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Abstract

From the earliest Streptomyces genome sequences, the promise of natural product genome mining 

has been captivating: genomics and bioinformatics would transform compound discovery from an 

ad hoc pursuit to a high-throughput endeavor. Until recently, however, genome mining has 

advanced natural product discovery only modestly. Here, we argue that the development of 

algorithms to mine the continuously increasing amounts of (meta)genomic data will enable the 

promise of genome mining to be realized. We review computational strategies that have been 

developed to identify biosynthetic gene clusters in genome sequences and predict the chemical 

structures of their products. We then discuss networking strategies that can systematize large 

volumes of genetic and chemical data, and connect genomic information to metabolomic and 

phenotypic data. Finally, we provide a vision of what natural product discovery might look like in 

the future, specifically considering long-standing questions in microbial ecology regarding the 

roles of metabolites in interspecies interactions.

Introduction

Bacterial, fungal and plant natural products are a rich source of clinically used drugs 

including antibiotics, anticancer chemotherapeutics, immunosuppressants, cholesterol-

lowering agents and anesthetics. Moreover, a wide range of food additives and crop 

protection agents originate from natural products. These molecules derive from large 

number of chemical classes such as polyketides, nonribosomal peptides, saccharides, 

alkaloids, and terpenoids, which together encompass a staggering diversity of chemical 

scaffolds. Intriguingly, most microbially derived (and some plant-derived) natural products 

are produced by metabolic pathways encoded by chromosomally adjacent genes: 

biosynthetic gene clusters (BGCs). These BGCs encode the enzymes, regulatory proteins 

and transporters that are necessary to produce, process and export a specialized metabolite. 

Importantly, this feature allows genomes to be mined for metabolites by the computational 

identification of BGCs.
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Here, we will review the current and future impact of computational methodologies on the 

analysis of specialized metabolism and its applications in drug discovery from natural 

products. After outlining the recent evolution of (meta)genomic data, we will discuss 

algorithmic approaches for the identification, classification, dereplication and prioritization 

of BGCs in genomes and metagenomes. Subsequently, we examine how computational tools 

(for an overview, see Table 1) can be used to couple this genomic information to metabolite 

data and how networking approaches can be utilized to integrate multiple data sources (Fig. 

1). We close by providing a perspective on how the use and further development of 

computational tools will change the field of natural product research in the next decade.

The promise of genome mining

From the time the first Streptomyces genomes were sequenced more than a decade ago1,2, 

the promise of genome mining has been irresistible: the treasure trove of cryptic biosynthetic 

gene clusters they revealed would usher in a resurgence of natural product discovery. The 

key feature of this renaissance would be to turn the ad hoc, one-off process of discovering 

natural products into a high-throughput pipeline that would churn out many thousands of 

new small molecules from microbes, plus unnatural derivatives made possible by genetic 

engineering.

More than ten years later, this promise has not yet been realized. A skeptic could point out 

that not more than a few hundred molecules have been discovered over the last decade using 

genome mining, and that many of those molecules were so challenging to discover that the 

process would be difficult to generalize and automate.

However, we take a more optimistic view: that the promise of genome mining remains 

eminently realistic, and that its failure (to date) to yield thousands of new molecules is a 

kinetic, not a structural, problem. In this review, we argue that computational approaches to 

identifying biosynthetic gene clusters and predicting their small molecule products will 

finally equip scientists with the power to effectively explore the wide diversity of chemicals 

produced by organisms throughout the tree of life. Whereas recent and ongoing 

developments in synthetic biology and mass spectrometry (both recently reviewed 

elsewhere3–5) promise a massive increase in experimental throughput, computational 

developments will be the key to narrowing down the immense genomic diversity of extant 

biosynthetic pathways to a number that is feasible to evaluate using these approaches. 

Hence, the continued development of accurate and inventive algorithms to identify, classify, 

dereplicate and prioritize biosynthetic pathways will be of paramount importance to exploit 

the ever-increasing genomic data deluge to finally fulfill the promise of high-throughput 

natural product discovery.

An ongoing genomic revolution

In the near future, two important trends are likely to radically alter the landscape of genome 

mining. First, the number of genome sequences available will continue to rise exponentially: 

it is realistic to expect that within a decade, the nucleotide sequence databases will contain 

genome sequences of millions of bacterial and fungal strains. Research programmes to 
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sequence entire culture collections, which together contain more than 1.5 million different 

bacterial and fungal strains (http://www.wfcc.info/ccinfo/), are already being initiated. And 

this just covers cultured microbes. Uncultured microbes appear to constitute the vast 

majority of biodiversity on earth: it has been estimated that about half of all identified 

bacterial phyla contain exclusively uncultured species6,7 and some reports predict that 99% 

of microbial strains are not readily culturable8. When single-cell genome sequencing of the 

uncultured majority of microbes9 increases in throughput and becomes less expensive, the 

number of genomes that can be sequenced will become almost unlimited. Moreover, as 

third-generation sequencing technologies (e.g., Pacific Biosciences and Oxford Nanopore) 

mature, it will become possible to cheaply obtain long read sequencing data sets with low 

error rates. This will make it feasible to rapidly obtain complete genome assemblies, without 

the many remaining gaps that currently plague genomic regions with repetitive sequences, 

including BGCs encoding NRPS (nonribosomal peptide synthetase) and PKS (polyketide 

synthase) enzymes10.

Second, the same technological developments will soon make it possible to close almost 

every genome captured within a metagenomic sample, eliminating the need for laborious 

and computationally intensive short-read assembly. This will lead to millions of additional 

genome sequences sampled directly from the environment, each with a rich set of data 

regarding the ecosystem and microbial community from which they derive.

These developments will have far-reaching repercussions for how natural product genome 

mining efforts should be developed in the coming years. Not only will synthetic biological 

refactoring of BGCs be paramount, as nearly all of these isolates will not exist in culture 

collections, but computational methods that compare enormous numbers of gene clusters 

within and between families and predict the structures and chemical diversity of their 

products will be essential. During this development, computational requirements of 

algorithms should be constantly optimized as well: already with the current data volumes, 

some of the bioinformatic tasks mentioned in this review take several months to finish on 

dedicated compute servers. Clever algorithmic innovation will be needed to allow these to 

scale up another thousand-fold.

Identifying biosynthetic gene clusters in genome sequences

Ever since the first bacterial genomes were sequenced, computational tools have been used 

to detect biosynthetic gene clusters in nucleotide sequences. At first, simple comparison 

techniques such as BLAST11 and HMMer12 were the methods of choice, using manually 

constructed lists of genes used as query sequences. Over the years, the methodologies have 

become increasingly sophisticated, however. Currently, a range of comprehensive software 

tools is available, which can be divided into two categories: high-confidence/low-novelty 

and low-confidence/high-novelty (Fig. 2).

High-confidence/low-novelty methods include tools such as CLUSEAN13, ClustScan14, 

np.searcher15, SMURF16 and antiSMASH17,18. The overall strategy for BGC detection 

shared among these tools is to utilize well-defined queries (usually implemented as profile 

HMMs19 generated from multiple sequence alignments) with manually curated cut-offs to 
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identify signature genes or domains that are highly specific for known classes of 

biosynthetic pathways. The main advantage of this strategy is that it quickly and reliably 

yields an overview of the BGC repertoire of a single strain from its genome sequence, with a 

very low rate of false positives. Also, BGCs encoding known types of biosynthetic enzymes 

such as polyketide synthases and nonribosomal peptide synthetases are almost never missed, 

and a tool like antiSMASH can detect more than twenty classes of pathways (e.g., for the 

biosynthesis of aminocoumarins, oligosaccharides, thiopeptides, butyrolactones, etc.). 

Software tools based on these algorithms are therefore ideal for researchers who are, e.g., 

looking for gene clusters of a known biosynthetic class or who would like to get a quick 

overview of all detectable BGCs in one or more genomes for annotation purposes.

Low-confidence/high-novelty algorithms have only recently started to emerge to address an 

important shortcoming of the tools from the first category: their high specificity in detecting 

known gene cluster classes has the inherent consequence that they will not detect unknown 

types of gene clusters. Predicting gene clusters from unknown classes is a high priority, as 

they may encode molecules with entirely new chemical scaffolds20. New classes of gene 

clusters may be especially prevalent in the uncultivated majority of microorganisms often 

referred to as microbial ‘dark matter’21, but may even be hiding in plain sight in well-studied 

genomes from species like Escherichia coli22. Computationally detecting new classes of 

gene clusters requires more sophisticated algorithmic approaches. There are at least three 

possible strategies to solve this key challenge.

The first strategy, which is implemented in the recently published ClusterFinder algorithm22, 

is to look globally at the patterns of broad gene functions encoded in a genomic region 

instead of looking at the presence of specific individual signature genes. Similar to the way 

that gene identification algorithms detect stretches of nucleotides in a genome sequence that 

together look gene-like, ClusterFinder uses the Pfam database23 to translate a genome into a 

long string of protein domains and then looks for stretches within this string that look 

biosynthetic-gene-cluster-like based on their constituent broad gene families. The algorithm 

that is used for this is called a hidden Markov model (HMM), which is programmed to hover 

between two states (BGC and non-BGC) based on the frequencies of Pfam domains inside 

and outside known biosynthetic gene clusters of a wide range of types (provided by means 

of a training set). Due to the nature of the HMM, the probability of a Pfam domain to be part 

of a BGC is governed not only by its own frequency inside and outside BGCs from the 

training set, but also by the domains upstream and downstream of it. In this manner, 

ClusterFinder identifies genomic regions that are rich in Pfam domains that occur frequently 

in biosynthetic gene clusters. This strategy is capable of finding new gene cluster classes 

because biosynthetic pathways for entirely different molecules often utilize many of the 

same enzyme families common to secondary metabolism, such as oxidoreductases, 

methyltransferases, CoA-ligases, and cytochrome P450s24,25. Also, the operons are typically 

regulated by similar families of transcriptional regulators, and their small molecule products 

are often exported by similar families of transporters. Thus, genomic regions with high 

frequencies of these Pfam domains have a high likelihood of encoding a biosynthetic 

pathway, even in the total absence of signature genes for known biosynthetic gene clusters. 

Indeed, ClusterFinder enabled the identification of a large, previously unrecognized family 
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of gene clusters that encode the biosynthesis of aryl polyenes in a wide range of bacteria 

from various phyla22.

The second strategy to identify new BGC classes is based on the idea that all secondary 

metabolic enzymes are distant paralogues of primary metabolic enzymes. The EvoMining 

approach26 exploits this conjecture by detecting the presence of ‘additional’ copies of 

primary metabolic enzymes in genomes (e.g., from amino acid metabolism), and then using 

phylogenetic analysis to identify outliers that have undergone significant sequence (and 

presumably also functional) divergence. These enzymes are subsequently visualized in their 

genomic context in order to identify new types of biosynthetic gene clusters.

The third way in which new types of biosynthetic pathways can be identified is by using 

large-scale comparative genomic alignment. According to this strategy, one would attempt to 

detect largely syntenic blocks of multiple orthologous genes that are not part of the core 

genome of a taxon and occur in different genomic contexts in different strains and species, 

or which otherwise display evolutionary hallmarks of specialized metabolic gene clusters. A 

dispersed taxonomic distribution and the presence of transposases at the borders (both 

pointing to horizontal gene transfer), as well as the detection of enzyme-associated Pfam 

domains would be additional indicators of a metabolic pathway with a specialized function. 

Takeda et al.27 have recently published an early version of such a motif-independent 

algorithm that identifies putative BGCs as small syntenic regions within the non-syntenic 

accessory genomes of Aspergillus species. The method successfully identified the kojic acid 

and oxylipin gene clusters, which do not have any signature genes specific to known 

pathways.

In the future, constructing a meta-algorithm combining scores from all the three of these 

strategies would probably be the most effective way to identify new classes of biosynthetic 

pathways with low false positive error rates, as it would take advantage of a broader range of 

characteristics.

Besides the challenge of identifying new classes of BGCs, one known class of BGCs is 

notoriously difficult to detect computationally: Ribosomally synthesized and 

Posttranslationally modified Peptides (RiPPs)28. RiPP BGCs have no shared signature genes 

and are so small that they are often missed by global pattern-matching algorithms like 

ClusterFinder. Tools like BAGEL29,30 and antiSMASH17,18 can detect a range of known 

subclasses of RiPPs based on the presence of shared tailoring or processing enzymes, but it 

is likely that these gene clusters are merely the tip of the iceberg. Advanced machine-

learning techniques might be used in the future to detect RiPP prepeptide-encoding genes 

based on shared biases in amino acid frequencies and physicochemical properties.

Metagenome sequences: a special challenge

Compared to regular genome sequences, the analysis of metagenomic sequence data for 

BGCs presents several key challenges. As recently reviewed in more detail elsewhere31,32, 

there are two main approaches to identifying biosynthetic gene clusters in metagenomes: the 

PCR-based sequence tag approach and the shotgun assembly approach.
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The sequence tag approach uses PCR amplification of known biosynthetic domains to 

identify clones in metagenomic libraries that harbor pathways of interest. This methodology, 

recently strengthened by full-fledged software automation33, is particularly powerful for 

identifying variants of known pathway types: it has been used to identify gene clusters that 

encode close relatives of molecules like rapamycin, teicoplanin and thiocoraline34. In this 

sense, it is an attractive alternative to synthetic chemical approaches to generating variants of 

known scaffolds, as it exploits the variation generated by evolution to alter moieties in a 

scaffold that would be difficult to access synthetically. However, the tag-based approach can 

also be used to find entirely new molecules that are produced by known BGC classes. 

Especially when coupled to phylogenomic analysis tools such as NaPDoS35, it can be used 

to identify domains that represent new areas of the extant biosynthetic diversity. Also, the 

recently released eSNAPD 2.033 specifically pinpoints gene clusters that are significantly 

different from all known gene clusters, which are visualized in its “New Clade Explorer” 

analysis module. In the future, such phylogenomic analysis of sequenced tags, combined 

with targeted cosmid sequencing, could be used to map the entire extant sequence diversity 

in known gene cluster families: after identifying a wide range of tag sequences in 

metagenomes obtained from a variety of environments, one could select an optimally diverse 

subset for cosmid sequencing based on approaches similar to the ones used in the Genomic 

Encyclopedia of Bacteria and Archaea project36.

In the shotgun assembly approach, metagenomic DNA is sequenced in bulk and then 

assembled en masse. For technical reasons related to the ability to assemble complete BGCs 

from short reads, this strategy has thus far largely been limited to the analysis of relatively 

low-complexity ecosystems or taxonomically enriched samples from more complex 

ecosystems. Even so, it has lead to the identification of a number of new pathways37,38. With 

spectacular recent developments in assembly algorithms39–41 and a notable increase in read 

lengths generated by new sequencing technologies, the time may now be ripe for a large-

scale application of shotgun metagenomics to sequence and assemble BGCs directly from a 

wide variety of environments. With the cost of DNA synthesis dropping, synthetic biology 

will replace the need to isolate the cells from the source environment in order to access 

BGCs for heterologous expression. Adequate quality controls need to be in place, however, 

as the danger of chimeras in metagenomic sequence assemblies is ever-present, especially 

with fast-evolving and repetitive genes in BGCs that encode, e.g., modular polyketide 

synthases.

Notably, metagenomics in its current ‘short read-based’ form is a temporary research field, 

as the technical limitations that currently define it are likely to be solved soon. Given the 

technological developments anticipated in the coming years, the shotgun sequence approach 

may altogether replace tag sequencing for metagenomic BGC identification. And in the near 

future, the combination of fast-developing long-read technologies and new bioinformatic 

approaches42,43 may allow scientists to obtain full genome sequences of all but the least 

prominent members of a microbial community by parsing them out directly from the larger 

metagenomic dataset. In the near term, hybrid approaches that combine assembly and tag 

sequencing might also be of great help; in such a hybrid approach, assembled metagenomic 

contigs would be used to identify new candidate classes of BGCs for which primers are then 
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designed for further exploration by tag sequencing, phylogenomic analysis and cosmid 

sequencing.

Dealing with thousands of gene clusters effectively

Although they are still being developed and improved, techniques for identifying gene 

clusters in genome and metagenome sequences have already identified tens of thousands of 

putative BGCs, creating a new challenge: how to make sense of and prioritize this growing 

list of BGCs. This challenge is particularly urgent since – as discussed above – the list of 

putative BGCs will likely soon number in the millions. In order to dereplicate and prioritize 

large numbers of gene clusters, it is essential to be able to classify them into gene cluster 

families (GCFs): in this way, it can easily be assessed whether newly identified BGCs are 

related to BGCs that produce known compounds, enabling gene cluster mining to 

supplement or replace the use of organic synthesis to generate semisynthetic analogs. 

Moreover, accurately determined GCFs allow the analysis of the taxonomic and 

environmental distribution within a family, which can provide clues about function. Finally, 

GCFs are ideal units to subject to multi-dimensional prioritization approaches to select 

BGCs for experimental characterization based on various indicators of potential for, e.g., 

pharmaceutical application44.

The challenge of classifying large numbers of BGCs into well-defined gene cluster families 

has already been taken on by several different research groups22,45,46, who each used 

different distance metrics and cutoffs to define relationships among BGCs (Box 1). The 

ways in which these strategies diverge reflect the differences in data sets that were analyzed 

as well as disparate goals of each metric. However, in order to provide a general solution and 

computational infrastructure for BGCs analogous to the Pfam domain classification for 

proteins, it would serve the broader community well to arrive at a common standard for 

family delineation that works robustly for a wide range of datasets and is implemented with 

user-friendly tools. One option would be a two-tier approach: first a categorization into 

broad classes (e.g., glycopeptides or ansamycins) using a metric measuring the overall 

similarity in gene content between each pair of clusters, followed by finer-scale delineation 

into GCFs (comprising one family for each molecule and its chemical variants) using 

sequence identity of domains shared between all BGCs.

From genes to chemistry

Many GCFs that will be classified and prioritized using the approaches detailed in Box 1 

will have no members with elucidated chemical structures. In order to further prioritize these 

orphan clusters for experimental characterization and connect them to high-throughput data 

generated by techniques such as mass spectrometry, it is essential that more accurate 

approaches are developed to predict chemical structures directly from genome sequences.

A range of algorithms have been developed to predict the substrate specificities of NRPS 

adenylation domains and PKS acyltransferase domains47–54. In tools like NP.searcher15 and 

antiSMASH17,18, individual monomer predictions are then combined to give a rough idea of 

the core scaffold of a polyketide or nonribosomal peptide. For some classes of RiPPs, 
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intramolecular cross-links can also be predicted55. While ostensibly useful, such predictions 

currently provide limited detail and do not apply to important natural product classes such as 

terpenoids, alkaloids and saccharides. There are two possible solutions to improve chemical 

structure prediction, which are both worth pursuing in parallel: First, there is a need to 

devise more general strategies for connecting enzyme-encoding genes to predicted substrates 

and products, in order to be able to predict the final products of a wide range of pathways 

from scratch. Second, high-throughput experimental techniques can be used to connect 

actual molecules to computationally identified gene clusters. We discuss these solutions in 

more detail below.

Predicting entire chemical structures from scratch

Predicting the small molecule products of a wide range of biosynthetic pathways directly 

from genome sequence data is a daunting challenge. There exist an enormous variety of 

enzymes involved in synthesizing and tailoring natural product scaffolds, and innumerable 

variations on known chemical themes. From a computational perspective, the problem can 

largely be reduced to the question of how to acquire a sufficiently comprehensive training 

dataset to cover this diversity and complexity.

As a start, in order to effectively connect biosynthetic enzymes to the chemical 

transformations they catalyze, their BGCs should be meticulously and continuously 

catalogued. The Minimum Information about a Biosynthetic Gene cluster (MIBiG) 

standard56 takes a step in this direction, by allowing the scientific community to carefully 

annotate all enzyme functions and specificities for each BGC, as well as the level of 

evidence available for each observation. Also, systematically searching for correlations 

between natural product sub-structures and genes or sub-clusters in their BGCs may be 

helpful: e.g., sugar monomers could be linked to genes associated with their biosynthesis. 

By combinatorial permutation of scaffold biosynthesis predictions with predictions of 

tailoring reactions and additional chemical moieties, one might then be able to generate a 

library of molecular masses (or narrow mass ranges) for each BGC that can be used to 

identify which of the possible structures is truly produced by the organism in question15.

In the long run, it may also be necessary to enrich the training sets for, e.g., substrate 

specificity prediction algorithms, by systematically generating large amounts of training data 

experimentally. For example, a powerful dataset to train NRP structure predictors could be 

generated by expressing a diverse, carefully selected set of NRPS adenylation domains from 

synthetic genes and subjecting them to a high-throughput ATP-pyrophosphate exchange 

assay to determine their substrate selectivity. Similar approaches might soon be technically 

feasible for enzymes like glycosyltransferases, cytochrome P450s and terpene cyclases. 

Even if a subset of these enzymes displayed promiscuity in vitro that is not reflective of the 

reaction they catalyze in vivo, the combination of these results and existing data from known 

BGCs would yield a far more powerful and ‘fault tolerant’ predictive capability. A saying 

that is frequently applied to machine-learning problems is “garbage in, garbage out”, but for 

properly functioning algorithms the reverse will also be true: “great data in, great results 

out”.
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Matching genes to molecules using mass spectrometry

Computational solutions alone will not be sufficient to realize the vision of high-throughput 

genome mining. In parallel, advances in analytical chemistry—particularly in mass 

spectrometry—are revolutionizing the ways in which the small molecule products of 

biosynthetic pathways are detected (reviewed in more detail elsewhere4,5). But when these 

experimental techniques are combined with computational algorithms directly, an even more 

powerful synergy arises.

For example, the peptidogenomics57 and glycogenomics58 methodologies combine the 

power of tandem mass spectrometry to profile the fragment composition of molecules with 

BGC predictions of chemical sub-structures that may correspond to these fragments. 

Recently, the computational coupling of mass spectrometric and genomic data for 

peptidogenomics has been entirely automated by a number of algorithms. This provides an 

unprecedentedly rapid method to connect gene clusters to molecules.

The RiPPQuest59 and NRPQuest60 algorithms both use a molecular networking approach61 

to identify potential gene clusters for observed tandem mass spectra of lanthipeptides (a 

class of RiPPs) and nonribosomal peptides (NRPs), respectively. The search database for 

RiPPquest is compiled by finding all short open reading frames (ORFs) near each detected 

lanthionine synthetase-encoding gene in a genome, while NRPquest creates a database of 

possible NRPs by generating all possible orders of NRPS assembly-lines within each 

detected NRP BGC and then predicting the amino acids encoded by each NRPS module 

using NRPSPredictor251. A spectral networking approach enables multiple variants of a 

molecule to be assessed, which reduces the likelihood of a false negative result from 

unanticipated tailoring modifications. Also, it allows immediate identification of previously 

unknown variants of known peptides.

An alternative method, Pep2Path62, uses a probabilistic framework to predict the likelihood 

that each NRPS module selects every possible amino acid as a substrate, and then calculates 

combined probabilities for all possible NRPS assembly lines to match a mass spectrometry-

derived mass shift sequence tag: a sequence of fragment molecular weight differences that is 

representative for the amino acid sequence of the peptide under study. Even though 

Pep2Path is based on the same algorithm for substrate specificity prediction as NRPquest 

(i.e., NRPSPredictor2), the advantage of this approach is that the algorithm will not fail to 

predicted a peptide-BGC link if a few modules are slightly mispredicted: e.g., if a module is 

specific for tyrosine, and a phenylalanine is observed, the probability of the module to be 

responsible for the observed amino acid will still be high. Pep2Path also has a tool for RiPP 

BGC identification, which searches all possible ORFs in a genome for hits to an observed 

mass shift sequence tag.

In the future, it would be powerful to combine the spectral networking approach of 

NRPquest with the probabilistic approach of Pep2Path: the strengths of both approaches 

could make it possible to rapidly annotate large and semi-automatically generated molecular 

networks from complex samples or sample collections. Also, developing similar algorithms 

for saccharides, terpenoids, alkaloids, and other classes of molecules, which is technically 
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feasible, would make it possible to target a wide range of molecules using this technology. It 

might even be possible to use statistics to systematically connect the full set of 

spectrometrically observed fragment mass differences for a molecule—irrespective of its 

class—to all possible chemical transformations that can be predicted to occur in a pathway 

and all chemical moieties predicted to be synthesized based on the enzyme families that 

each BGC harbors.

In any case, the semi-automated identification of the small molecule products of BGCs that 

these strategies allow may soon have a profound effect on how natural product 

characterization operates: large numbers of ‘draft’ compound structures could be rapidly 

reconstructed and linked to their most probable biosynthetic gene clusters. Based on the 

characteristics of the molecules (e.g., the chemical moieties observed) and the gene clusters 

(e.g., their uniqueness compared to known gene clusters), a smaller number of compounds 

could then be prioritized for detailed structural characterization using methods such as NMR 

or X-ray crystallography. If this workflow becomes a reality, new computational tools will 

also be required to make the most of the large number of draft natural product structures for 

the purpose of dereplicating and classifying biosynthetic pathways.

Connecting multiple data types with networking approaches

Besides attempting to predict individual BGCs that correspond to individual molecules, 

large-scale genomic and molecular information could also be used more systematically to 

uncover links between genes and molecules in a wide range of organisms simultaneously. 

Using molecular networking of large numbers of mass spectra and BGC networking on large 

amounts of genomic data, comprehensive sets of molecular families (MFs) and GCFs can be 

reconstructed63. If, from a genetic perspective, GCFs are genotypes and MFs are their 

phenotypes, genome-wide association studies could be performed that statistically match 

these genotypes to phenotypes (Fig. 3), in a manner similar to how genetic diseases are 

matched to specific polymorphisms on the human chromosome. Given the extreme 

variability of natural product repertoires observed in many bacterial taxa22, only a relatively 

limited number of strains (thousands instead of millions) would then have to be assessed 

using the combination of both methods to be able to identify a large set of molecules that 

show a statistically significant correlation between the strains in which they are observed 

and the BGCs present in the genomes of these strains. When combined with even partial 

chemistry predictions, this method might enable scientists to discover large numbers of 

molecules and their corresponding gene clusters in the scope of a single large experiment. 

Even more intriguingly, all of these compounds could potentially be connected to specific 

biological activities in a similar manner: methods are currently emerging to classify 

molecules by their phenotypes in terms of the effect that they have on a range of different 

cells and cultures, which can be quantified and categorized using cytological profiling and 

functional signature ontologies64,65. In this way, combinatorial computational networking of 

genomic, metabolomic and phenotypic data could rapidly uncover families of molecules 

with phenotypes of interest in large strain collections, along with their corresponding gene 

cluster families that would allow heterologous or synthetic biology-driven expression and 

engineering of their biosynthetic pathways.
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How computation will change natural product workflows in the future

The computational approaches discussed above hold great promise for improving individual 

steps in the natural product discovery process. However, the true promise of these 

approaches will be realized when they are connected in series, transforming natural product 

research from an ad hoc pursuit to a high-throughput endeavor.

As a result, ten years from now, a typical workflow will likely be a lot different than it is 

today (even though many approaches will likely extend efforts being pioneered now by 

various labs). One possibility: Starting with a molecule of interest, an MSn experiment will 

generate a fragmentation pattern revealing the set of possible chemical moieties represented 

by these fragments. These data are then matched probabilistically against a set of thousands 

BGCs detected in the complete genome sequences of more than a thousand bacterial species 

from the soil metagenomic sample from which the molecule was detected. This procedure 

pinpoints a family of around a dozen related candidate gene clusters which are near-perfect 

matches to the fragmentation data and appear to encode enzymatic pathways to synthesize 

AHBA-containing polyketides that are distant relatives to geldanamycin. Generating an in 

silico library of all the possible final products for each of these clusters based on detailed 

chemical structure predictions then identifies a single BGC that is predicted to be 

responsible for the compound with the observed total mass. NMR experiments on 

microgram quantities of the molecule confirm the correctness of this structure 

experimentally; all of this takes about one week. Querying a publicly available database of 

millions of putative BGCs reveals a few hundred non-redundant gene clusters, each of which 

appear to make an analog of the original molecule. Each of these BGCs is synthesized and 

expressed in a bacterial host that has been pre-optimized for producing AHBA-containing 

polyketides, and milligram quantities of several hundred analogs are obtained. High-

throughput cytological profiling and toxicity screening then identify a handful of analogs 

with the most favorable pharmacological profiles.

Another possibility will be to start from several GCFs of interest. In this hypothetical case, 

the GCFs are chosen by a phenotypic/ecological criterion: they are overrepresented in the 

gut microbiomes of people predisposed to developing Crohn’s but without active disease; 

thus, they are candidate immunomodulatory factors that would serve a protective, 

tolerogenic role. Ten such GCFs are identified, each having a few hundred members on 

average. All gene clusters are ordered for synthesis, and expressed in one of several dozen 

hosts optimized for production of the predicted molecular class to which the gene cluster 

belongs. In the meantime, automated structure predictions for each of the clusters are refined 

by database matches to mass spectral networking data, generating high-quality structure 

predictions. Microgram quantities of around a thousand compounds are obtained and 

screened in cell-based immunological assays to narrow down the set to a few hundred high-

confidence compounds—around one hundred molecular variants of each of 5 compounds 

that originated from 5 of the originally selected GCFs—that are produced in milligram 

quantities. Complete structure determination by MSn and NMR experiments reveals that the 

structure predictions were completely accurate for the majority of the molecules, and off by 

a simple chemical transformation (e.g., a hydroxylation or methylation) in the remaining 

cases. The structure prediction software automatically suggests enzymes from related BGCs 
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that could be used to create unnatural derivatives of these molecules. A library of a few 

thousand derivatives is then utilized for detailed phenotypic screening, based on which a 

handful is prioritized for animal experiments.

At present, these examples are closer to science fiction than reality. But as natural product 

discovery continues its transformation from an ad hoc exercise to a systematic, computation-

driven pursuit, science fiction might become reality with surprising speed.

Conclusion and future perspectives

In addition to changing the way natural products are discovered, advances in computation, 

along with increased deposition of metadata66, will help answer long-standing questions 

about the role of natural products in microbial and microbe-host ecology. This landmark 

challenge would address piecemeal observations that have raised tantalizing questions, but 

still no systematic study: Why do closely related organisms often have different gene 

clusters, but unrelated organisms have similar clusters? Are there certain environments or 

communities that select for the production of, e.g., a ribosome-targeted antibiotic or a 

rapamycin-family TOR inhibitor? Why does a single strain of Streptomyces or Sorangium 
harbor three to four dozen different biosynthetic gene clusters? What selective pressures, 

extremes in environment, or diverse competitors must a bacterium encounter in order to need 

an arsenal that large? A greater understanding of the role of small molecules in microbial 

ecology could be leveraged to advance natural product discovery by using earth-wide 

metagenomic sampling to pinpoint high-potential microbial ecosystems, and then targeting 

these for exhaustive single-cell sequencing.

Questions about the natural roles of natural products are particularly intriguing in their 

application to host-associated microbes. For example, can a computational analysis of the 

ecological distribution of biosynthetic gene clusters reveal a subset that have evolved to 

produce a molecule that targets eukaryotic or even mammalian enzymes? Can this process 

be refined to predict gene clusters whose small molecule products have a target that is 

expressed, e.g., in the mammalian gut or skin? Finally, can these predictions be merged with 

predictions of the chemical structure of a BGC’s product to produce a high-confidence list of 

candidate targets? These questions extend beyond the human host, as natural products from 

insect-, plant-, and sponge-associated bacteria have been an important source of natural 

products with human targets67–69; indeed, rapamycin and geldanamycin are exemplars of a 

larger class of bacterially produced molecules that may have evolved to target fungal 

enzymes that are conserved from fungi to humans70.

An important challenge will be to focus isolate and metagenome sequencing capacity on the 

most impactful samples in the near term. Although sequencing is becoming democratized 

and enormous latent sequence capacity exists in large centers, at companies, and in 

individual academic labs, samples still need to be collected and DNA needs to be extracted. 

Sequencing campaigns for natural product discovery should therefore be directed toward 

samples that are most likely to yield novelty worthy of experimental exploration. Although 

well-characterized clades of prolific natural product producers, including actinomycetes and 

myxobacteria, have been the focus of the vast majority of natural product discovery efforts, 
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they are far from being exhausted. Recent taxonomically diverse genome sequencing efforts 

have also emphasized that understudied clades, including the host-associated 

Entotheonella71 and Photorhabdus/Xenorhabdus72,73 taxa, are also promising targets with 

many uncharacterized gene clusters. And although bacterial taxa that have many fewer gene 

clusters per Mb of genome sequence may seem less attractive as targets, the likelihood of 

finding a previously unknown molecular scaffold from a gene cluster in an entirely unmined 

taxon is high. In fact, the absolute number of distinct gene clusters in ‘low-producer’ taxa is 

likely to be at least as high as that in ‘high-producer’ taxa, simply because the ‘high-

producers’ are a small minority. Taken together, these observations would suggest that a 

diversified portfolio of sequencing projects makes good sense in the coming decade. If the 

latest insights from ecology are thus effectively combined with state-of-the-art 

computational genomics and integrative omics analysis, a deep and quantitative 

understanding of specialized metabolism will be within grasp.
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Box 1

Defining BGC families

Several efforts have recently been made to classify BGCs into gene cluster families 

(GCFs), based on their gene content and sequences (Fig. Box a).

In a recent manuscript reporting the comparative genomics of 75 Salinispora strains,45 

BGCs with similar gene content were grouped into families termed ‘operational 

biosynthetic units’ (OBUs), based on sequence identity values of 90% and 85%, 

respectively, among homologous ketosynthase and condensation domains. While this 

method worked well to separate BGCs responsible for the production of different 

compounds in their dataset, the approach was not intended as a general solution for all 

organisms and all classes of BGCs. First of all, the approach only works for polyketide 

and nonribosomal peptide BGCs. Also, it is limited to the domains involved in the 

synthesis of their core scaffolds, not yet taking into account the complement of scaffold-

tailoring enzymes found in a typical BGC. Finally, even recent hybridization of a PKS or 

NRPS BGC with other sub-clusters that encode the biosynthesis of other chemical 

moieties would not be detected by this method.

Recently, a more sophisticated strategy was developed to define GCFs: a distance metric 

composed of three parameters combined into a single overall score.46 The parameters 

used were the number of homologous genes shared between two BGCs with >50% 

sequence identity, the proportion of nucleotides involved in a PROmer74 pairwise 

alignment and the amino acid sequence identity between key signature domains involved 

in scaffold biosynthesis. The first two parameters were given a 25% weight in the final 

score, whereas the last parameter was given a 50% weight. When classifying 74 BGCs 

producing known compounds using this metric, the method performed robustly and 

consistently grouped BGCs for similar molecules into the same GCFs. One downside of 

the metric appears to be that the scores are calculated unilaterally, leading 3-amino-5-

hydroxybenzoic acid (AHBA) BGCs to be grouped in a family with the BGC for 

rifamycin, which contains AHBA as just one of its chemical moieties (Fig. Box b); 

however, this could be fixed easily by, e.g., taking the average of each pair of two 

unilateral scores as a bilateral score. Another drawback of the metric is that its main 

component only works for pre-specified classes of BGCs for which appropriate signature 

domains have been defined.

A third approach to classify BGCs into families was recently developed.22 In this study, a 

distance metric devised for multidomain proteins75 was modified for the purpose of 

classifying BGCs, and uses the set of Pfam23 domains identified in each BGC as a basis. 

The modified metric consists of the Jaccard index (weighted 36%), which measures the 

number of unique Pfam domains shared between two BGCs, and the domain duplication 

index (weighted 64%), which measures the similarity in the number of domains for each 

Pfam type present in the BGCs. Additionally, sequence similarity information was 

(optionally) incorporated by weighting the score by the maximum bipartite matching of 

Pfam domain sequence identities. The main advantage of this metric is that it works for 

any type of BGC, regardless of what is known about the enzymes encoded in them. 
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However, the approach has limited resolution when comparing BGCs that almost entirely 

consist of repetitions of the same Pfam domains, such as is the case for some large 

multimodular NRPS- or PKS-encoding gene clusters.
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Figure 1. The role of computation in natural product discovery
As shown in this overview schematic, which serves as an outline for the review, 

computational algorithms have been developed that enable or accelerate every key step in 

the natural product discovery pipeline: identifying BGCs from raw genomic and 

metagenomic sequence data, grouping BGCs into families, predicting the structure of a 

BGC’s small molecule product, and connecting gene cluster and molecular families using 

networking approaches.
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Figure 2. Strategies for identifying BGCs
Several strategies have been designed for the genomic identification of BGCs. (a) The main 

high-confidence/low-novelty strategy is based on signature mining, using profile HMMs or 

BLAST searches to identify (combinations of) genes or protein domains that are specific for 

certain types of BGCs. (b) Recently, three high-novelty/low-confidence approaches have 

emerged that are focused on the identification of new BGC types: 1) pattern-based mining, 

based on the identification of genomic regions with protein domain frequencies that are 

generally indicative of involvement in specialized metabolism; 2) phylogenetic mining, 

based on the identification of functionally diverged paralogues of primary metabolic 

enzymes that have acquired functions in specialized metabolism during evolution; and 3) 

comparative genomic mining, which uses the identification of (horizontally or intra-

chromosomally) transferred conserved syntenic blocks of enzyme-coding genes that belong 

to the accessory (pan) genome of a species to identify ‘mobile metabolic elements’ that are 
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indicative of a role in specialized metabolism. Bullet points preceded by + and − at the 

bottom of the figure indicate advantages and disadvantages of a method, respectively. 

Tool(s) whose workflow corresponds to a column in the flowchart are listed at the bottom of 

each column.
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Figure 3. Big data challenges for biosynthesis
(a) In network-based algorithms that enable small molecule structure elucidation, networks 

are constructed in which each node is a mass ion, and edges are drawn between mass ions 

that are related by a mass difference that indicates a common chemical transformation. Sub-

networks represent a molecular species of interest. (b) In an alternative approach, two 

distinct networks – one in which nodes are molecules, and the other in which nodes are 

BGCs – can be co-analyzed to connect BGCs to small molecules they encode and vice versa.
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Figure for Box. 
(a) Three algorithms have been developed recently to group biosynthetic gene clusters into 

families; see Box 1 for more details. (b) Chemical structures of 3-amino-5-hydroxybenzoic 

acid (AHBA) and rifamycin.
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Table 1

Overview of computational tools and databases for the analysis of secondary metabolites and their 

biosynthetic gene clusters. See reviews from Weber93 and Boddy94 for alternative overviews.

Tool/Database Web Server URL Available for download Reference

Biosynthetic gene cluster identification and analysis

antiSMASH http://antismash.secondarymetabolites.org x 17,18

ClusterFinder https://github.com/petercim/ClusterFinder x 22

NP.searcher http://dna.sherman.lsi.umich.edu/ x 15

SMURF http://jcvi.org/smurf/ 16

BAGEL http://bagel.molgenrug.nl/ 29,30,76

ClustScan http://bioserv.pbf.hr/cms/ x 14

NaPDoS http://napdos.ucsd.edu 35

eSNaPD http://esnapd2.rockefeller.edu/ 33

NRPS-PKS/SBSPKS http://www.nii.ac.in/sbspks.html 77

MultiGeneBlast http://multigeneblast.sourceforge.net/ x 78

Connecting genomic and mass-spectrometric data

GNPS http://gnps.ucsd.edu/ –

Pep2Path http://pep2path.sourceforge.net/ x 62

RiPPQuest http://cyclo.ucsd.edu/ 59

NRPQuest http://cyclo.ucsd.edu/ 60

CycloQuest http://cyclo.ucsd.edu/ x 79

Substrate specificity predictions for NRPS/PKS enzymes

NRPSPredictor http://nrps.informatik.uni-tuebingen.de x 48,51

LSI Predictor http://bioserv7.bioinfo.pbf.hr/LSIpredictor/ 54

NRPSsp http://www.nrpssp.com/ 52

NRPS/PKS substrate predictor http://www.cmbi.ru.nl/NRPS-PKS-substrate-predictor/ 53

Gene cluster databases

IMG-ABC https://img.jgi.doe.gov/ABC/ 80

MIBiG repository http://mibig.info/ x 56

DoBISCUIT http://www.bio.nite.go.jp/pks/ x 81

ClusterMine360 http://clustermine360.ca/ x 82

ClustScan DB http://csdb.bioserv.pbf.hr/csdb/ 83

MAPSI http://gate.smallsoft.co.kr:8008/pks/ 84

Chemical compound databases

ChEBI http://www.ebi.ac.uk/chebi/ x 85

ChEMBL https://www.ebi.ac.uk/chembl/ x 86

KNApSAcK http://kanaya.naist.jp/KNApSAcK/ x 87

PubChem http://pubchem.ncbi.nlm.nih.gov/ x 88
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Tool/Database Web Server URL Available for download Reference

ChemSpider http://chemspider.com/ 89

NORINE http://bioinfo.lifl.fr/norine/ x 90

StreptomeDB http://www.pharmaceutical-bioinformatics.de/streptomedb/ x 91

Dictionary of Natural Products http://dnp.chemnetbase.com/ 92
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