
Knowledge Maintenance on Data Streams with
Concept Drifting

Juggapong Natwichai and Xue Li

School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane, Australia

{jpn, xueli}@itee.uq.edu.au

Abstract. Concept drifting in data streams often occurs unpredictably
at any time. Currently many classification mining algorithms deal with
this problem by using an incremental learning approach or ensemble clas-
sifiers approach. However, both of them can not make a prediction at any
time exactly. In this paper, we propose a novel strategy for the main-
tenance of knowledge. Our approach stores and maintains knowledge in
ambiguous decision table with current statistical indicators. With our
disambiguation algorithm, a decision tree without any time problem can
be synthesized on the fly efficiently. Our experiment results have shown
that the accuracy rate of our approach is higher and smoother than
other approaches. So, our algorithm is demonstrated to be a real anytime
approach.

1 Introduction

There are many classification applications that require mining on the data
streams, such as network sensor monitoring, stock market analysis or server
performance tuning. Concept drifting [1] always occurs in streaming data en-
vironment because data is generated continuously. In general, concept drifting
happens when the knowledge discovered in the past, is not applicable to the cur-
rent incoming data/events any more, because of the inherent domain changes.
More general, any previous truth is no longer valid in the current time.

In dealing with the concept drifting problem, there are many available al-
gorithms so far. They can be categorized into two groups: increment learning
approach [2–4], and ensemble classifiers algorithms [5–7]. Most algorithms pro-
vide knowledge for the users in form of decision trees [8] representation. However,
these algorithms also have the same problem which is any time prediction. More
specifically, we do not know what time period the users might have interests
to predict from a decision tree. Both groups of algorithms only reflect to new
coming knowledge and manipulate it to existing knowledge. Intuitively, this pro-
cedure should avoid noise, so it will take some time to justify the new knowledge
whether it is noise or not. And, within the time, a decision tree becomes unstable
and produces very high error rate. Apparently, this problem can be seen very
clearly in incremental classifier. As shown in Figure 1 from CVFDT [2] approach,

J. Zhang, J.-H. He, and Y. Fu (Eds.): CIS 2004, LNCS 3314, pp. 705–710, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



706 J. Natwichai and X. Li

which we shaded the areas that represent the periods of unstable decision tree.
There is not much chance for the users to get a right tree, particularly when
justifying period is larger than the size of concept. On the other hand, if an
approach of ensemble classifiers is used, it would take time to adjust weight
between each classifier to keep track of concept drifting too.

Fig. 1. Not Any Time Problem of Incremental Classifier

In this paper, we propose an approach for knowledge maintenance. Our ap-
proach has two phases. Firstly, we maintain knowledge by using an ambiguous
Decision Table, (aDT) [9] as an intermediate form of knowledge representation.
For reflecting changes, it is essential for counting accuracy of each rule in the
decision table and also updating it constantly. So, we also add a set of indicators
that is recorded for solving any time problem. This includes current error rate
and time stamp for each rule. With ambiguous Decision Table (aDT), ambiguous
rules will be kept for handling concept drifting problem. And, for making knowl-
edge as recently as possible, we also implemented sliding window. Secondly, when
the users want to predict based on acquired knowledge, we are able to generate
a decision tree at any time using simple disambiguation algorithm from aDT.

The remaining sections in this paper are organized as following. In the next
section, we introduce basic background related to our work. Section 3, gives the
detail about our disambiguation algorithm. The experiment results are presented
in section 4. Finally, section 5 concludes this papers and gives an overview of
future work.

2 Ambiguous Decision Table with Time Stamp

In this section, aDT [9] and our extension work are reviewed. The aDT consists
of two-dimensional array of cells. Each row records a decision rule, with each
column within it is an attribute. And, the last column of each rule is an assigned
class. Ambiguous decision table will contain two or more rules that conflict with
each other e.g. in Table 1 rule 1 and 9, or rule 2 and 10. Our idea is to keep
all happened knowledge, and add statistical indicators for each rule to make it
ready for decision trees induction. So, we choose CVFDT algorithm [2] that can
reflect concept drifting by generating alternative sub-tree to fill in this table.



Knowledge Maintenance on Data Streams with Concept Drifting 707

When a new set of sub-tree is discovered by knowledge feeder, we will transform
it into decision rules.

Furthermore, we also add two more columns into the aDT as shown in Table 1.

Table 1. Extended ambiguous Decision Table

Rule No. Att0 Att1 Att2 Att3 Att4 Class % Error Time Stamp
1 True True False False True True 6 1
2 True False False False False False 5 1
... ... ... ... ... ... ... ... ...
9 True True False False True False 0 5
10 True False True False False False 0 5

In the first, error of corresponding rule is recorded. And, start time stamp is
also added here to support our disambiguation algorithm.

While incoming data keeps changing, new knowledge/rule will be derived.
We keep making them always up-to-date by sliding window. Consequently, our
extended aDT is capable to reflect any discovered knowledge as well as the
history.

3 Decision Tree Synthesizing

In this section, we review the second phase of our approach. In the first phase, we
collected knowledge along with its history and statistical indicators. When the
users want to get the most recently knowledge so far, with additional algorithm
we can synthesize decision tree for the users even we do not keep any decision
tree. Because of simplicity of our algorithm, synthesizing process can be done
on the fly.

So, we presented disambiguation algorithm as Table 2. At the beginning, we
have to build the root of a decision tree. From the root of a decision tree to the
lowest internal node, we will select all possible candidate attribute at currently
state of aDT. All candidate attribute comes from each alternative sub-tree of
our feeder. After any selection, we will split the tree by the number of attribute
values. Each attribute value will have to be used to expand as a next level node of
decision tree. And, this process will be repeated recursively. Because we maintain
our decision table as an ambiguous table, we will also face ambiguousness in the
synthesizing process. In this paper, we propose to induce all possible options
firstly. And then, we eliminate those options with larger error when we induce
until we reach a leaf node. This comes from the fact that the accuracy of decision
trees come from where the decisions take place. At that point, we sum its error
rate up for counting accuracy. The selected attribute at any level of a decision
tree will be better than other candidates statistically. No matter whether it
is newer than others or it is the oldest one, if it has less error rate than the
other attributes at the current time, it would be selected. Although we keep all
knowledge within the table, space complexity of our approach is O(avc) where a



708 J. Natwichai and X. Li

Table 2. Disambiguation Algorithm

Inputs: aDT is an extended ambiguous Decision Table,
i is a level number.

Outputs: DT is a decision tree,
DT.error is a error rate of decision tree.

Procedure Disambiguation(aDT , i)
Get candidate attributes for level ith from aDT .
While The number of candidates > 0 do

split DT on each candidate attribute.
For each child of DT on current split do

refine aDT with each attribute value.
If aDT has only one rule, then

assign Class to current node of DT .
Return DT .

End if.
Get DT.error from Disambiguation(aDT , i+ 1).error

End for.
End while.
Choose DT from candidate with the least DT.error and current

level node error.
Return DT .

is the number of attributes, v is the maximum number of possible attribute values
for any attribute, and c is the number of classes. This can be seen apparently
that there is no term related to the number of examples. Moreover, we can
assume that real-world streaming data is as large as multi-million examples and
is produced continuously. So this asymptotic bound O(avc) is not comparable
with size of data streams and our approach can be used without causing efficiency
degrading.

4 Experiment Results

We performed experiment using syntactic data set to demonstrate aspects of
our algorithm when encountered with concept drifting. We selected hyperplane
rotation in a d-dimension problem. A hyperplane in a d-dimensional space is
denoted as Equation 1:

n∑
i=1

aixi = a0 (1)

where xi is the coordinate of the ith dimension, and ai is the weight corre-
sponding to each ith dimension. For example, if

∑n
i=1 aixi ≥ a0, we will label



Knowledge Maintenance on Data Streams with Concept Drifting 709

Fig. 2. Error Rate of Syntactic Data Set with Five Concepts

its class as positive. Otherwise it will be labelled as negative. We will also con-
trol the values of class distribution, so that both positive class, and negative
class will be in the similar amount. The hyperplane rotation problem is an ideal
case to demonstrate the handling of concept drifting, because it can adjust the
weight of each attribute more smoothly than other ways (see [2] for more
explanations).

We performed the experiment by generating 200, 000 examples with 50 at-
tributes syntactically. Four concept drifts were generated. We did this through
adjustment of weight (ai) of each attribute. In this way, we obtained five equal
sets of syntactic data in this experiment.

Firstly, we made a change radically between Concept One and Concept Two.
However, we adjusted weight between Concept Two and Three as smooth as
possible. In addition, we wanted to investigate the behavior of our approach
when encountered with a concept which was learned in the past. So, we could
see efficiency of our approach to exploit previous knowledge. Concept drifting
level along data set is shown as a minor vertical axis in Figure 2 .

The result of our approach is shown in Figure 2. Obviously, it is able to
see that our approach is better than compared approach. The error-rate of our
algorithm dropped sharply when it had learnt a new concept. If there is radical
concept drifting, our approach would give dropping of error rate quickly as seen
from error rate of Concept Two. And, in the case of slightly changed, concept
catching period between Concept Two and Concept Three showed our better
performance very clearly. In case of learning a concept which happened in the
past, our algorithm can use it to synthesize a decision tree very efficiently too. So,
at any time which the users need a decision tree, not much difference accuracy
of the decision tree they will get.



710 J. Natwichai and X. Li

5 Conclusion

This paper introduced a novel approach for solving concept drifting problem in
mining knowledge from streaming data. With a data structure namely extended
ambiguous Decision Table (aDT) [9], we can maintain time-stamped knowledge
and handle the problem of concept drifting efficiently. Our work has proved to
be capable of capturing emerging concepts in a manner of any time. Currently
we are improving our approach in terms of the computational performance, and
storage complexity by using a data-mining-ready data structure for a variety of
streaming data. And we are also extending our algorithm to synthesize decision
trees with the user-defined arbitrary time-ranges validation, compared with the
current sliding window approach. For the users, it is essential for them to be
able to specify starting time or end time of their decision tree according to the
domain knowledge that only user knows. Moreover, our approach can be used for
users to make a combination of criteria for different properties of decision tree
e.g. the support examples or overall accuracy of the decision trees. In this way
our algorithm can also be used as an experimental tool for the human interactive
knowledge discovery.

References

1. Schlimmer, J.C., Richard II. Granger, J.: Beyond incremental processing: Tracking
concept drift. In: AAAI National Conference on Artificial Intelligence, Philadelphia,
PA, USA (1986) 502–507

2. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, San
Francisco, CA, USA (2001) 97–106

3. Jin, R., Agrawal, G.: Efficient decision tree construction on streaming data. In:
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
(2003)

4. Kalles, D., Morris, T.: Efficient incremental induction of decision trees. Machine
Learning 24 (1996) 231–242

5. Wang, H., Fan, W., Yu, P., Han, J.: Mining concept-drifting data streams using
ensemble classifiers. In: ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Washington, DC, USA (2003)

6. Street, W.N., Kim, Y.: A streaming ensemble algorithm (sea) for large-scale classi-
fication. In: ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, San Francisco, CA, USA (2001) 377–382

7. Kolter, J.Z., Maloof, M.A.: Dynamic weighted majority: A new ensemble method for
tracking concept drift. In: International Conference on Data Engineering, Bangalore,
India (2003)

8. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Mateo, CA, USA (1993)

9. Colomb, R.M.: Representation of propositional expert systems as partial functions.
Artificial Intelligence 109 (1999) 187–209


