. For large values
of 
, the required number of discrete velocities may be re-
duced but dense physical grids are important to achieve good
accuracy. Depending on the value of 
 and the geometry, the
discretization has been progressively refined to ensure grid
independent results up to at least three significant figures
within �1 to the last one. In addition, the computational
results always recover the well known solutions at the free
molecular and hydrodynamic limits. The accuracy of the ex-
perimental results has been discussed, in detail, in Sec. IV C.

easurement For pressure measurement

e measured value 0.5% of the measured value �capacitance gauges�;
5% �Bayard–Alpert gauges�

1% �0.1% �capacitance gauges�;
negligible �Bayard–Alpert gauges�

significant digits Last of the five significant digits
0.005%

FIG. 3. Dimensionless flow rates in long channels of circular �top� and
w m

of th

�0.

four
…

orthogonal with H /W=0.1 �bottom� cross sections for various values of �.
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TABLE IV. Computed dimensionless flow rates G in long channels of various cross sections in terms of 
, with
�=1.


 Circular

Orthogonal
Equilateral
triangular

Isosceles
trapezoidal

b /B=� /B=0.5H /W=1 H /W=0.1

0 0.752 0.839 1.09 0.930 0.879
0.01 0.743 0.828 1.06 0.916 0.879
0.1 0.715 0.793 0.961 0.872 0.827
0.5 0.689 0.762 0.838 0.831 0.790
1 0.693 0.768 0.796 0.833 0.793
1.5 0.709 0.786 0.785 0.851 0.809
2 0.729 0.809 0.786 0.874 0.831
3 0.776 0.864 0.804 0.931 0.885
4 0.829 0.924 0.833 0.994 0.943
5 0.883 0.987 0.867 1.06 1.00
7 0.997 1.117 0.944 1.19 1.13

10 1.17 1.32 1.07 1.41 1.33
20 1.78 2.00 1.51 2.14 2.02
30 2.40 2.70 1.98 2.87 2.71
40 3.02 3.40 2.44 3.61 3.41
50 3.64 4.10 2.91 4.36 4.10
60 4.27 4.80 3.38 5.10 4.8
70 4.89 5.50 3.85 5.84 5.48
80 5.51 6.20 4.32 6.58 6.07
90 6.14 6.90 4.79 7.31 6.86

100 6.76 7.61 5.26 8.04 7.55
FIG. 4. Experimental and computational mass flow rates in terms of 	P and P0 for channels of various cross sections �top left: circular; top right: square;

bottom left: equilateral triangular; bottom right: isosceles trapezoidal with b /B=� /B=0.5�.

J. Vac. Sci. Technol. A, Vol. 27, No. 1, Jan/Feb 2009
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The dimensionless flow rate G is shown in Table IV in
terms of the rarefaction parameter 
 for channels with circu-
lar, orthogonal �H /W=1 and 0.1�, equilateral triangular, and
isosceles trapezoidal �b /B=� /B=0.5� cross sections. The ac-
commodation coefficient has been taken �=1. It is seen that
the qualitative behavior of G in terms of 
 is similar for all
cross sections, although qualitatively there are differences.
Note that the Knudsen minimum is always about 1 but oc-
curs at different 
 for each cross section. In some cases the
Knudsen minimum is deep �orthogonal channel with H /W
=1�, while in others is shallow �e.g., circular channel�. Also,
the limiting values of G at 
=0 are different, while as we are
getting into the slip regime �
�10�, G in all cases becomes
proportional to 
 but the proportionality constant is different
for each cross section. The results of Table IV, regarding the
circular, orthogonal, and triangular cross sections, have been
reported before,8,12,16 while the results for the trapezoidal one
are reported for first time in the literature. In addition, the
results of Table IV are all based on the same characteristic
length, which is the hydraulic diameter Dh, while in previous
works various characteristic lengths have been implemented
depending on the geometry, i.e., the radius R for circular
channels in Ref. 8 and the height H for orthogonal channels

FIG. 5. Experimental and computational conductance in terms of the rarefacti
square; bottom left: equilateral triangular; bottom right: isosceles trapezoida
in Ref. 12. The present results are in excellent agreement
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with the corresponding ones in Refs. 8 and 12 taking into
account the different characteristic lengths. In particular, if
we denote the dimensionless flow rates for a circular channel
in Ref. 8 and for a rectangular channel in Ref. 12 by GR and
GH, respectively, then these quantities are related to the cor-
responding present ones according to

G = 1
2GR� 1

2
� �36�

and

G =
H

Dh
GH� H

Dh

	 , �37�

where H /Dh= �1+H /W� /2.
The dependency of the dimensionless flow rate with re-

spect to the tangential momentum accommodation coeffi-
cient � is shown in Fig. 3, where results of G are shown for
channels with circular and orthogonal cross sections with �
=1, 0.85, and 0.70. It is seen that as � is decreased �i.e., less
diffuse reflection�, G is increased. This is expected since as
the interaction between the molecules and the wall becomes
more specular the friction factor at the wall is decreased. It is
also seen that the effect of � on G is more dominant in the

rameter 
 for channels of various cross sections �top left: circular; top right:
h b /B=� /B=0.5�.
on pa
l wit
free molecular regime �small values of 
�, it decays gradu-
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ally as 
 is increased, and finally at the hydrodynamic limit
there no effect at all. This behavior is typical for any cross
section.

We continue now, in Fig. 4, with the comparison between
computational and available experimental results for each of
the four cross sections under consideration. Each experiment
is characterized by a pressure difference 	P= P1− P2 and by
a reference pressure P0= �P1+ P2� /2. Both quantities are in-
dicated in Fig. 4. The pressure difference 	P is shown on the
horizontal axis and the reference pressure P0 on the right
vertical axis. For each pair �P0 ,	P� the corresponding com-
puted �solid line� and measured �cycles� mass flow rates are
shown. The computed quantities have been obtained by di-
mensionalizing the tabulated results of Table IV according
to the procedure discussed in Sec. III B. For all four cross
sections the agreement between computational and experi-
mental results is considered as very good in the whole
range of �P0 ,	P�. The relative errors defined as ��Qm

comp

−Qm
exper� /Qm

comp� for all cross sections vary from less than 1%
up to about 10%, while the average error is estimated around
5%. These discrepancies are attributed to errors in measure-

FIG. 6. Reference Knudsen, Mach, and Reynolds numbers in terms of pres
right: square; bottom left: equilateral triangular; bottom right: isosceles trap
ments �maximum about 5%�, in the estimation of hydraulic
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diameter �maximum about 4%� and also in modeling due to
the implementation of the BGK, instead of the Boltzmann
equation �about 2%�. These introduced uncertainties justify
the observed differences between experimental and com-
puted results.

The corresponding computational and experimental re-
sults for the conductance C in l/s are presented in terms of
the rarefaction parameter 
 in Fig. 5. It is seen that again the
agreement is very good. In general, the conductance is al-
most constant at rarefied atmospheres up to some value of 
,
and then as we are getting into the slip and viscous regimes
it is increased proportionally to 
. Both computed and mea-
sured results confirm the existence of the Knudsen minimum
in all cross sections.

In Fig. 6, for each cross section and for each experimental
pair �P0 ,	P� the reference Kn0, Re0, and Ma0, estimated by
Eqs. �30�–�32�, respectively, are shown. The Knudsen num-
ber is reduced linearly in a log-log scale as 	P is increased
and varies between 10−2 and 102. Therefore, it is seen that
the presented results cover all four regimes from rough up to
high vacuum. The Reynolds number is increased as 	P is

−3

ifference 	P for channels of various cross sections �top left: circular; top
al with b /B=� /B=0.5�.
sure d
ezoid
increased but in all cases remains small and varies from 10
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and 10. It is reasonable to expect that in all cases the flow is
laminar even when it is well inside the viscous �continuum�
regime. Finally, as expected the Mach number is very small
ranging between 10−2 and 10−1. Actually, for a wide range of
	P remains constant and then as 	P increases the Mach
number is moderately increased. All this information related
to the flow properties and characteristics is particularly use-
ful.

Finally, in Fig. 7, pressure drop distributions along the
channels are presented for four typical cases. Each of the
four presented pressure distributions correspond to a differ-
ent cross section and to a different pair of data �P0 ,	P�.
Also, each pair of data corresponds to one of the four flow
regimes. In particular, the presented pressure drop distribu-
tions for the trapezoidal, triangular, circular, and square
channels correspond to the free molecular, transition, slip,
and viscous regimes, respectively. Therefore, a representative
picture for the pressure distribution in each flow regime may
be obtained. It is seen that when the flow is in the free mo-
lecular regime �
=0.05� and also in the middle of the tran-
sition regime �
=0.91� the pressure distribution is linear,
while as the flow is just getting into the slip regime �

=10.5� and also inside the viscous regime �
=68.4�, the

FIG. 7. Typical pressure distributions along the channel �top left: isoscele
circular; bottom right: square�.
pressure distributions become parabolic. This behavior of the
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pressure distribution along the channel in the slip and vis-
cous regimes has been also observed in Refs. 24 and 35.

VI. CONCLUDING REMARKS

A computational and experimental study has been per-
formed for the investigation of fully developed gas flows
through channels of circular, orthogonal, triangular, and trap-
ezoidal cross sections in the whole range of the Knudsen
number. The theoretical-computational approach is based on
the BGK kinetic theory subject to Maxwell diffuse-specular
boundary conditions. The experimental work has been per-
formed at the vacuum test facility TRANSFLOW at FZK.
The computed and measured flow rates and conductance are
in all cases in very good agreement. The discrepancies are
within 10%. In addition, the reference Knudsen, Reynolds,
and Mach numbers characterizing the flow in all experimen-
tal runs have been estimated. Also, the pressure distribution
along the channel has been presented for several representa-
tive cases.

It may be concluded that kinetic theory is probably the
only theoretical approach to yield accurate results in a uni-
fied manner for any type of vacuum conditions from rough

ezoidal with b /B=� /B=0.5; top right: equilateral triangular; bottom left:
s trap
all the way down to ultrahigh vacuum. In addition, it has
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been verified that the developed and applied experimental
methodology and procedure in the TRANSFLOW facility are
valid and accurate and may be implemented to more com-
plex flow configurations.
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